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1 Overview

Nonparametric Predictive Inference (NPI) is a statistical methodology based on
Hill’s assumption A(n) [30], which gives a direct conditional probability for a fu-
ture observable random quantity, conditional on observed values of related random
quantities [4, 7]. Suppose that X1, . . . , Xn, Xn+1 are exchangeable real-valued ran-
dom quantities. Let the ordered observed values of X1, . . . , Xn be denoted by
x(1) < x(2) < . . . < x(n), and, for ease of notation, let x(0) = −∞ and x(n+1) =∞
(or define these as other known bounds for the quantities Xj). For a future ob-
servation Xn+1, based on the n ordered observations x(1), . . . , x(n), the assumption
A(n) [30] is

P (Xn+1 ∈ (x(j−1), x(j))) =
1

n + 1
for j = 1, 2, . . . , n + 1

Note that, in case ties may occur, this can be dealt with in several ways, e.g.
by breaking the ties or by using closed intervals [x(j−1), x(j)] instead of the open
intervals in the above probabilities for Xn+1. A(n) does not assume anything else,
and is a post-data assumption related to exchangeability. Hill [31] discusses A(n)

in detail. Inferences based on A(n) are frequentist, predictive and nonparametric,
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and can be considered suitable if there is hardly any knowledge about the random
quantity of interest, other than the n observations, or if one does not want to
use such information, e.g. to study effects of additional assumptions underlying
other statistical methods. The assumption A(n) is not sufficient to derive precise
probabilities for many events of interest, but corresponding optimal bounds for
probabilities for any event of interest involving Xn+1 can be derived using De
Finetti’s Fundamental Theorem of Probability [26]. These bounds are lower and
upper probabilities in the theory of imprecise probability [5, 35, 36], and as such
they have strong consistency properties [4].

NPI is a framework of statistical theory and methods that use these A(n)-
based lower and upper probabilities, and also considers several variations of A(n)

which are suitable for different inferences. For example, NPI has been presented
for Bernoulli data [6], multinomial data [9] and right-censored data [16]. NPI en-
ables inferences for m ≥ 1 future observations, with their interdependence explicitly
taken into account, and based on sequential assumptions A(n), . . . , A(n+m−1) [3].
NPI provides a solution to some explicit goals formulated for objective (Bayesian)
inference, which cannot be obtained when using precise probabilities [7]. NPI is ex-
actly calibrated [32], which is a strong consistency property in frequentist statistics,
and it never leads to results that are in conflict with inferences based on empirical
probabilities.

NPI for Bernoulli random quantities [6] is based on a latent variable rep-
resentation of Bernoulli data as real-valued outcomes of an experiment in which
there is a completely unknown threshold value, such that outcomes to one side of
the threshold are successes and to the other side failures. The use of A(n) together
with lower and upper probabilities enables inference without a prior distribution
on the unobservable threshold value, as is needed in Bayesian statistics where this
threshold value is typically represented by a parameter. Suppose that there is a
sequence of n + m exchangeable Bernoulli trials, each with ‘success’ and ‘failure’
as possible outcomes, and data consisting of s successes in n trials. Let Y n

1 denote
the random number of successes in trials 1 to n, then a sufficient representation
of the data for NPI is Y n

1 = s, due to the assumed exchangeability of all trials.
Let Y n+m

n+1 denote the random number of successes in trials n + 1 to n + m. Let
Rt = {r1, . . . , rt}, with 1 ≤ t ≤ m + 1 and 0 ≤ r1 < r2 < . . . < rt ≤ m, and, for
ease of notation, define

(
s+r0
s

)
= 0. Then the NPI upper probability for the event

Y n+m
n+1 ∈ Rt, given data Y n

1 = s, for s ∈ {0, . . . , n}, is [6]

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) =

(
n + m

n

)−1 t∑
j=1

[(
s + rj

s

)
−
(
s + rj−1

s

)](
n− s + m− rj

n− s

)
The corresponding NPI lower probability can be derived via the conjugacy property
[6]

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) = 1− P (Y n+m
n+1 ∈ Rc

t |Y n
1 = s)

where Rc
t = {0, 1, . . . ,m}\Rt. The counting method that leads to these NPI lower

and upper probabilities is explained in detail by Aboalkhair et al [2].
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For multinomial data, a latent variable representation based on the idea of a
probability wheel has been presented, together with a corresponding adaptation of
A(n) [9]. For data including right-censored observations, as often occur in lifetime
data analysis, NPI is based on a variation of A(n) which effectively uses a similar
exchangeability assumption for the future lifetime of a right-censored unit at its
moment of censoring [16]. This method provides an attractive predictive alternative
to the well-known Kaplan-Meier estimate for such data.

2 Applications

Many applications of NPI have been presented in the literature. These include
solutions to problems in Statistics, Risk and Reliability, Operational Research and
Finance. For example, NPI methods for multiple comparisons of groups of real-
valued data are attractive for situations where such comparisons are naturally for-
mulated in terms of comparison of future observations from the different groups
[14]. NPI provides a frequentist solution to such problems which does not depend
on counterfactuals, which play a role in hypothesis testing and are often criticized
by opponents of frequentist statistics. An important advantage of the use of lower
and upper probabilities is that one does not need to add assumptions to data which
one feels are not justified. A nice example occurs in precedence testing, where ex-
periments to compare different groups may be terminated early in order to save
costs or time [25]. In such cases, the NPI lower and upper probabilities are the
sharpest bounds corresponding to all possible orderings of the not-fully observed
data. NPI provides an attractive framework for decision support in a wide range
of problems where the focus is naturally on a future observation. For example,
NPI methods for replacement decisions of technical units are powerful and fully
adaptive to process data [23].

NPI has been applied for comparisons of multiple groups of proportions data
[13], where the number m of future observations per group plays an interesting
role in the inferences. Effectively, if m increases the inferences tend to become
more imprecise, while imprecision tends to decrease if the number of observations
in the data set increases. NPI for Bernoulli data has also been implemented for
system reliability, with particularly attractive algorithms for optimal redundancy
allocation [24, 33]. NPI for multinomial data enables inference if the number of
outcome categories is not known, and explicitly distinguishes between defined and
undefined categories for which no observations are available yet [8]. Typically, if
outcome categories have not occurred yet, the NPI lower probability of the next
observation falling in such a category is zero, but the corresponding NPI upper
probability is positive and depends on whether or not the category is explicitly
defined, on the total number of categories or whether this number is unknown, and
on the number of categories observed so far. Such NPI upper probabilities can be
used to support cautious decision making, which is often attractive in reliability
and risk analysis.

NPI has been introduced for assessing the accuracy of a classifier’s ability
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to discriminate between two groups of binary data [19], and for diagnostic tests
with ordinal observations [27] and with real-valued observations [20]. NPI has
been presented for three-group ROC analysis, with real-valued observations, to
assess the ability of a diagnostic test to discriminate among three ordered classes
or groups [21]. NPI has also been developed for three-group ROC analysis with
ordinal outcomes [17] and to derive an optimal linear combination of biomarkers
subject to limits of detection [18].

Classification methods based on NPI have been shown to perform well [1],
while NPI applied to option pricing has shown interesting differences from the
classical theory, due to the natural adaptation of NPI to data [28, 29]. Recently,
NPI has been applied as a natural framework to study reproducibility of statistical
inferences [12]. Several of these applications have required the use of NPI for
multiple future observations, based on the frequentist statistics property of NPI
that all orderings of m future real-valued observations among n data observations
are equally likely. As this involves consideration of

(
n+m
m

)
orderings, going through

all of these is impossible except in some cases, where either corresponding NPI
lower and upper probabilities for events of interest can be derived analytically, or
when both n and m are small. For most cases of practical interest one needs an
alternative method for implementation of NPI. Two solutions to this computational
problem have been presented. First, sampling of the orderings of future data among
the data observations can provide a solution [15], this will lead to estimates of the
NPI lower and upper probabilities. Secondly, a bootstrap method based on NPI
can be used [11]. In this method, based on the assumption A(n), first one interval
from the partition of the real line, based on the observed data, is selected, followed
by the selection of one future observation from that interval. Next, this future
observation is added to the data and the process is repeated to draw a second
future observation, and so on, until the required number of future observations has
been drawn. Repeated application leads to multiple NPI-bootstrap samples, which
can then be used for the predictive inference of interest. This is fully in line with the
analytic NPI approach in that it keeps all orderings of future observations and data
observations equally likely to occur, but it differs from the analytic NPI approach
in the sense that inferences are no longer imprecise. Both these computational
methods have been successfully applied in studies of reproducibility of statistical
hypothesis tests [10, 11, 12, 15, 34].

3 Further Developments and Challenges

Due to the explicitly predictive nature of NPI, it is particularly suitable for problems
which are naturally formulated in terms of future observations. Due to the manner
in which statistical theory and methods have been developed historically, hypothesis
testing or estimation are the established approaches for most statistical problems.
But practical problems often have a predictive nature, hence there is scope to
develop NPI for a wide range of applications. A main research challenge for NPI
is its generalization to multi-dimensional random quantities. Coolen-Maturi et al
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[22] present one solution by combining NPI for the marginals with an estimated
copula to take the dependence structure into account. NPI for regression models
is a further important challenge, research into this has recently been initiated.
Further information on the development and application of NPI is available from
www.npi-statistics.com.
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