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1 Statistical Reproducibility

Reproducibility of the results and conclusions of experiments and wider research is
essential, and problems with reproducibility have been widely discussed in recent
years; an excellent overview of many aspects of reproducibility is provided by At-
manspacher and Maasen [3]. In general, the discussion has mostly been focused
on aspects like publication bias and advice on good practice to avoid major re-
producibility problems. An issue that has received surprisingly little attention in
this discussion is the reproducibility of the results of statistical inference methods,
which are often a central part of investigations. The question is straightforward: if
an experiment were repeated in the same setting, would it lead to the same conclu-
sion of the statistical analysis as the conclusion based on the data from the original
experiment?

Goodman [18] raised the reproducibility issue of statistical inferences, and
pointed out a common misunderstanding of the p-value in hypothesis testing, in
particular that a small p-value would imply good reproducibility, or replicability
as it is called by Goodman. Senn [21] agreed with Goodman that the p-value and
reproducibility probability are different measures and that inconsistency between
test results from individual studies may be expected. However, he stressed the im-
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portant role the p-value has, and that the p-value and reproducibility probability
could be related. In the early years of this century, a number of proposals for a
measure of statistical reproducibility were put forward, see Coolen and Bin Himd
[10] for a brief overview. While most were ad hoc proposals, an interesting con-
cept was presented by De Martini [17], who uses estimated power as a measure of
reproducibility in case a null-hypothesis is rejected. This approach was applied to
several basic test scenarios by De Capitani and De Martini [14, 15].

Coolen and Bin Himd [10] presented a fundamentally different approach to
quantification of statistical reproducibility. They considered it explicitly as a pre-
dictive inference problem, directly in line with the basic question whether or not a
hypothetical future experiment, identically performed as the original study, would
lead to the same conclusion. This approach is discussed further in the following
sections. Billheimer [6] similarly advocated to consider reproducibility as a problem
of predictive inference, suggesting a predictive Bayesian approach.

2 Nonparametric Predictive Inference for Statis-
tical Reproducibility

Nonparametric Predictive Inference (NPI) [4, 7, 8, 12] is a frequentist statistics
framework based on only few modelling assumptions, with inferences explicitly on
future observations, which makes it a particularly suitable methodology for in-
ference on statistical reproducibility. NPI for real-valued observations is based
on Hill’s assumption A(n) [19] and repeated use of this assumption for inference
on multiple future observations. This is a post-data exchangeability assumption,
which implies that all orderings of observed data and future data are equally likely.
This asssumption is not sufficient to derive precise probabilities for many events
of interest, but the maximum lower bound and the minimum upper bound for the
probability for an event of interest can be derived by De Finetti’s Fundamental
Theorem of Probability [16]. These probability bounds are lower and upper prob-
abilities in theory of imprecise probability [5].

The first application of NPI to test reproducibility was presented by Coolen
and Bin Himd [10], who presented NPI reproducibility for basic nonparametric
tests, such as the Wilcoxon Mann–Whitney test. Senn [21] had reasoned that the
reproducibility probability for a hypothesis test may be as low at 0.5 in the worst
case, when a test statistic is close to the threshold value between rejection and
non-rejection of a null hypothesis. For some basic tests involving a single group
of data, or a single population so to say, considered by Coolen and Bin Himd
[10], this was confirmed with minimum NPI lower reproducibility probability equal
to 0.5. However, for basic tests with two groups of data (two populations), the
minimum NPI lower reproducibility probability was less than 0.5, with typically
worse reproducibility if the null hypothesis is rejected, with test statistic close to
the threshold, than when the null hypothesis is not rejected. This is particularly
problematic due to the fact that hypothesis tests tend to be designed in such a way
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that the real aim of the experiment corresponds to rejection of the null hypothesis.
A further worrying fact is that the NPI lower and upper reproducibility probabilities
can be relatively small for test statistic values quite far from the threshold.

In recent years, NPI reproducibility has been studied for a range of test
scenarios, all confirming the insights mentioned above. These include tests on pop-
ulation quantiles and precendence tests [9], likelihood ratio tests [20], two-sample
Kolmogorov-Smirnov test [11], and Student’s t-test [22]. Considering the use of
t-tests in pharmaceutical product development, Simkus et al. [22] also introduced
NPI reproducibility of a final decision based on the results of multiple t-tests, which
shows that in multiple test scenarios reproducibility can become a major problem.

The main idea of the NPI-based approach to quantify reproducibility of sta-
tistical hypothesis tests is to apply the test to the original data, followed by con-
sideration of the test result for all possible future data sets, of the same size as
the original data, based on the post-data exchangeability assumption underlying
NPI. This leads to computational challenges for all but the most basic tests with
small data sets. If, for a given ordering of the future observations among the data
observations, without assuming a specific value for an observation in between two
original data values, it is possible to determine if the test will lead to certain rejec-
tion of the null hypothesis, or certain non-rejection, or that both these conclusions
are possible, then sampling of the future orderings provides a good solution which
leads to estimates of the NPI lower and upper reproducibility probabilities [13]. If
the conclusions of the hypothesis test for a future data set can only be deduced if
precise values of the future observations are known, then the NPI bootstrap method
can be applied [11, 12].

3 Challenges

The NPI approach to quantification of reproducibility of statistical hypothesis tests
has proven to be fruitful and to provide useful insights, serving as warnings with
regard to trust in, and interpretation of, test results. Deeper understanding of re-
lations between NPI reproducibility and post-data measures reflecting the strength
of statistical inferences, for example power estimates, will be required in order to
develop clear guidance for practitioners. A possible approach will be to only go
ahead with any process depending on the hypothesis test outcome if NPI repro-
ducibility is sufficiently high. This will require further research on what to do in
case of low NPI reproducibility. The NPI approach to reproducibility is not limited
to hypothesis testing, and can be explored for other statistical inferences. A first
application to reproducibility of estimates of population characteristics is presented
in the PhD thesis of Alghamdi [1], where the concept of ε-reproducibility is intro-
duced to reflect that a future repeat of an experiment leads to an estimate that
differs no more than ε from the estimate based on the actual data. An interesting
alternative to the nonparametric approach to reproducibility, suitable if one wishes
to use a parametric model for the future data observations, is by using a paramet-
ric predictive bootstrap method, as presented in the PhD thesis of Aldawsari [2].
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The conclusions on test reproducibility, when studied through parametric predic-
tive bootstrap, are largely in line with the NPI reproducibility results. It is also
of interest to consider reproducibility quantification using the Bayesian statistics
framework, which enables inference for future observations through the posterior
predictive distribution.
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