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1 Survival Signature

Coolen and Coolen-Maturi [6] introduced the survival signature for quantification
of system reliability. Consider a system with K ≥ 1 types of components, with nk
components of type k ∈ {1, 2, . . . ,K} and

∑K
k=1 nk = n. The essential assumption

is that the random failure times of components of the same type are exchangeable
[8, 12]. The state vector x ∈ {0, 1}n of the system describes the states of its
components, with 1 representing that a component functions and 0 that it does not
function. The system structure function φ(x) ∈ {0, 1} describes the functioning
of the system given the component states x, where 1 represents that the system
functions and 0 that it does not function. Due to the arbitrary ordering of the
components in the state vector, components of the same type can be grouped
together, leading to a state vector that can be written as x = (x1, x2, . . . , xK), with
xk = (xk1 , x

k
2 , . . . , x

k
nk

) the sub-vector representing the states of the components of
type k.
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The survival signature, denoted by Φ(l1, l2, . . . , lK), with lk = 0, 1, . . . , nk for
k = 1, . . . ,K, is defined as the probability that the system functions given that
precisely lk of its nk components of type k function, for each k ∈ {1, 2, . . . ,K}.
There are

(
nk

lk

)
state vectors xk with

∑nk

i=1 x
k
i = lk; let Sk

l denote the set of these
state vectors for components of type k and let Sl1,...,lK denote the set of all state
vectors for the whole system for which

∑nk

i=1 x
k
i = lk, k = 1, 2, . . . ,K. Due to the

exchangeability assumption for the failure times of the nk components of type k,
all the state vectors xk ∈ Sk

l are equally likely to occur, hence

Φ(l1, . . . , lK) =

[
K∏

k=1

(
nk
lk

)−1]
×

∑
x∈Sl1,...,lK

φ(x) (1)

The survival signature is useful for deriving the probability for the event that
the system functions at time t > 0, so for TS > t, where TS is the random system
failure time. Let Ck(t) ∈ {0, 1, . . . , nk} denote the number of components of type
k in the system which function at time t > 0, then

P (TS > t) =

n1∑
l1=0

· · ·
nK∑

lK=0

{
Φ(l1, . . . , lK)P

(
K⋂

k=1

{Ck(t) = lk}

)}
(2)

Equation (2) is the essential result in survival signature theory. It shows that the
system survival function can be computed with the required inputs, namely the
information about the system structure and about the component failure times,
being completely separated. Hence, the effect of changing a system’s structure on
its survival function can easily be investigated. One can also compare different
system structures in general, without assumptions for the random failure times, by
comparing the systems’ survival signatures [28]. The system survival function is
sufficient for important metrics such as the expected failure time of the system, or
its remaining time till failure once it has been functioning for some time.

The survival signature requires specification at
∏K

k=1(nk + 1) inputs while
the structure function must be specified at 2n inputs; in particular for large values
of n and relatively small values of K, so large systems with few component types,
the difference is enormous. If all components are of different types, so K = n, then
the survival signature does not provide any advantages, in the sense of reduced
representation, over the structure function. If all components are of the same
type, so K = 1, then the survival function is closely related to Samaniego’s system
signature [26, 27].

Equation (2) only requires the assumption that failure times of components of
the same type are exchangeable. If one assumes that the failure times of components
of different types are independent, then Equation (2) becomes

P (TS > t) =

n1∑
l1=0

· · ·
nK∑

lK=0

{
Φ(l1, . . . , lK)

K∏
k=1

P (Ck(t) = lk)

}
(3)
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If, in addition, one assumes that the failure times of components of the same type
are independent and identically distributed (iid), with known cumulative distribu-
tion function (CDF) Fk(t) for type k, then this leads to

P (TS > t) =

n1∑
l1=0

· · ·
nK∑

lK=0

{
Φ(l1, . . . , lK)

K∏
k=1

(
nk
lk

)
[Fk(t)]nk−lk [1− Fk(t)]lk

}
(4)

One can also assume a parametric CDF to enable learning about the parameter
based on data, e.g. using Bayesian statistics [2], or use a frequentist statistical
method, for example Nonparametric Predictive Inference [9, 10]. The general for-
mula for the system survival function, Equation (2), can also be applied if compo-
nents’ failure times are dependent, for example there may be common-cause failure
modes, a risk of cascading failures, load sharing between components and so on.
Initial studies into several of such possibilities have been published [7, 14, 15] and
there are many related research challenges.

The survival signature has also been presented for multi-state systems with
multi-state components, which enables application to a wide variety of practical
problems, for example when components or systems can deteriorate and decisions
about inspection and maintenance are required [23]. This opens up a wide range
of research topics with focus on large-scale systems and networks.

2 Computational Aspects

For reliability of small systems and networks one can simply derive the system
structure function and use Equation (1) to compute the survival signature. This
approach has been implemented in the statistical software R [1], and can be used for
small to medium-sized systems and networks. Reed et al [24] presented a substantial
improvement on the required computation time by using binary decision diagrams,
which can also be used for reliability of multi-terminal networks [25]. Using basic
combinatorics, one can compute the survival signature of a system consisting of
two subsystems in either series or parallel configuration, if the survival signatures
of those subsystems are available [10]. A generalization of this combinatorial result
has also been presented for multi-state systems [23].

The main reason for the introduction of the survival signature is to enable
quantification of system reliability, and related statistical inferences, for large real-
world systems and networks, for which one normally would not have the full struc-
ture function available. We can think here about, for example, about large in-
dustrial systems or transportation networks with thousands of components. For
such cases, one may need to approximate the survival signature. To do so, it is
particularly useful that the survival signature of a coherent system is an increas-
ing function. Approximating the survival signature has received much attention.
For example, Behrensdorf et al [4] use percolation theory to exclude areas of the
input space of the survival signature where its value does not increase, followed by
approximation of the survival signature in the other parts of the input space by
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Monte Carlo (MC) methods. They illustrate their method on a model of the Great
Britain (GB) electricity transmission network, consisting of 29 nodes of two types,
and on a model of the Berlin metro network, consisting of 306 nodes and 350 edges,
with the nodes divided into two types based on their degree. Also using MC, Di
Maio et al [13] use entropy to direct the sampling towards non-trivial areas of the
input space, and they illustrate their method on the same GB electricity transmis-
sion network. Recently, Lopes da Silva and Sullivan [20] have presented a powerful
method to approximate the survival signature for two-terminal networks with two
types of components. They show that each MC replication to estimate the survival
signature entails solving a multi-objective maximum capacity path problem, and
adapt a Dijkstra-like bi-objective shortest path algorithm to solve this problem.
They show the efficiency of their algorithm compared to other approaches, which
increases with the size of the network, by application to several networks including
a power system, which has 4,000 nodes and 29,336 arcs and includes cycles and
self-loops.

Once the survival signature of a system or network has been derived, or ap-
proximated, it is a useful tool for a range of objectives. For example, it enables very
efficient simulation to learn the system survival function, as presented by Patelli et
al [22] and extended by George-Williams et al [17] for inclusion of dependent fail-
ures. It is also useful for statistical inference for the system reliability, as learning
from data, possibly in combination with the use of expert judgements, is crucial in
many applications. If one has data available on the individual component types,
then inference on the system’s failure time is quite straightforward. Nonparamet-
ric Predictive Inference [9], a frequentist approach using few modelling assumptions
made possible by the use of imprecise probabilities [3], can be used to derive bounds
for the system survival function [10]. The application of Bayesian methods has been
presented as well [2], this is particularly useful if one has relatively little data on
component failures and therefore wishes to include expert judgements. Walter et
al [29] generalized the Bayesian approach combined with the survival signature by
using sets of priors, as typically done in theory of robust Bayesian methods. They
showed that, by choosing the sets of priors in a specific way, one can enable de-
tection of conflict between prior judgements and data, when data become available
and are used to update the prior distributions. This can be of great practical im-
portance, as it can point to prior judgements being too optimistic, hence the system
reliability may be substantially lower than was originally thought.

3 Recent developments and challenges

Since its introduction by Coolen and Coolen-Maturi [6], there has been substantial
research contributing to the further theory and applicability of survival signature
methods. Recently, Coolen-Maturi et al [11] generalised the concept of the survival
signature for multiple systems with multiple types of components and with some
components shared between systems. A particularly important feature is that the
functioning of these systems can be considered at different times, enabling compu-
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tation of relevant conditional probabilities with regard to a system’s functioning
conditional on the status of another system with which it shares components. This
theory can also be applied to a system which performs multiple functions, which is
very important in practice. This has led to a substantial area of research, typically
considering specific reliability scenarios or restricted system structures, e.g. Yi et
al [30]) consider systems with a monotone structure function.

Further examples of powerful methodology for system reliability quantifi-
cation enabled by the use of survival signatures include the modelling of depen-
dence between components of different types [14, 17], reliability-redundancy allo-
cation [18], phased-missions [19], component reliability importance measures [16],
resilience achieved by swapping components within a system [21], stochastic com-
parison of different systems [28] and stochastic processes to describe the system
reliability over time with varying assumptions on loads or failure processes [5]. A
main challenge for applications is the required generalization or adaptation of the
survival signature concept for specific scenarios and objectives, ensuring a fruitful
field for further research leading to breakthroughs in practical applications, partic-
ularly due to the large increase of the sizes of systems and networks for which the
reliability can be quantified by the use of the survival signature.
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