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Abstract

In statistical inferences, the estimation of population parameters using in-

formation obtained from a sample is an important method. This involves

choosing anhavepropriate sampling method to collect data. An efficient sam-

pling method used for data collection is Ranked Set Sampling (RSS). In this

study, we investigate the reproducibility of four well-known mean estimators

under RSS using parametric predictive bootstrapping. These estimators are

called conventional, ratio, exponential ratio, and regression estimators. Re-

producibility is the ability of a statistical technique to obtain results similar

to those based on the original experiment if the experiment is repeated un-

der the same conditions. We conduct a simulation study to compare the

reproducibility of mean estimators for varying sample sizes when sampling

is based on perfect and imperfect rankings. We consider data on abalone

in our simulations to demonstrate real-world applications. This study con-

cludes that the regression estimator is the best reproducible estimator, while

the conventional estimator is the worst in this regard.
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1. Introduction

Estimating the population parameters from sample data is an important

aspect of statistical inferences. This involves selecting a group of individuals

from the population who are believed to represent the entire population of

interest. Sampling allows researchers to efficiently collect and analyse data

from a subset of the population, saving time and resources while estimat-

ing reliable results. Although Simple Random Sampling (SRS) is an easy

sampling technique that does not require many assumptions, the estimates

based on it sometimes lack precision. In order to yield more precise estimates,

other sampling strategies, such as Ranked Set Sampling (RSS) are available

in the literature. The RSS was initially presented by [1] and is thought

to be more suitable in situations where assessing the population units are

costly but ranking them is inexpensive. This method improves estimation

precision by reducing sampling error. [2] developed an unbiased estimator

of the population mean using the RSS method. [3] introduced the use of

the concomitant variable to order units of the study variable; for example,

one can use the length of the abalone to rank the data on the weights of

the abalone. Researchers are currently focused on efficiently estimating the

population mean of a study variable under RSS by using the information

of the auxiliary variable in the estimation stage. [4] proposed the regres-

sion estimator of the population mean under RSS, while [5] proposed the

ratio estimator to estimate the population mean of the study variable using
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the known population mean of the auxiliary variable. The exponential ratio

estimator of the population mean under RSS was proposed by [6]. Many

other related studies in this regard can be seen in [7], [8], [9], [10], [11], [12],

and [13]. Previous studies have mainly focused on designing estimators and

evaluating them based on relative efficiency and mean square error. To ad-

dress the methodological limitations, we introduce a new measure, called the

reproducibility of estimators. This measure provides a more comprehensive

framework for comparing estimators, improving the theoretical foundation

of estimation theory.

In the last decade, statistical reproducibility has received the attention

of researchers. When estimating population parameters, it refers to the abil-

ity to obtain consistently similar estimates when conducting any statistical

method, analysis, or experiment several times using the same methods. Re-

producing previous findings is essential for statistical methods to enhance

evidence. It serves as a primary aspect of scientific research to ensure the

reliability and validity of statistical methods and their findings. [14] ad-

dressed the topic of the reproducibility of a statistical test and discussed the

confusion between reproducibility and the statistical p-value. [15] empha-

sised how the p-value and reproducibility are different. [16] expresses doubts

about drawing meaningful conclusions from a single initial experiment, as

the power of the test will be unknown due to the lack of knowledge of the

effective sample size. [17] estimated reproducibility by comparing the value

of a test statistic calculated based on the actual test with the associated

critical value. [18] suggested three techniques for estimating reproducibility,

including the Bayesian approach. The predictive nature of reproducibility
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was emphasised by [19], who also relates it to the useful sample size. Multi-

ple definitions of the reproducibility of a statistically significant result were

proposed by [20]. He also assessed various reproducibility estimators for the

Wilcoxon rank sum test and compared their effectiveness. [21] reproduced

approximately 25% significant results in preclinical cancer trials, highlighting

concerns about the reproducibility of the experiment in this context.

On the other hand, bootstrapping is a statistical technique that estimates

sampling distributions by resampling sample data, unlike conventional ap-

proaches that rely on theoretical assumptions. Though many bootstrapping

methods are available in the literature, a novel technique for bootstrapping

was recently introduced by [22] called parametric predictive bootstrap (PPB).

This technique is primarily designed for predictive inference based on para-

metric models. The PPB allows us to make predictions about future obser-

vations, assuming that the underlying distribution has some known param-

eter(s). This is related to the concept of reproducibility probability (RP) in

the traditional frequentist statistical framework, estimated by [23]. Consider-

ing the explicitly predictive nature of PPB, reasonable conclusions regarding

RP can be drawn. [22] estimated the RP of some parametric tests using

the PPB approach. He argued that the explicitly predictive nature of PPB

offers an appropriate formulation for the RP inference, as the nature of RP is

explicitly predictive as well. He also compared the performance of PP-B for

RP with the nonparametric predictive inference bootstrap (NPI-B) method,

which also has a predictive nature but does not assume a parametric model.

In this study, we compare the reproducibility of four well-known mean

estimators called conventional, ratio, exponential ratio, and regression esti-
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mators under RSS employing PPB bootstrapping. Following [24], the re-

producibility of an estimator is defined as the probability that, if the RSS

sampling is repeated under the same conditions, the mean estimates based

on the future sample will be similar to the estimate based on the original

sample. Through a comprehensive simulation study, we investigate the re-

producibility of these mean estimators for different sample sizes and ranking

criteria. The purpose of the study is to contribute to the literature on RSS

by examining the reproducibility of mean estimators under RSS using PPB

bootstrapping and identifying potential limitations and advantages. The

paper begins with an overview of the RSS method in Section 2. Section 3 re-

views the mean estimators that involve auxiliary information, while Section

4 explains the concept of statistical reproducibility, highlighting its defini-

tion and importance. Section 5 presents the PPB procedure, while Section

6 provides integration of PPB with mean estimators under RSS. In Section

7, a simulation study is conducted to analyse the RP of the mean estima-

tors under RSS. Section 8 presents an application of real-world data, while

Section 9 summarises key findings and conclusions.

2. The Ranked Set Sampling

This method was introduced by [1] and it select a sample in two phases.

In the first phase, random sets of units are examined, while in the second

phase, a sample of usually small size is selected from the sets of the first

phase for estimation. The process of selecting a sample of size m using RSS

involves the following steps:
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1. Identification and Assignment: Identify m2 units from the popu-

lation and assign these units to independent m sets of size m.

2. Ranking in Each Set: Rank the units within each set. Use visual

judgments on the study variable or the order of a closely related aux-

iliary variable for ranking.

3. Selection of Order Statistics: Select the first order statistic from

the first set. The second order statistic is selected from the second set.

Continue this process until the mth order statistic is selected from the

mth set.

This allows us to select a sample of size m. Repetition of this procedure

g times yields a final sample of size n = gm. The selected sample can be

represented as
{
Yi(i)j

}
such that i = 1, ...,m and j = 1, ..., g. An estimator

of the population mean based on this method was developed by [2] as

t1 = ȳrss =
1

gm

g∑
j=1

m∑
i=1

Yi(i)j. (1)

where Yi(i)j shows the ith order statistics in the ith set of the jth RSS cycle.

The estimator t1 is called conventional mean estimator under RSS and it is

unbiased while its variance is given by

V ar (t1) =
σ2
y

gm
− 1

gm2

m∑
i=1

∆2
y(i), (2)

where
σ2
y

gm
is equal to the variance of the mean estimator under SRS sample of

the same size m, whereas the term ∆y(i) = µy(i) − µy shows deviation of the

ith order statistics mean µy(i) from the overall population mean µy. Equation
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(2) shows that the conventional mean estimator t1 is more precise than the

conventional mean estimator under SRS given that µy(i) ̸= µy.

2.1. The perfect and imperfect ranking

If the ranking is determined solely by the characteristics of the study

variable itself, it is known as perfect ranking. This can be done using the

visual assessments of the surveyor. Though this type of ranking is easy and

inexpensive, one can reasonably assume that it is free from error. This type

of ranking is usually used when there is a natural hierarchy or order among

the sampling units. In situations where perfect ranking is not possible, [3]

proposed an alternative way of ranking the units of the study variable. He

ranked units of the study variable using the order of a closely related auxil-

iary variable, assuming that information is available or can be easily obtained

on the auxiliary variable. He termed this imperfect ranking, and some re-

searchers referred to this ranking with errors, since it is possible to place a

larger unit before any smaller unit when units are observed. This is expected

when the association between the study variable and the concomitant vari-

able is low. This type of error generally reduces the efficiency of estimates.

In our study, we consider both types of ranking for estimating the population

mean while comparing the reproducibility of mean estimators under RSS.

3. Mean estimators involving the auxiliary variable

The auxiliary variables play an important role in the estimation of pa-

rameters for the study variables. Information on auxiliary variables can be

used to design more efficient estimators of population parameters. In this
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section, we review three commonly discussed mean estimators in RSS that

involve known information on the population mean of the auxiliary variable.

The expressions for bias and MSE of these estimators are also provided, for

which the following notation and symbols are used:

Vy =
(
N−n
n

)
C2

y − 1
gm2µ2

y

m∑
i=1

∆2
y(i) ,

Vx =
(
N−n
n

)
C2

x − 1
gm2µ2

x

m∑
i=1

∆2
x(i) ,

and

Vyx =
(
N−n
n

)
ρCyCx − 1

gm2µyµx

m∑
i=1

∆y(i)∆x(i),

where N and n show the population and sample size, respectively. ρ is the

correlation coefficient, while Cy and Cx show the coefficient of variation for

the study variable and the auxiliary variable, respectively.

3.1. The regression estimator

The regression estimator under RSS was proposed by [4]. This estimator

combines the information provided by the difference between the population

mean and sample mean of the auxiliary variable along with the covariance

between the study variable and the auxiliary variable, leading to a more

precise and unbiased estimate of the population mean of the study variable.

The regression estimator is given by

t2 = ȳrss + β (µx − x̄rss) , (3)

where β = σyx

σ2
x
is population regression coefficient which can be estimated by

β̂ = syx
s2x

using the sample information. µx shows known population mean of

the study variable, whereas x̄rss is the mean of the sample of the auxiliary
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variable under RSS computed as x̄rss = 1
gm

∑g
j=1

∑m
i=1 Xi(i)j. The MSE of

regression estimator is given by

MSE (t2) = µ2
yVy

(
1− Vyx

V 2
x

)
. (4)

3.2. The ratio estimator

The ratio estimator under RSS was proposed by [5]. This estimator uti-

lizes the information obtained from the ratio of the known population mean

to the sample mean of the auxiliary variable. In order to develop a more

precise estimator, this approach aims to capitalize on the proportionality

between the auxiliary and study variables to increase the precision of mean

estimates for the study variable. The ratio estimator is given by

t3 = ȳrss

(
µx

x̄rss

)
(5)

The bias and MSE of the ratio estimator are given by

Bias (t3) = µy (Vx − Vyx) (6)

and

MSE (t3) = µ2
y (Vy + Vx − 2Vyx) (7)

3.3. The exponential ratio estimator

The exponential ratio estimator under RSS was proposed by [6]. This

estimator utilizes the information obtained from the exponential ratio of the

known population mean to the sample mean of the auxiliary variable. To
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develop a more efficient estimate of the population mean for the study vari-

able, this approach capitalises on the exponential relationship. This method

is preferred when the data under study have potentially extreme values. The

exponential ratio estimator is given by

t4 = ȳrss exp

(
µx − x̄rss

µx + x̄rss

)
(8)

the bias and MSE of the exponential ratio estimator are given by

Bias (t4) = µy

(
3

8
Vx −

1

2
Vyx

)
(9)

and

MSE (t4) = µ2
y

(
Vy +

1

4
Vx + Vyx

)
(10)

4. Statistical reproducibility

Reproducibility refers to the ability of any scientific study or methodol-

ogy to produce findings and conclusions similar to those of previous studies

or experiments. It is considered an important property of any research and

has recently received a great deal of attention from researchers. An overview

of recent studies on statistical reproducibility can be studied in [25], while a

description of many aspects of reproducibility was provided by [26]. Interest-

ingly, little attention has been paid to the reproducibility of the outcomes of

any statistical technique or method, or, generally speaking, the reproducibil-

ity of statistical inferences, which are frequently an integral component of

investigations. Statistical reproducibility can be defined straightforwardly

as if an experiment were repeated under identical conditions, would it lead
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to the same findings of the statistical analysis as the findings based on the

data from the original experiment? Initially, the reproducibility of statis-

tical inferences was studied by [14], who highlighted a widespread miscon-

ception about the p-value in hypothesis testing, specifically that a smaller

p-value would indicate strong reproducibility. Goodman referred to this as

replicability. [15] endorses the concept of Goodman that the p-value and

the reproducibility probability are different measures and that inconsistency

can be expected between the test results of individual studies. However,

he highlighted the significance of the p-value and its relationship with the

reproducibility probability. [27] provide a summary of studies proposing a

statistical reproducibility measure. [20] introduced an interesting idea, uti-

lizing estimated power as a measure of reproducibility in the event that the

null hypothesis is rejected. [28] and [29] used this method on a number of

basic statistical tests. [27] proposed a novel approach to quantifying statis-

tical reproducibility, viewing it as a predictive inference problem, with the

aim of determining whether future experiments would yield the same results.

[30] proposed a Bayesian predictive approach to address reproducibility as a

problem in predictive inference.

5. The Parametric Predictive Bootstrapping

[22] recently proposed a novel bootstrapping technique designed primarily

for predictive inference based on parametric models. This method predicts

future values based on the assumption that they come from data with specific

parameters. The method begins by generating a future observation from an

assumed distribution with estimated parameters based on data of sized m.
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The data is updated by adding this future observation, increasing its size to

m + 1. Another future observation is drawn from the assumed distribution

with updated estimates of the parameters. In total, this process is repeated

m times to draw m future observations, such that the drawing of every new

observation is based on the estimated parameters of the updated data. The

generated future observations makes a PPB sample of size m observations,

which works well as a method for predictive inference. The steps involved in

the formation of a PPB sample from any original data of size m are described

below.

1. Consider a random sample {y1,...,ym}, and estimated parameter θ.

2. Using the maximum likelihood estimation (MLE) or any other estima-

tion method, estimate the parameter θ of the assumed distribution by

θ̂.

3. Randomly draw a future observation y∗1 from the fitted distribution

F
(
y; θ̂

)
.

4. Update the data by adding y∗1 so that {y1,...,ym, y∗1}, the sample size

increases to m+ 1.

5. Considering updated data, repeat steps 2-4 and draw another future

observation, y∗2, update the data by adding this observation.

6. In total, steps 2-4 are repeatedm times to obtain m future observations

{y∗1,...,y∗m}. This is called PPB sample of size m.

This method of drawing future observations leads to greater variation in the

PPB sample compared to other bootstrapping methods, like those proposed

by [31]. This method is similar to nonparametric predictive inference boot-
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strapping (NPI-B), except for the fact that the PPB method assumes that

the data comes from a known distribution with known parameters, while the

NPI-B method does not consider any parametric assumptions for generat-

ing future observations. PP-B bootstrapping samples are not restricted to

observed values, unlike Efron’s bootstrapping, which restricts future obser-

vations to already observed values. [22] presented the PPB method for the

reproducibility probability (RP) of some parametric tests. He argued that

the test reproducibility is naturally predictive inference problem, which is

consistent with the PP-B method. The explicitly predictive nature of PP-B

provides an appropriate formulation for inferring RP, as the nature of RP

is explicitly predictive as well. They compared the performance of PPB for

RP with the NPI-B method, which also has a predictive nature but does not

assume a parametric mode.

6. Reproducibility of mean estimators under RSS

In this section, a mathematical framework for comparing the reproducibil-

ity of mean estimators under RSS in the context of the PPB method is pre-

sented. Following [22], RP (ε) is the probability that mean estimates com-

puted from reproduced samples will fall within the range of ε deviation from

the mean estimates based on the original sample, given that the sampling

procedure is repeated under the same conditions.

Consider any set of observed values in the setup of RSS method, where

m original observations yi; i = 1, ..., n are independently and identically

distributed. We assume that the distribution F (y; θ) of yi is known with

parameter θ. Using the steps discussed in Section (5), obtain a PPB sample
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of m future values and replace it with the original set. This procedure is

repeated for all m sets to finally obtain the setup of PPB-RSS. A reproduced

sample of PPB is obtained from the setup of PPB-RSS, and the future sample

mean is estimated using the discussed mean estimators. Using a similar

procedure, we also estimate the future sample mean for the auxiliary variable.

In total, we produce M future samples using PPB, and estimate the mean of

the study variable and the auxiliary variable from them. We also compute

the mean of the original RSS sample.

Let tO be the mean estimate of the original sample, whereas tB shows

mean estimates based on reproduced samples using PPB. Then the Absolute

Average Deviation (AAD) and Mean Square Deviation (MSD) between the

estimates are computed as

AAD =
1

M

M∑
i=1

|tO − tBi
| (11)

and

MSD =
1

M

M∑
i=1

(tO − tBi
)2. (12)

To obtain numerous values of AAD and MSD, this entire process is iterated

a large number of times (say, D). Let ε be any real valued positive quantity,

then RP1(ε) is the reproducibility probability that AAD is equal to or less

than ε. Similarly, RP2(ε) is the reproducibility probability that MSD is

equal to or less than ε. These probabilities are mathematically computed as

RP1 (ε) = Pr (AAD ⩽ ε) (13)
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and

RP2 (ε) = Pr (MSD ⩽ ε) . (14)

It is worth note that M represents the initial layer of simulation for gener-

ating future samples to compute values of AAD and MSD, while D shows

the subsequent layer of simulation for repeating the entire process to calcu-

late RP1 (ε) and RP2 (ε) values. When the RP1 (ε) and RP2 (ε) are plotted

against a range of ε values, it provides a visual summary to compare the

reproducibility of different mean estimators. We call this ε-reproducibility in

terms of AAD and MSD for mean estimators, where the quantity ε should

be in a closed interval [0,+∞].

The algorithm 1 given below summarizes the steps involved in computing

the ε-reproducibility of mean estimators under RSS using the PPB approach.
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Algorithm 1 Computing the ε-reproducibility of mean estimators using
PPB approach

Data: The original RSS sample of size m.

Result: RP (ε1), RP (ε2)

Draw a bivariate original sample using procedures of RSS Calculate original

mean using mean estimators for each method of RSS do

Apply PPB method to generate bootstrapped sets of original RSS sam-

ple Replace bootstrapped set with original sets in RSS sample Draw

PPB-RSS samples from bootstrapped data Compute sample mean us-

ing mean estimators based on PPB-RSS samples.

end

for i← 1 to M do

Reiterate Steps 1-8 and compute AAD and MSD using Equation (11) and

(12), respectively.

end

for j ← 1 to D do

Reiterate Steps 1-11 and compute RP1 (ε) and RP2 (ε) using Equation

(13) and (14), respectively.

end

7. Simulations

This section presents the simulation procedure and its results for com-

paring the ε-reproducibility of mean estimators under RSS using the PPB ap-

proach. Using R software, algorithm 1 is used to compute the ε-reproducibility,

such that, we first generate the population values for the concomitant variable

(say, Xi). We also generate values for the standardized normal population

Zi, which aids us in establishing the correlation between the study variable
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Y and the auxiliary variable X. The values of the study variables are gener-

ated using the relationship Yi = ρXi +Zi

√
1− ρ2, where ρ is the correlation

coefficient between Y and X and its value is fixed as 0.90 in order to establish

a strong association between Y and X. We compare ε-reproducibility con-

sidering two populations, that is, (1) normal population and (2) exponential

population. We also compare ε-reproducibility, assuming perfect ranking

and imperfect ranking. The ε-reproducibility is also compared for various

set sizes, i.e., m = 3, 5, 7. In Equations (11) and (12), we use M = 1000 to

compute AAD and MSD. This whole process is repeated D = 1000 times

to compute the respective reproducibility probabilities RP1 (ε) and RP2 (ε).

We use different colors on plots to show the ε−reproducibility of different

mean estimators. Lines in red, black, green, and blue indicate the respective

ε−reproducibility for conventional, regression, ratio, and exponential ratio

estimators based on RSS. The x−axis shows the magnitude of the ε value,

while the y−axis shows the probability of observing it. Results are given

below.

Figure 1: RP1(ε) of estimates for different sample size in case of normal distribution under
perfect ranking
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Figure 2: RP1(ε) of estimates for different sample size in case of normal distribution under
imperfect ranking

Figure 3: RP2(ε) of estimates for different sample size in case of normal distribution under
perfect ranking

Figure 4: RP2(ε) of estimates for different sample size in case of normal distribution under
imperfect ranking
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Figure 5: RP1(ε) of estimates for different sample size in case of exponential distribution
under perfect ranking

Figure 6: RP1(ε) of estimates for different sample size in case of exponential distribution
under imperfect ranking

Figure 7: RP2(ε) of estimates for different sample size in case of exponential distribution
under perfect ranking
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Figure 8: RP2(ε) of estimates for different sample size in case of exponential distribution
under imperfect ranking

Simulation results given in Figures 1–8 show that the ε−reproducibility of

the regression estimator increases earlier than the ε−reproducibility of any

other mean estimator, indicating that regression is the highest reproducible

estimator. Similarly, the conventional mean estimator shows the lowest ε-

reproducibility as compared to other mean estimators. The ε-reproducibility

of the ratio and exponential ratio estimators is quite similar and intermediate

between the conventional and regression estimators. The ε-reproducibility of

the exponential ratio estimator is higher in the case of an exponentially dis-

tributed population as compared to a normally distributed population. The

plots also show that the ε-reproducibility of mean estimators is higher for

larger sample sizes as compared to small sample sizes. Additionally, the ε-

reproducibility is higher in the case of perfect ranking as compared to the

case of imperfect ranking. Generally, the ε-reproducibility of the regression

estimator is higher than other mean estimators, while the conventional esti-

mator exhibits the lowest ε−reproducibility in all cases.
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8. Application to real-life data

In this section, we consider the dataset pertaining to the measurements

of the physical characteristics of abalone, as initially collected by [32]. The

study variable Y and the auxiliary variable X are taken as

Y= The whole weight of abalone (in grams)

X= The length of abalone (in mm), its the longest shell measurement.

We collect the original samples from this data and estimate the mean using

the formulas of the four estimators discussed above. The remaining simula-

tion procedure is the same as discussed in Algorithm 1, and the simulation

results are presented in the graphs 9–12 given below.

Figure 9: RP1(ε) of estimates under for different sample sizes under perfect ranking in
case of real data
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Figure 10: RP1(ε) of estimates under for different sample sizes under imperfect ranking
in case of real data

Figure 11: RP2(ε) of estimates under for different sample sizes under perfect ranking in
case of real data
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Figure 12: RP2(ε) of estimates under for different sample sizes under imperfect ranking
in case of real data

9. Conclusions

Estimation of population parameters based on sample data is an impor-

tant technique of statistical inference. Ranked set sampling (RSS) is an

efficient sampling method for collecting sample data. In this study, we in-

vestigated the reproducibility of four well-known mean estimators, called

conventional, ratio, exponential ratio, and regression estimators under RSS,

employing parametric predictive bootstrapping. Through simulation stud-

ies, we evaluated the reproducibility of these estimators for varying sample

sizes in both perfect and imperfect ranking situations. Data on abalone was

considered to provide real-life applications for this study. The findings in-

dicated that the regression is the most reproducible estimator, whereas the

conventional estimator is the least reproducible estimator.

Our methodology presented in this paper for computing and compar-

ing the reproducibility of mean estimators can be extended to investigate

and compare the reproducibility of other mean estimators in the existing
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literature. Additionally, our presented method can serve as a measure for

evaluating newly proposed estimators and comparing them with other ex-

isting estimators. Moreover, this study can be expanded to examine and

compare the reproducibility of estimators for variance and other parameters,

providing valuable insights into statistical estimation.
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