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Abstract

The logrank test is a well-known nonparametric test which is often used to compare the
survival distributions of two samples including right-censored observations, it is also known
as the Mantel-Haenszel test. The Gρ family of tests, introduced by Harrington and Fleming
(1982), generalizes the logrank test by using weights assigned to observations. In this paper,
we present a switch monotonicity property for the Gρ family of tests, which was motivated
by the need to derive bounds for the test statistic in case of imprecise data observations.
This property states that, when all observations from two independent groups are ranked
together, the value of the z-test statistic is monotonically increasing after switching a pair of
adjacent values from the two groups. Two examples are provided to motivate and illustrate
the result presented in this paper.

Keywords: Logrank, Monotonicity, Imprecise probability, survival distribution,
monotonicity property.

1. Introduction

The logrank test is a well-known nonparametric test which is often used to compare
the survival distributions of two groups containing right-censored observations. It general-
izes the Wilcoxon test, for data without right-censored observations, and is also known as
Mantel-Haenszel test (Mantel, 1966). Several variations to this test have been introduced in
the literature, e.g. Gehan’s Generalized Wilcoxon test (Gehan, 1965; Lou and Lan, 1998),
Weighted Logrank tests (Latta, 1977) and Wilcoxon-Peto test (Peto and Peto, 1972). The
Mantel-Haenszel test (Mantel, 1966) gives equal weights to observations regardless of the
time at which an event occurs. On the other hand, the Wilcoxon-Peto test statistic assigns
more weights to earlier event times (Peto and Peto, 1972). Harrington and Fleming (1982)
introduced a class of tests, the Gρ family, which can be used to test the null hypothesis
H0 : S0(t) = S1(t) for all t > 0 against the alternative hypothesis H1 : S0(t) 6= S1(t) for
some t > 0.
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In this paper, we consider the Gρ family of tests for right-censored data introduced by
Harrington and Fleming (1982), in which the weight assigned to each observed failure time t
is of the form [Ŝ(t)]ρ for fixed ρ ≥ 0, where Ŝ(t) is the well-known Kaplan-Meier estimate of
the survival function. Note that the use of ‘failure time’ does not restrict the test applications
and could be interpreted as time of any event of interest, as long as each individual (or ‘item’)
has only one event associated with it, which may either be observed (failure time) or only
known to be greater than an observed right censoring time. Throughout this paper it is
assumed that right censoring is non-informative, which means that the residual lifetime of
the censored observation is independent of the censoring process. As special cases, ρ = 0
gives the log-rank Mantel-Haenszel test (Mantel, 1966) and ρ = 1 gives the Peto-Prentice
extension of the Wilcoxon statistic (Peto and Peto, 1972; Prentice, 1978). Several R packages
are available to perform these tests, e.g. the function survdiff within the survival package
(Therneau, 2015) and the comprehensive FHtest package (Oller and Langohr, 2017).

In this paper we prove a monotonicity property of the Gρ class family of tests for right-
censored data introduced by Harrington and Fleming (1982). Formally, a function f is called
monotonically non-decreasing if it preserves the order, that is if for all a and b with a ≤ b
we have f(a) ≤ f(b). This research was motivated by possible applications of such tests in
case of imprecise data (Augustin et al, 2014; Coolen, Ahmadini and Coolen-Maturi, 2021),
where the ordering of observations per group is known but where the ranking of observations
between the groups may not be precisely determined due to lack of precise values for some
or all of the observations, it is most natural to assume that each observation is only known
to belong to an interval. In such cases, when intervals are overlapping, different combined
rankings of the data from different groups may be possible and one typically would like to
find the minimum and maximum values of the test statistic corresponding to all possible
combined rankings. The result in this paper makes the derivation of these minimum and
maximum values straightforward, it has been applied to develop robust statistical inference
for accelerated life testing by Coolen, Ahmadini and Coolen-Maturi (2021).

This paper is organised as follows: Section 2 introduces the notation and the setting,
while the main results are presented in Section 3. Two examples to motivate and illustrate
the result presented in this paper are provided in Section 4. The paper ends with concluding
remarks in Section 5.

2. Notation and Setting

Let τ1 < τ2 < . . . < τk denote k times of observed failures. Let Yi(τj) be the number of
individuals in group i who are at risk at τj (i = 0, 1), i.e. the number of individuals from
both groups at risk at τj is Y (τj) = Y0(τj) + Y1(τj), j = 1, 2, . . . , k. Let dij be the number
of individuals in group i who fail at τj (i = 0, 1), so the total number of failures at τj from
both groups is dj = d0j +d1j, j = 1, 2, . . . , k. The information at time τj can be summarised
in the following 2× 2 table:
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Fail at τj Do not fail at risk at τj
Group 0 d0j Y0(τj)− d0j Y0(τj)
Group 1 d1j Y1(τj)− d1j Y1(τj)

dj Y (τj)− dj Y (τj)

Consider the test statistic

Z =
O − E√

V
=

∑
j Oj −

∑
j Ej√∑

j Vj
(1)

with

Oj =
[
Ŝ(τj)

]ρ
d1j (2)

Ej =
[
Ŝ(τj)

]ρ(Y1(τj)
Y (τj)

)
dj (3)

Vj =
[
Ŝ(τj)

]2ρ Y0(τj)Y1(τj)
(Y (τj))2

(
Y (τj)− dj
Y (τj)− 1

)
dj (4)

where ρ ≥ 0 and Ŝ(τj) is the Kaplan-Meier estimate at time τj (Kaplan and Meier, 1958).
Then under the null hypothesis H0 : S0(t) = S1(t) for all t > 0, the test statistic Z follows
the standard normal distribution, i.e. Z ∼ N(0, 1), so Z2 ∼ χ2

1.

For simplicity of notation, we assume throughout this paper that there are no ties,

therefore dj = d0j+d1j = 1, and O =
∑

j

[
Ŝ(τj)

]ρ
d1j is the weighted number of failures from

group G1. The expected value formula (3) and the variance formula (4) can be simplified
(as dj = 1) as

Ej =
[
Ŝ(τj)

]ρ Y1(τj)
Y (τj)

(5)

Vj =
[
Ŝ(τj)

]2ρ Y0(τj)Y1(τj)
(Y (τj))2

(6)

Now let τkj−1 ≤ xji < yj ≤ τkj , and let u0 (u1) be the number of censored observations
from group G0 (G1) between τkj−1 and τkj , thus u = u0 + u1. Define δi(τj) to be equal to 1
if τj is a failure from group Gi, and zero otherwise, i = 0, 1. Let Yi(τkj) be the number of
individuals in group Gi who are at risk at τkj , i = 0, 1, and let Y (τkj) = Y0(τkj) + Y1(τkj) be
the number of individuals from both groups at risk at τkj , kj ∈ {1, 2, . . . , k}. This is illus-
trated in the first row of Figure 1. The next section introduces the main results of this paper.

3. Main Results

In this section, we consider the following setting. For a particular data set, with fixed
failure-censored status, suppose that all observations from group G0, x1 < x2 < . . . < xn0 ,
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precede all observations from group G1, y1 < y2 < . . . < yn1 . We would like to swap between
neighbouring data observations, one pair of a G0 observation and a G1 observation at a
time, where the latter is the smallest G1 observation greater than the G0 observation, until
we have all observations from group G1 preceding all observations from group G0. In total
we can do that in n0n1 steps (switches), where n0 and n1 are the sample sizes of group G0

and group G1, respectively. For example, if we have 3 observations from each group, the
number of switches from x1 < x2 < x3 < y1 < y2 < y3 to y1 < y2 < y3 < x1 < x2 < x3 is 9.
The property presented in this paper is that, under the null hypothesis, the z-test statistic
behaves monotonically throughout this switching process. This is stated in the following
theorem.

Theorem 3.1 (Switch monotonicity). Suppose we have data observations from two in-
dependent groups, their ordered values are denoted by x1 < x2 < . . . < xn0 and y1 < y2 <
. . . < yn1. Let ZB be the z-test statistic value, obtained from (1), corresponding to these data
sets and ZA be the value of the z-statistic after a switch of two adjacent values xi < yj, with
all observations ranked together, then ZB ≤ ZA.

Note that for the special case where there are no right-censored observations, this test is
the same as the Wilcoxon rank-sum test, for which this theorem trivially hold as the sum of
the ranks for one group clearly changes monotonically with such switches. The remainder
of this section consists of the proof of this theorem. To this end, suppose we swap xji and
yj, that is now xji > yj, then we have four different scenarios we need to consider:

τkj

Y0(τkj) = Y0(τkj−1)− u0 − δ0(τkj−1)

Y1(τkj) = Y1(τkj−1)− u1 − δ1(τkj−1)

Y (τkj) = Y (τkj−1)− u− 1

τkj−1

Y0(τkj−1)

Y1(τkj−1)

Y (τkj−1)

τkj−1

Y0(τkj−1)

Y1(τkj−1)

Y (τkj−1)

τkj

Y0(τkj) = Y0(τkj−1)− u0 − δ0(τkj−1)

Y1(τkj) = Y1(τkj−1)− u1 − δ1(τkj−1)

Y (τkj) = Y (τkj−1)− u− 1

After

G0

G1

Before

G0

G1

Figure 1: Setting and Scenario S1

Scenario 1 (S1): when both xji and yj are censoring times
In this case, nothing will change to the 2× 2 tables in Figure 1, where the first row is corre-
sponding to before the swap and the second row to after the swap. As the value of Ŝ(τj) is a
step function that change value only at the time of observed failure, therefore the expected
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value and the variance formula are the same before and after the swap. That is if we swap
any two censored observations between τkj−1 and τkj this will not affect the expected value
and the variance, as it does not affect the margins in the 2 × 2 tables in Figure 1. Thus
ZB = (O−EB)√

VB
and ZA = (O−EA)√

VA
are equal, ZA = ZB, where we use B as subscript for the

case before the swap and A for the case after the swap.

The proofs for the next three cases are very similar, yet for the sake of completeness full
details are given.

Scenario 2 (S2): when xji is a failure time and yj is a censoring time

τkj = xji

Y0(τkj) = Y0(τkj−1)− u0 − δ0(τkj−1)

Y1(τkj) = Y1(τkj−1)− u1 − δ1(τkj−1)

Y (τkj) = Y (τkj−1)− u− 1

τkj−1

Y0(τkj−1)

Y1(τkj−1)

Y (τkj−1)

τkj−1 = xji

Y0(τkj−1)

Y1(τkj−1)

Y (τkj−1)

τkj

Y0(τkj) = Y0(τkj−1)− u0 − 1

Y1(τkj) = Y1(τkj−1)− u1

Y (τkj) = Y (τkj−1)− u− 1

After

G0

G1

Before

G0

G1

Figure 2: Scenario S2

This second scenario is illustrated in Figure 2, and the expect values for before and after
the swap are given as

EB = Σj 6=kjEj +
[
Ŝ(τj)

]ρ Y1(τkj−1)− u1
Y (τkj−1)− u− 1

EA = Σj 6=kjEj +
[
Ŝ(τj)

]ρ Y1(τkj−1)− u1 − δ1(τkj−1)
Y (τkj−1)− u− 1

Clearly EB ≥ EA thus (O − EB) ≤ (O − EA). And the variances

VB = Σj 6=kjVj +
[
Ŝ(τj)

]2ρ (Y0(τkj−1)− u0 − 1)(Y1(τkj−1)− u1)
(Y (τkj−1)− u− 1)2

VA = Σj 6=kjVj +
[
Ŝ(τj)

]2ρ (Y0(τkj−1)− u0 − δ0(τkj−1))(Y1(τkj−1)− u1 − δ1(τkj−1))
(Y (τkj−1)− u− 1)2
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We have two main cases:

(i) If δ0(τkj−1) = 1, that is τkj−1 is a failure from group G0 and thus δ1(τkj−1) = 0, then
VB = VA. Thus ZB ≤ ZA, as from above (O − EB) ≤ (O − EA).

(ii) If δ1(τkj−1) = 1, that is τkj−1 is a failure from group G1 and thus δ0(τkj−1) = 0, then

VA = Σj 6=kjVj +
[
Ŝ(τj)

]2ρ (Y0(τkj−1)− u0)(Y1(τkj−1)− u1 − 1)

(Y (τkj−1)− u− 1)2

and thus we have two sub-cases:

(iia) If Y1(τkj−1)− u1 > Y0(τkj−1)− u0 then VB < VA, i.e. 1
VB

> 1
VA

.

- If (O − EB) > 0, then (O − EA) also has to be positive.
We multiply (O − EB) ≤ (O − EA) by 1√

VB
and by 1√

VA
, then we have

(O − EB)√
VA

≤ (O − EA)√
VA

(O − EB)√
VB

≤ (O − EA)√
VB

Now we multiply 1√
VA

< 1√
VB

by (O − EA) and by (O − EB), then we have

(O − EA)√
VA

<
(O − EA)√

VB
(O − EB)√

VA
<

(O − EB)√
VB

thus we obtain the following inequalities

(O − EB)√
VA

≤ (O − EA)√
VA

<
(O − EA)√

VB
(O − EB)√

VA
<

(O − EB)√
VB

≤ (O − EA)√
VB

Then the proof follows the same argument given in the appendix, and indeed
ZB ≤ ZA.

- If (O − EB) < 0, then

1√
VB

>
1√
VA

(O − EB)√
VB

<
(O − EB)√

VA
≤ (O − EA)√

VA

thus ZB ≤ ZA.
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(iib) If Y1(τkj−1)− u1 < Y0(τkj−1)− u0 then VB > VA, i.e. 1
VB

< 1
VA

.

- If (O − EB) > 0 then (O − EA) also has to be positive.
In this case, we multiply (O − EB) ≤ (O − EA) by 1√

VB
< 1√

VA
, to obtain

that ZB ≤ ZA.

- If (O − EA) > 0, then (O−EA)√
VB

< (O−EA)√
VA

,

and if we divide (O−EB) ≤ (O−EA) by
√
VB then we have (O−EB)√

VB
≤ (O−EA)√

VB

and therefore we have ZB ≤ ZA. Note this includes the case when (O−EB)
is negative but (O − EA) is positive.

- If both (O − EB) and (O − EA) are negative

We multiply (O − EB) ≤ (O − EA) by 1√
VB

and by 1√
VA

we have

(O − EB)√
VA

≤ (O − EA)√
VA

(O − EB)√
VB

≤ (O − EA)√
VB

Now we multiply 1√
VA

> 1√
VB

by (O − EA) and by (O − EB) we have

(O − EA)√
VA

<
(O − EA)√

VB
(O − EB)√

VA
<

(O − EB)√
VB

thus we obtain the following inequalities

(O − EB)√
VA

≤ (O − EA)√
VA

<
(O − EA)√

VB
(O − EB)√

VA
<

(O − EB)√
VB

≤ (O − EA)√
VB

Then the proof follows the same argument given in the appendix, and indeed
ZB ≤ ZA.

Scenario 3 (S3): when xji is a censoring time and yj is a failure time
This third scenario is illustrated in Figure 3.
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τkj

Y0(τkj) = Y0(τkj−1)− u0

Y1(τkj) = Y1(τkj−1)− u1 − 1

Y (τkj) = Y (τkj−1)− u− 1

τkj−1 = yj

Y0(τkj−1)

Y1(τkj−1)

Y (τkj−1)

τkj−1

Y0(τkj−1)

Y1(τkj−1)

Y (τkj−1)

τkj = yj

Y0(τkj) = Y0(τkj−1)− u0 − δ0(τkj−1)

Y1(τkj) = Y1(τkj−1)− u1 − δ1(τkj−1)

Y (τkj) = Y (τkj−1)− u− 1

After

G0

G1

Before

G0

G1

Figure 3: Scenario S3

Similarly we calculate the expected value and the variance before and after the swap as
follows:

EB = Σj 6=kjEj +
[
Ŝ(τj)

]ρ Y1(τkj−1)− u1 − δ1(τkj−1)
Y (τkj−1)− u− 1

EA = Σj 6=kjEj +
[
Ŝ(τj)

]ρ Y1(τkj−1)− u1 − 1

Y (τkj−1)− u− 1

Clearly EB ≥ EA, thus (O − EB) ≤ (O − EA). And the variances are

VB = Σj 6=kjVj +
[
Ŝ(τj)

]2ρ (Y0(τkj−1)− u0 − δ0(τkj−1))(Y1(τkj−1)− u1 − δ1(τkj−1))
(Y (τkj−1)− u− 1)2

VA = Σj 6=kjVj +
[
Ŝ(τj)

]2ρ (Y0(τkj−1)− u0)(Y1(τkj−1)− u1 − 1)

(Y (τkj−1)− u− 1)2

(i) If δ0(τkj−1) = 0 then δ1(τkj−1) = 1 and VB = VA. Thus ZB ≤ ZA, as from above
(O − EB) ≤ (O − EA).

(ii) If δ0(τkj−1) = 1 then δ1(τkj−1) = 0,

VB = Σj 6=kjVj +
[
Ŝ(τj)

]2ρ (Y0(τkj−1)− u0 − 1)(Y1(τkj−1)− u1)
(Y (τkj−1)− u− 1)2

then we have two sub-cases:

(iia) if Y1(τkj−1)− u1 > Y0(τkj−1)− u0 then VB < VA,

8



(iib) if Y1(τkj−1)− u1 < Y0(τkj−1)− u0 then VB > VA.

The proof for both cases (iia) and (iib) are similar to scenario S2.

Scenario 4 (S4): when both xji and yj are failure times
This final scenario is illustrated in Figure 4.

τkj = xji

Y0(τkj) = Y0(τkj−1)

Y1(τkj) = Y1(τkj−1)− 1

Y (τkj) = Y (τkj−1)− 1

τkj−1 = yj

Y0(τkj−1)

Y1(τkj−1)

Y (τkj−1)

τkj−1 = xji

Y0(τkj−1)

Y1(τkj−1)

Y (τkj−1)

τkj = yj

Y0(τkj) = Y0(τkj−1)− 1

Y1(τkj) = Y1(τkj−1)

Y (τkj) = Y (τkj−1)− 1

After

G0

G1

Before

G0

G1

Figure 4: Scenario S4

We calculate the expected value before and after the swap as follows:

EB = Σj 6=kjEj +
[
Ŝ(τj)

]ρ Y1(τkj−1)

Y (τkj−1)− 1

EA = Σj 6=kjEj +
[
Ŝ(τj)

]ρ Y1(τkj−1)− 1

Y (τkj−1)− 1

Clearly EB ≥ EA, thus (O − EB) ≤ (O − EA). And the variances are

VB = Σj 6=kjVj +
[
Ŝ(τj)

]2ρ (Y0(τkj−1)− 1)Y1(τkj−1)

(Y (τkj−1)− 1)2

VA = Σj 6=kjVj +
[
Ŝ(τj)

]2ρ Y0(τkj−1)(Y1(τkj−1)− 1)

(Y (τkj−1)− 1)2

(i) If Y0(τkj−1) = Y1(τkj−1) then VB = VA. Thus ZB ≤ ZA, as from above (O − EB) ≤
(O − EA).

(ii) As we know that both xji and yj are failure times, we have the two-sub cases:
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(iia) If Y1(τkj−1) > Y0(τkj−1) then VB < VA, thus 1
VB

> 1
VA

- If (O − EB) > 0, then (O − EA) also has to be positive, we obtain similarly
that

(O − EB)√
VA

≤ (O − EA)√
VA

<
(O − EA)√

VB
(O − EB)√

VA
<

(O − EB)√
VB

≤ (O − EA)√
VB

Then the proof follows the same argument given in the appendix, and indeed
ZB ≤ ZA.

- If (O − EB) < 0, then

1√
VB

>
1√
VA

(O − EB)√
VB

<
(O − EB)√

VA
≤ (O − EA)√

VA

then ZB ≤ ZA.

(iib) if Y1(τkj−1) < Y0(τkj−1) then VB > VA, thus 1
VB

< 1
VA

.

- If (O − EB) > 0 then (O − EA) also has to be positive.
In this case, we can multiply (O−EB) ≤ (O−EA) by 1√

VB
< 1√

VA
, to obtain that

ZB ≤ ZA.

- If (O − EA) > 0, then (O−EA)√
VB

< (O−EA)√
VA

,

and if we divide (O − EB) ≤ (O − EA) by
√
VB then we have (O−EB)√

VB
≤ (O−EA)√

VB

thus we obtain that ZB ≤ ZA. Note this include the case when (O − EB) is
negative but (O − EA) is positive.

- If both (O − EB) and (O − EA) are negative, we obtain similarly that

(O − EB)√
VA

≤ (O − EA)√
VA

<
(O − EA)√

VB
(O − EB)√

VA
<

(O − EB)√
VB

≤ (O − EA)√
VB

Then the proof follows the same argument given in the appendix, and indeed
ZB ≤ ZA.
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4. Examples

In this section, two examples are presented to motivate the theory presented in this paper
and to illustrate the application of the main result.

Example 1

Suppose that there are two groups with 5 observations each, where all observations from
group G0 are smaller than all observations from group G1. Let the censoring status for G0

be (1, 0, 1, 1, 0) and for G1 be (1, 1, 0, 1, 0). Because only the ranks of the observations play
a role in this paper, we denote the observations by there initial ranks, adding superscript
+ for right-censored observations, so observations for group G0 are denoted by 1, 2+, 3, 4,
5+ and for group G1 by 6, 7, 8+, 9, 10+. Setting ρ = 0.5, the z-test value for this initial
data case, obtained using Equation (1), is −2.1901, it is given in the first row of Table
1. In the following rows, 25 switches of neighbouring pairs in the ordering are presented
with corresponding z-test values, note that the observations remain indicated by their initial
ranks. These switches are such that, at each switch, one G1 observation becomes smaller
than one G0 observation. For example, the second row in this table, indicated by switch 1 in
the first column, presents the case where the largest G0 observation, 5+, and the smallest G1

observation, 6, have swapped in the overall ranking. After 25 switches, the total reversal of
the observations of the two groups has been achieved, with all G1 observations smaller than
all G0 observations. Of course, different specific pairwise switches could have been chosen
to get from the initial ranking to this final ranking, all such possibilities lead to similarly
monotonically changing z-test values.

Figure 5 shows the z-test values for all 25 switches in Table 1, for different values of ρ,
ρ = {0, 0.1, 0.2, . . . , 1}. The different colour lines in this figure are in the order of the different
values of ρ, with the lowest line corresponding to ρ = 0 and the highest line corresponding
to ρ = 1. Clearly, the z-test values are in ascending order regardless of the values of ρ, this
illustrates the monotonicity property presented in this paper. Table 1 and Figure 5 also show
that the z-test value does not change when a switching occurs between two right-censored
observations, which happens at switches 11, 14, 21 and 24.
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switch z-test
- 1 2+ 3 4 5+ 6 7 8+ 9 10+ −2.1901
1 1 2+ 3 4 6 5+ 7 8+ 9 10+ −1.8797
2 1 2+ 3 6 4 5+ 7 8+ 9 10+ −1.5791
3 1 2+ 6 3 4 5+ 7 8+ 9 10+ −1.3374
4 1 6 2+ 3 4 5+ 7 8+ 9 10+ −1.2602
5 6 1 2+ 3 4 5+ 7 8+ 9 10+ −1.0872
6 6 1 2+ 3 4 7 5+ 8+ 9 10+ −0.8729
7 6 1 2+ 3 7 4 5+ 8+ 9 10+ −0.6236
8 6 1 2+ 7 3 4 5+ 8+ 9 10+ −0.4107
9 6 1 7 2+ 3 4 5+ 8+ 9 10+ −0.3533
10 6 7 1 2+ 3 4 5+ 8+ 9 10+ −0.1873
11 6 7 1 2+ 3 4 8+ 5+ 9 10+ −0.1873
12 6 7 1 2+ 3 8+ 4 5+ 9 10+ −0.1096
13 6 7 1 2+ 8+ 3 4 5+ 9 10+ −0.0175
14 6 7 1 8+ 2+ 3 4 5+ 9 10+ −0.0175
15 6 7 8+ 1 2+ 3 4 5+ 9 10+ 0.0722
16 6 7 8+ 1 2+ 3 4 9 5+ 10+ 0.2798
17 6 7 8+ 1 2+ 3 9 4 5+ 10+ 0.5884
18 6 7 8+ 1 2+ 9 3 4 5+ 10+ 0.8718
19 6 7 8+ 1 9 2+ 3 4 5+ 10+ 0.9208
20 6 7 8+ 9 1 2+ 3 4 5+ 10+ 1.1602
21 6 7 8+ 9 1 2+ 3 4 10+ 5+ 1.1602
22 6 7 8+ 9 1 2+ 3 10+ 4 5+ 1.4627
23 6 7 8+ 9 1 2+ 10+ 3 4 5+ 1.7874
24 6 7 8+ 9 1 10+ 2+ 3 4 5+ 1.7874
25 6 7 8+ 9 10+ 1 2+ 3 4 5+ 2.0898

Table 1: z-test values and ρ = 0.5, Example 1.

Example 2

The data set used in this example concerns the survival of 30 patients with cervical cancer,
where 16 patients received control treatment A, which was the use of radiotherapy alone,
and 14 patients received new treatment B, where radiosensitizer is added to radiotherapy.
The data, given in Table 2, represents the number of days between the start of the study
and death of the patients caused by this cancer or a right-censoring event (Machin et al,
2006, p. 53). We use this data set to illustrate the use of the monotonicity result presented
in this paper, by assuming imprecision in the recording of the events such that an observed
time ti would actually imply that the event occurred during interval [ti−d, ti]. For example,
a hospital may only record events once per week, neglecting the precise day it occurred,
or there may be some vagueness about the start date of the study and the actual start of
recording of individual patients.

Figure 6 shows the z-test values for increasing values of d, so for increasing imprecision
in the data, obtained using Equation (1), for ρ = 0, so for the log-rank Mantel-Haenszel test,
and Figure 7 shows the z-test values for ρ = 0.5. The red horizontal line is the z critical
value at 10% and the blue horizontal line is the z critical value at 5%. The green horizontal
line is the value of the test statistic of this data set, without any imprecision in the data
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Figure 5: z-test values for different values of ρ, Example 1.

A 90 142 150 269 291 468+ 680 837 890+ 1037 1090+

1113+ 1153 1297 1429 1577+

B 272 362 373 383+ 519+ 563+ 650+ 827 919+ 978+ 1100+

1307 1360+ 1476+

Table 2: Data set, Example 2.

so with d = 0, which is equal to z = −1.296818. The black lines are the minimum and
the maximum values of the z test statistic over different values of d. These are derived by
applying the monotonicity result presented in this paper. The minimum value is obtained
when we subtract d from all the data observations from treatment A, while keeping the data
of treatment B at the original values. The maximum value is obtained when we subtract d
from all the data observations from treatment B, while keeping the data of treatment B at the
original values. The intersection points between the black line and the red and the blue lines
are at d = 122 and d = 271 for both values of ρ. This analysis shows that, for the original
data, the null hypothesis that both data sets may come from the same underlying population
is not rejected, and this conclusion will remain the same with quite large imprecision added
to the data, so the conclusion is very robust with regard to inaccuracies in the data.
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Figure 6: z-test values for different values of d and for ρ = 0, Example 2.

5. Concluding remarks

This paper studies the monotonicity of the Gρ class of weighted logrank tests introduced
by Harrington and Fleming (1982). We proved a convenient monotonicity property for the
two-sample class of logrank tests. This property holds trivially for the special case where
there are no right-censored observations (the Wilcoxon test), but, while intuitively quite
clear, its proof required care due to the right censoring affecting the data. One can utilise
this property to derive optimal bounds for the test statistic in case of imprecise data, as has
been briefly illustrated via small examples in this paper, and it has recently been applied for
robust inference with accelerated life testing data (Coolen, Ahmadini and Coolen-Maturi,
2021). Note that the form of imprecise data considered in this paper, in particular in
Example 2, can also be regarded as interval-censored data. There is a huge literature on
statistical inference with interval-censored data, but mostly methods based on additional
assumptions are being considered. A feature of the imprecise data that is not standard in
interval-censoring is the possible imprecision in a recorded right-censoring time, which was
the main challenge in achieving the result in this paper.

For future research, it will be interesting to investigate the construction of statistical
tests for equality of survival functions based on the number of switches, in a way that is
similar to tests for perfect ranking in ranked set sampling presented by Li and Balakrishnan
(2008). Possible generalization of the monotonicity property for tests with more than two
groups of data is also of interest, it is left as a topic for future research.
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Figure 7: z-test values for different values of d and ρ = 0.5, Example 2.
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Appendix

Lemma 5.1. Let x and y be any two real numbers in an interval [a, b], where a < b. Then
if x− a < y − a and b− y < b− x then x < y.

Proof: The setting is illustrated in the figure below.

a x y b

x− a b− x

y − a b− y

As y−a = (x−a) + (y−x) and b−x = (b− y) + (y−x), then in order for both inequalities
to hold, the second term in the right hand side must be positive, i.e. y − x > 0 thus x < y.

�

We use the lemma above to prove that O−EA√
VA

> O−EB√
VB

. First we define the 4 differences
D1, D2, D3 and D4, which is illustrated in the figure below, as

O−EB√
VA

O−EB√
VB

O−EA√
VA

O−EA√
VB

D1 D2

D3 D4

D1 =
O − EB√

VB
− O − EB√

VA

D2 =
O − EA√

VB
− O − EB√

VB

D3 =
O − EA√

VA
− O − EB√

VA

D4 =
O − EA√

VB
− O − EA√

VA

In order for the inequality O−EA√
VA

> O−EB√
VB

to hold, both inequalities D3 > D1 and D2 > D4

must be hold. We can express D2 and D3 as

D2 = D4 +

[
O − EA√

VA
− O − EB√

VB

]
D3 = D1 +

[
O − EA√

VA
− O − EB√

VB

]
so O−EA√

VA
− O−EB√

VB
has to be positive, therefore O−EA√

VA
> O−EB√

VB
.
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