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Abstract

This paper presents an imprecise predictive inference method for accelerated
life testing. The method is largely nonparametric, with a basic parametric
function to link different stress levels. The log-rank test is used to provide
imprecision for the link function parameter, which in turn provides robustness
in the resulting lower and upper survival functions for a future observation
at the normal stress level. An application using data from the literature
is presented, and simulations show the performance and robustness of the
method. In case of model misspecification, robustness may be achieved at
the price of large imprecision, which would emphasize the need for more data
or further model assumptions.

Keywords: Accelerated life testing, Arrhenius link function, failure data,
imprecise probability, log-rank test, lower and upper survival functions,
nonparametric predictive inference, right-censored data.

1. Introduction

To determine the reliability of a new product in a relatively short period
of time, accelerated life testing (ALT) can be used. In ALT, units are exposed
to higher than normal stress levels (e.g. lightbulbs to a higher than normal
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voltage) to induce failures more rapidly. There are several typical designs for
ALT, including constant-, step- and progressive-stress testing, for a detailed
introduction to statistical methods for ALT see Nelson [21]. Due to the
complex nature of ALT scenarios, the modelling for statistical inference based
on ALT data provides many challenges. The aim of this paper is to provide a
robust method of statistical inference which can be widely used in practical
ALT applications. The method generates imprecise survival functions based
on relatively few model assumptions, if these fail to provide clear insight into
practical issues then one may need to make stronger model assumptions or
collect more data.

Yin et al. [25] introduced an imprecise statistical method for ALT data
using the power-Weibull model. They first fitted a fully parametric model for
all data, assuming Weibull failure time distributions at the different stress
levels with the scale parameters linked through the power-law link function.
Then they introduced imprecision in the power-law link function by consid-
ering an interval around the parameter estimate, leading to observations at
stress levels other than the normal level to be transformed into intervals at
the normal level. They applied nonparametric predictive inference (NPI) at
the normal stress level, using the original data at that level combined with
transformed data intervals from other levels. Yin et al. [25] did not give an
argument, other than simulation studies, for the amount of imprecision in
the parameter of the link function. Building on the work by Yin et al. [25],
Ahmadini and Coolen [2] used a parametric statistical test between pairwise
stress levels, to determine the level of imprecision. They assumed Weibull
distributions for all stress levels, with the scale parameters linked by the
Arrhenius link function. They derived an interval for the parameter of the
Arrhenius link function by pairwise likelihood ratio tests.

This paper continues the research started by Yin et al. [25] and Ahmadini
and Coolen [2]. Different from that work, we do not assume a failure time
distribution at each stress level, only a parametric link function between the
levels. We use the log-rank test to provide imprecision for the link function
parameter. We obtain an interval for the parameter of the link function by
pairwise hypothesis tests between the stress levels to determine the level of
imprecision, based on the idea that, if data from a higher stress level are
transformed to the normal stress level, then the transformed data and the
original data from the normal stress level should be indistinguishable if the
model fits well. The main novelty of the approach is that, by using a nonpara-
metric test, we do not need to assume a parametric failure time distribution
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at each stress level. This makes the method more widely applicable than the
method presented by Ahmadini and Coolen [2].

This paper is organized as follows. Section 2 gives an overview of the main
aspects of NPI. Section 3 presents the new imprecise predictive inference
method for ALT data based on the log-rank test. Section 4 presents an
example to illustrate our method using data from the literature. Section 5
presents the results of a simulation study to investigate the performance of
the proposed method, both for the case where the assumed model fits the
data well and where the model is not correct, the latter provides insight into
robustness of our method. Section 6 provides some concluding remarks.

2. Nonparametric predictive inference

Nonparametric predictive inference (NPI) is a statistical method which
provides lower and upper survival functions for a future observation based
on past data using imprecise probabilities [4, 10]. Hill [14] proposed the as-
sumption A(n) which gives direct conditional probabilities for a future random
quantity based on the observed values of related random qualities [3, 9, 10].
It proposes that the rank of a future observation among the values already
observed is equally likely to have each possible value 1, ..., n + 1. Suppose
that X1, X2, ..., Xn, Xn+1 represent exchangeable and continuous real-valued
possible random quantities. Let the ranked observed values of X1, X2, ..., Xn

be denoted by x(1) < x(2) < ... < x(n), and let x(0) = 0 and x(n+1) =∞. The
assumption A(n) is

P (Xn+1 ∈ (x(j−1), x(j))) = 1/(n+ 1)

for all j = 1, 2, ..., n + 1. We assume that there are no tied observations for
ease of presentation, any tied values can be dealt with by assuming that they
differ by infinitesimally small amounts.

Statistical inference based on A(n) is nonparametric and predictive, and
can be considered suitable if there is hardly any knowledge about the random
quantity of interest, except for the n observations, or if one does not want
to use any further information. A(n) is not sufficient to derive precise proba-
bilities for many events of interest, but optimal bounds for probabilities can
be derived through the ‘fundamental theorem of probability’ [13], and these
are lower and upper probabilities in imprecise probability theory [3, 4].

The lower and upper probabilities for event A are denoted by P (A) and
P (A), respectivily. These are open to interpretation in various ways [4]. P (A)

3



can be regarded as the supremum buying price for a gamble on event A which
pays 1 if A occurs and 0 if not. It can also be regarded as the maximum lower
bound for the probability for A based on the assumptions made. P (A) can
be regarded as the minimum selling price for the same gamble on A, or as the
minimum upper bound based on the assumptions made. For lower and upper
probabilities the logical relation 0 ≤ P (A) ≤ P (A) ≤ 1 holds, and under
standard coherence conditions [4] the conjugacy property P (A) = 1−P (Ac)
holds, where Ac is the complementary event of A. These properties also hold
for NPI for real-valued quantities [3], hence also for the predictive inferences
presented in this paper.

The NPI lower survival function for a future observation Xn+1 is

SXn+1
(t) = P (Xn+1 > t) =

n− j
n+ 1

, for t ∈ (x(j), x(j+1)), j = 0, ..., n (1)

and the corresponding NPI upper survival function for Xn+1 is

SXn+1(t) = P (Xn+1 > t) =
n+ 1− j
n+ 1

, for t ∈ (x(j), x(j+1)), j = 0, ..., n (2)

In reliability and survival analysis interest is usually in failure events and
data often include right-censored observations as some units are only known
not to have failed before a specific time. Coolen and Yan [8] presented a
generalization of A(n), called rc-A(n), which enables NPI with right-censored
data. Suppose that data from n units consists of u failure times x(1) < x(2) <
... < x(u) and n − u observed right-censoring times c(1) < c(2) < ... < c(n−u),
and set x(0) = 0 and x(u+1) = ∞. For ease of presentation we assume that
there are no tied observations, any ties can be broken by adding infinitesimal
amounts without noticeable effect on the resulting lower and upper survival
functions. Let si denote the number of right-censored observations in the
interval (x(i), x(i+1)), denoted by ci(1) < ci(2) < ... < ci(si), so

∑u
i=0 si = n − u.

Let dij denote the event time such that di0 = x(i) and dij = ci(j) for i = 1, 2, ..., u

and j = 1, 2, ..., si, and let disi+1 = di+1
0 = xi+1 for i = 1, 2, ..., u− 1. Let ñcu

and ñdij denote number of subjects in the risk set just before to time cu and

dij, respectively, and let ñ0 = n + 1. The risk set at a specific time consists
of all units which have not failed or been censored prior to that time, hence
for which the corresponding observed failure time or right-censoring time is
greater than or equal to the specific time.
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Coolen and Yan [8] presented the NPI lower and upper survival functions
for a future failure observation, denoted by SXn+1

(t) and SXn+1(t), respec-
tively, and they are available in the following product forms [18, 19]. For
t ∈ [dij, d

i
j+1), with i = 1, 2, ..., u and j = 1, 2, ..., si, the NPI lower survival

function is

SXn+1
(t) =

1

n+ 1
ñdij

∏
r:cr≤dij

(
ñcr + 1

ñcr

)
(3)

and for t ∈ [x(i), x(i+1)), with i = 1, 2, ..., u, the NPI upper survival function
is

SXn+1(t) =
1

n+ 1
ñxi

∏
r:cr≤xi

(
ñcr + 1

ñcr

)
. (4)

Note that SXn+1
(t) decreases at each observation but SXn+1(t) decreases only

at observed failure times. This illustrates the attractive informal interpreta-
tion that a lower probability for event A reflects the information in support
of event A, while the upper probability (actually, 1−P (A)) reflects the infor-
mation against event A, so in support of the complementary event. A failure
observation provides information against survival so leads to both SXn+1

(t)

and SXn+1(t) decreasing. A right-censored observation reduces information
in support of survival past that point but it does not provides information
against survival as the unit did not fail, hence SXn+1

(t) decreases at such an

observation but SXn+1(t) does not.

3. Imprecise predictive inference based on the log-rank test

In this section, we present a new semi-parametric statistical method for
predictive inference based on constant stress ALT data. The method is sim-
ilar to the method introduced in [2], but in this paper we do not assume a
parametric failure time distribution at each stress level. As in [2], we assume
a parametric model as a link between the different stress levels. While the
new method can be used with a range of such parametric link functions, we
only consider the Arrhenius model for ALT to link the different stress lev-
els in this paper. This model is mainly used in situations where the failure
mechanism is driven by temperature, it has been applied to various prob-
lems in engineering [20, 21]. According to this model, an observation ti at
the stress level i, subject to stress Ki, can be transformed to an observation
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at the normal stress level K0, by the equation

ti→0 = ti exp
( γ

K0

− γ

Ki

)
, (5)

where Ki is a positive value representing stress level i (in scenarios where
this is temperature, it is measured in Kelvin) and γ is the parameter of the
Arrhenius model. This transformation is applied to all data, so failure times
and right-censored observations.

The central idea behind the new method is as follows. If the Arrhenius
model is suitable for linking the different stress levels, then the observations
transformed from the increased stress levels to the normal stress level should
not be distinguishable, so they should be reasonably mixed. We consider
this by performing pairwise tests between the original data at level 0 and
transformed data per level i, testing the hypothesis that both data sets come
from a common underlying distribution. As we do not assume a parametric
failure time distribution at each stress level, these pairwise tests have to be
nonparametric. Because ALT data can include right-censored observations,
we apply the well-known log-rank test [16, 23], which is also known as the
Mantel-Cox test [5, 17].

The proposed method in this paper consists of two steps. First, the
log-rank test is used to test if the data transformed from level i to level
0, and the original data at level 0, may come from the same underlying
distribution. This hypothesis test is performed with significance level α, in
line with statistical tradition typically set at 0.01, 0.05 or 0.1. Instead of
performing this test with a fixed value for the parameter γ of the Arrhenius
link function, we derive the interval [γ

i
, γi] of values for γ for which we do

not reject the null hypothesis. Note that the fact that the set of such values
for γ is indeed an interval follows from a monotonicity property of the log-
rank test proven by Coolen-Maturi and Coolen [11]. Note further that γ

i
and γi are increasing and decreasing functions of α, respectively, so the log-
rank test with α = 0.05 leads to a larger interval [γ

i
, γi], and hence to more

imprecision in our method, than testing with α = 0.10. This procedure
is applied for each stress level i = 1, . . . ,m, and with the m pairs (γ

i
, γi)

we define γ = max {min γ
i
, 0} and γ = max γi. Because of the physical

interpretation of failures generally occurring faster at increased stress levels,
we exclude negative values which leads to some γ values being set at 0.
We compute the γ

i
and γi numerically using the statistical software R, in

particular the function survdiff from the survival package to apply the log-
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rank test, and a basic search to find γ
i

and γi with 3 decimals accuracy.
For our entire procedure, very small changes in these γ

i
and γi beyond the

third decimal have extremely small effects on the resulting lower and upper
predictive survival functions.

The second step of our method is as follows. Each observation at an
increased stress level is transformed to an interval at level 0, by applying the
transformation (5) with γ and with γ, leading to the interval [ti→0, t

i→0
] with

ti→0 = ti exp
( γ

K0

−
γ

Ki

)
t
i→0

= ti exp
( γ

K0

− γ

Ki

)
Then the NPI lower and upper survival functions, S and S, are derived as
described in Section 2, for a future observation at stress level 0. Crucially,
S is based on the original data at level 0 combined with the values ti→0 for
the transformed observations from higher stress levels, and S is based on the
original data at level 0 combined with the values t

i→0
for the transformed

observations from higher stress levels. This leads to more imprecision than if
only precisely observed data were used, which reflects uncertainty about the
parameter γ in the Arrhenius link function. However, the imprecision also
reflects possible problems with model fit, as we explain next.

If the model fits the data well, and there is a reasonable amount of data,
we expect that most cases lead to γ = γ

1
and γ = γ1, because a level 1

observation transferred using an interval of values for γ tends to lead to a
smaller interval at level 0 than observations transferred from levels i ≥ 2
using the same interval of values for γ, if the transferred intervals end up
close to each other at level 0. Therefore, the pairwise log-rank tests will lead
to more values for γ not being rejected for the pairwise test between levels 1
and 0, than for the tests between levels i ≥ 2 and 0.

Crucially for our method, it is different if the model does not fit the data
well. In this case, the intervals [γ

i
, γi] for different i will vary more, with less

or even no overlap in extreme cases. This leads to the interval [γ, γ] being
much wider than is the case for good model fit. So, if a model is chosen
for the link function which does not fit the data well, the lower and upper
survival functions resulting from our method will have more imprecision than
if the model fits well, which is an attractive feature of the method. It is
important to emphasize that this effect is achieved because of the use of the
pairwise hypothesis tests, and the conservative combination of the resulting
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intervals for γ. If, alternatively, we had performed a similar test for the data
transformed from all stress levels simultaneously, which can be done by a
generalization of the log-rank test [6], then a poor model fit would lead to
a small interval of values for γ for which the null-hypothesis would not be
rejected, or even an empty interval. This would lead to less imprecision in
the resulting inferences and would therefore not correctly reflect the poor
model fit.

In Section 4 we present an example of application of our method us-
ing data from the literature, and we consider variations to the data due to
right censoring. Section 5 presents a performance evaluation for our method
based on simulations. For further discussion and more details of our method,
including more examples which highlight more features of our method, com-
parison with the alternative approach where a parametric distribution is
assumed at each stress level [2], and discussion of computational aspects, we
refer to the PhD thesis by Ahmadini [1, Ch.4].

4. Example

In this example, we apply the presented method to a data set from the
literature [24], resulting from an accelerated life test with temperature as the
accelerated factor. The failure data were collected at the normal temperature
K0 = 393 Kelvin and at K1 = 408 and K2 = 423. Ten units were tested at
each temperature, the 30 failure times (in hours) are given in Table 1, for now
neglect the (+) and (∗). The intervals of the values for γ resulting from our
method are given Table 2. The resulting lower and upper survival functions
for a future observation at the normal temperature are presented in Figure
1, indicated as S(γ) and S(γ), respectively, with the specific corresponding
value for γ. At all three levels of significance α, γ

1
< 0 hence γ = 0 and

the lower survival functions for the three α values are all equal. The upper
survival functions differ, with imprecision increasing for decreasing α. These
lower and upper survival functions can be used for further inference on the
random failure time for a future item at the normal stress level.

We now illustrate the effect of censored observations in the data by chang-
ing some of the observations to right-censored observations. We consider
three cases, represented in Table 1. In Case 1, we assume that the 4 obser-
vations indicated by (+) in Table 1 are instead right-censored observations
at 4000. In Case 2, we assume that the 5 observations indicated by (∗) in
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K0 = 393 K1 = 408 K2 = 423

3850 3300 2750
4340(+) 3720 3100
4760(+) 4080(+) 3400
5320(+) 4560 3800
5740 4920 4100
6160 5280 4400
6580 5640 4700
7140(*) 6120 5100
7980(*) 6840(*) 5700
8960(*) 7680(*) 6400

Table 1: Failure times at three temperature levels.

α 0.01 0.05 0.10

i [γ
i
, γi] [γ

i
, γi] [γ

i
, γi]

1 [−1874.191, 5169.809] [−1108.280, 4403.899] [−624.387, 3920.005]
2 [38.751, 3690.236] [435.786, 3293.202] [686.627, 3042.360]

[γ, γ] [γ, γ] [γ, γ]

[0, 5169.809] [0, 4403.899] [0, 3920.005]

Table 2: [γ
i
, γi] and [γ, γ], data Table 1.

Table 1 are instead right-censored observations at 6600. In Case 3, all the
right-censored observations of Cases 1 and 2 occur.

The intervals [γ
i
, γi] for Cases 1, 2, and 3 are given in Table 3. For all

these cases we have γ = γ1 and γ = 0, except for Case 1 with α = 0.10 where
γ = 409.614. The resulting lower and upper survival functions for α = 0.01
are presented in Figure 2. Clearly, more right-censored observations tend
to lead to more imprecision, but there is an interesting detail in Figure 2,
namely it shows that the upper survival function for Case 1 is mostly being
below the upper survival function for Case 2, but for some small intervals
of values for t. This can happen if the order of an observed event and a
right-censored observation, from two different stress levels, is different under
two different transformations. It is important if a right-censored observation
is before or after a fully observed event time, because the probability mass
that is divided at a right-censoring time among the intervals to the right of
it, depends on the number of observations to the right of the right-censoring
time. If there are fewer observations to the right of the right-censoring time,
the intervals between them all get a bit more probability mass according to
the NPI approach.
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Figure 1: Lower and upper survival functions.

5. Simulation study

In this section, we present results of a simulation study to investigate
the performance of the imprecise predictive inference method for ALT data
proposed in this paper. We consider two cases: Case A with perfect model
fit, while in Case B the model does not fit perfectly. Case A serves to
illustrate the performance of the method under ideal circumstances, with
different numbers of data. Cases B illustrates the robustness of the method.
Each case consists of 10,000 simulated data sets.

In Case A, we set three temperature stress levels K0 = 283, K1 = 313,
and K2 = 353. We generated random samples from the Arrhenius-Weibull
model, which for stress level i with temperature Ki, has the Weibull survival
function

S(t) = exp[−(
t

φi
)β]

and the scale parameters are linked by the Arrhenius link function

φi = φ0 exp
( γ
Ki

− γ

K0

)
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α 0.01 0.05 0.10

i [γ
i
, γi] [γ

i
, γi] [γ

i
, γi]

Case 1 1 [−1119.318, 5982.068] [−353.408, 4948.068] [409.614, 4636.459]
2 [606.301, 4332.095] [1200.640, 3805.070] [1222.635, 3575.298]

Case 2 1 [−3673.884, 8158.461] [−2357.513, 6408.005] [−1652.449, 5653.132]
2 [38.751, 5239.500] [435.786, 4332.095] [795.557, 3940.782]

Case 3 1 [−2357.513, 10677.282] [−1119.319, 7377.025] [−414.253, 7220.264]
2 [686.627, 6545.213] [1352.626, 5287.021] [1864.493, 4834.417]

Table 3: [γ
i
, γi] for 3 right-censoring cases.

We set φ0 = 7000, β = 3, γ = 5200. At each stress level we simulated
n = 10, 50, 100 observations from this model. Then we applied our method
to derive the intervals [γ, γ] for each data set and for significance levels α =
0.01, 0.05, 0.10. With these intervals we derived the lower and upper survival
functions for a future observation at the normal stress level.

To evaluate the performance of our method, for each simulated data set
we also simulated one future observation at the normal stress level (with
K0), and we compared this to the quartiles of the lower and upper survival
functions. For our method to perform well, the future observations should
exceed the first, second, and third quartiles of the lower survival functions in
proportions of the runs exceeding 0.75, 0.50 and 0.25, respectively, and also in
proportions less than these values for the upper survival functions. Of course,
the closer these proportions are to the respective values 0.75, 0.50, 0.25, the
better the method performs.

The results for Case A are presented in Table 4, where under qL and
qU these proportions are given according to the lower and upper survival
functions, respectively, and the first, second and third quartiles are indicated
by q = 0.25, 0.50, 0.75, respectively. The proportions of runs in which the fu-
ture observation exceeds quartiles are as they should be, as explained above,
but clearly there is a lot of imprecision in the method which is shown by
the difference between corresponding qL and qU entries. The imprecision
clearly increases if the significance level decreases, and there is substantial
decrease of imprecision for increasing sample size n. For more details on this
simulation we refer to the PhD thesis by Ahmadini [1], where also detailed
comparison of the intervals [γ

i
, γ

i
], for i = 1, 2, is presented.

An important aim of our new method, in line with our related papers
[2, 25] is to develop a quite straightforward method of predictive inference
for ALT data based on few assumptions, where imprecision in the link func-
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Figure 2: Lower and upper survival functions for Cases: 1-blue, 2-green, 3-red.

tion between different stress levels provides robustness against the model
assumptions. To investigate robustness, in Case B we simulated data from
the same setting as in Case A, but all data from stress level 1, with K1 = 313,
are multiplied by 1.2. The results of this simulation are presented in Table
5. The proportions of the runs in which the future observation exceeds the
respective quantiles are still all in line with the requirement for the method
to work well, as explained above. Compared to Case A, the entries in the
table for corresponding qL and qU now indicate increased imprecision, which
results from the fact that the intervals [γ, γ] tend to become wider due to the
model not fitting the data well anymore. This reflects the necessary pay-off
for a robust method in case of problems with model fit, namely the resulting
inferences are still meaningful but they become more imprecise. In practical
applications, if the imprecision is too large to draw the inference of interest,
or to make the required decision, then this indicates the need for more data
to be collected or stronger model assumptions to be made. More detailed in-
vestigation for this case is included in the PhD thesis of Ahmadini [1], where
also other scenarios of model misspecification are investigated, including data
simulated from ALT models with different link functions. For all simulations
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n = 10 n = 50 n = 100
α q qL qU qL qU qL qU

0.01 0.25
0.50
0.75

0.9498 0.4857
0.8415 0.1237
0.5917 0.0113

0.8565 0.6251
0.6756 0.3192
0.4344 0.0869

0.8302 0.6696
0.6358 0.3673
0.3840 0.1244

0.05 0.25
0.50
0.75

0.9197 0.5360
0.7777 0.1939
0.5323 0.0306

0.8363 0.6539
0.6374 0.3596
0.4006 0.1189

0.8156 0.6919
0.6058 0.3988
0.3528 0.1511

0.10 0.25
0.50
0.75

0.9036 0.5650
0.7437 0.2327
0.4960 0.0483

0.8239 0.6692
0.6205 0.3811
0.3815 0.1356

0.8075 0.7007
0.5916 0.4130
0.3387 0.1639

Table 4: Proportion of runs with future observation greater than quartiles, Case A.

n = 10 n = 50 n = 100
α q qL qU qL qU qL qU

0.01 0.25
0.50
0.75

0.9742 0.4957
0.8663 0.1446
0.5844 0.0145

0.9197 0.6443
0.7669 0.3438
0.4711 0.1058

0.9000 0.6754
0.7404 0.3690
0.4473 0.1273

0.05 0.25
0.50
0.75

0.9563 0.5554
0.8248 0.2219
0.5390 0.0389

0.9018 0.6612
0.7373 0.3687
0.4474 0.1267

0.8864 0.6871
0.7189 0.3871
0.4275 0.1399

0.10 0.25
0.50
0.75

0.9446 0.5802
0.7999 0.2599
0.5129 0.0574

0.8938 0.6691
0.7220 0.3802
0.4367 0.1344

0.8800 0.6928
0.7067 0.3965
0.4176 0.1460

Table 5: Proportion of runs with future observation greater than quartiles, Case B.

the main conclusion is the same, namely that the robustness works well but
the price of severe model misspecification is high imprecision.

6. Concluding remarks

In this paper we presented a novel statistical method of imprecise para-
metric inference for ALT data, which does not require a parametric dis-
tribution to be assumed for each stress level, and uses a basic parametric
link function between the different stress levels. The method combines the
log-rank test for pairwise comparison of the survival distributions at differ-
ent stress levels with the Arrhenius model as link between the stress levels.
Transformation of observations at increased stress levels result in interval ob-
servations at the normal stress level, reflecting doubt about the quality of the
basic assumed link function. By using pairwise log-rank tests it is assured
that imprecision increases for worse model fit. The pairwise comparisons are
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between each increased stress level and the normal stress level, which reflects
that data from the normal stress level are considered to be the main basis for
the statistical inference, as interest is explicitly in a future observation at the
normal stress level. We have assumed that failure data are available at all
stress levels including the normal stress level, which may not be realistic. If
there are no, or very few, failure data at the normal stress level, or only right-
censored observations, then the method can be applied similarly but using
a higher stress level as the basis for the combinations, so data from higher
stress levels can be transformed to that stress level. Then the combined data
at that level could be transformed all together to the normal stress level.

The log-rank test in this approach could be replaced by other comparison
tests, this is left as an interesting topic for future research. The method
can also be developed for different ALT scenarios, e.g. stepwise increased
stress, as long as transformations of observations from higher stress levels
to the normal stress level are possible. For an example application of our
method to investigate basic warranty contracts we refer to the PhD thesis of
Ahmadini [1].
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