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Abstract

In reliability and survival analyses, right-censored observations are common. This type
of data occurs when an event of interest is not fully observed during an experiment and
there is no information provided about a random quantity, except that it exceeds a certain
value. Nonparametric Predictive Inference (NPI) is a frequentist statistical method that
relies on only few assumptions. It quantifies uncertainty by using imprecise probabilities
based on Hill’s assumption A(n) and focuses specifically on future observations. NPI has been
developed for various types of data, including right-censored data, for some inferences such
as multiple group comparisons, uncertainty quantification of the survival function, and in
the context of competing risks. However, NPI with right-censored data has only considered
a single future observation. This paper aims to extend this method by considering two
future observations and taking into account that in the NPI approach, such multiple future
observations are not conditionally independent given the data. Specifically, we present NPI
lower and upper probabilities for the event that both future observations are greater than
a particular time. Examples are provided for illustration and an application to system
reliability is presented.

Keywords: Nonparametric predictive inference, right-censored data, censoring, imprecise
probability, future observations, system reliability.

1. Introduction

In survival analysis, one of the primary characteristics is that some data may not be
fully observable, but are instead censored. In many cases, event times are subject to right-
censoring, which simply means that for a specific individual it is known that the event has
not yet occurred at a particular time [1]. In other words, an observation for an individual
is right-censored at c if its lifetime is only known to be greater than c. While there are
several other common types of censoring, including left-censoring and interval-censoring,
right-censoring occurs most frequently in applied statistics. This paper considers data sets
including right-censored observations.

Nonparametric Predictive Inference (NPI) is a frequentist statistical method that is based
on Hill’s assumption A(n) [2, 3], which uses imprecise probabilities [4, 5, 6, 7, 8] to quantify

∗Tahani Coolen-Maturi, email: tahani.maturi@durham.ac.uk

Preprint submitted to Mathematical Methods of Statistics May 24, 2024



uncertainty. NPI gives lower and upper probabilities for a future, observable, random quan-
tity, conditioned on observed values of related random quantities, based on the assumption
A(n) [9]. NPI has been developed for a variety of data types, such as Bernoulli data [10, 11],
real-valued data [12, 13, 14], data with right-censored observations [15, 16], bivariate data
[17], multinomial data [18, 19], and circular data [20]. Moreover, NPI has been developed for
a wide variety of statistical applications, such as reliability analysis [21], operational research
[22] and medical survival data [23]. This paper is mostly theoretical in nature, and uses data
from the literature to illustrate how the developed methods are used.

Due to the fact that the NPI method is a frequentist method based on Hill’s assumption
A(n) and utilizes the imprecise probability theory to quantify uncertainty, in this section,
we will discuss the nature and properties of A(n) as well as some basic aspects of imprecise
probability theory. Assume that X1, X2, . . . , Xn, Xn+1 are real-valued absolutely continuous
and exchangeable random quantities. Let the ordered observed values of X1, . . . , Xn be
denoted as x1 < x2 < · · · < xn. To simplify notation, let x0 = −∞ and xn+1 = ∞, or we
assume x0 = 0 in case of nonnegative random quantities [24]. It is assumed that there are
no ties between the observations of the data. In the case of ties, we assume that the tied
observations differ by a small amount, which is a common strategy in statistics to break ties
[3]. These n observations divide up the real-line into n + 1 intervals Ij = (xj, xj+1), where
j = 0, 1, . . . , n. Based on n observations, the assumption A(n) [25] is that the probability
that the next future observation Xn+1 is equally likely to fall in each open interval (xj, xj+1),
for all j = 0, 1, . . . , n, so

PXn+1(xj, xj+1) =
1

n+ 1
for all j = 0, 1, . . . , n (1)

The data carry information about the location but no information about the rank of the
future observations, corresponding to the absence of prior knowledge, so A(n) is considered
as a post-data assumption related to finite exchangeability, and assumes nothing else [26].
For a detailed presentation and discussion of A(n), see Hill [25].

The assumption A(n) alone is insufficient for constructing precise probabilities for many
events of interest, but it is still useful to derive bounds for probability, effectively by apply-
ing De Finetti’s Fundamental Theorem of Probability [26], or Walley’s concept of natural
extension [5], which provide lower and upper probabilities in interval probability theory.
Weichselberger [27] also developed a formal foundation for interval probability, via lower
and upper probabilities, by applying the principles of Kolmogorov’s axioms. These lower
and upper probabilities are also known as imprecise probabilities in accordance with the
imprecise probability theory [9, 8].

Imprecise probabilities have been proposed and studied since at least the middle of the
nineteenth century [28]. Recently, the topic of imprecise probabilities has become increas-
ingly prominent, resulting in a series of conferences and a project website, www.sipta.org.
There are several interpretations of the lower and upper probabilities for event A, which are
denoted by P (A) and P (A), respectively [20]. According to Walley [5], for instance, the
lower and upper probabilities for event A can be interpreted as supremum buying price and
infimum selling price, respectively, of a gamble on the event A, in which 1 is paid when the
event occurs and 0 if the event does not occur. From a classical perspective, lower and upper
probabilities can be interpreted as bounds on precise probabilities, because of the lack of in-
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formation or the desire not to make further assumptions. The theory of imprecise probability
clearly demonstrates that bounds provide valuable information regarding the uncertainty of
events caused by a lack of information [9, 5, 7, 29, 27]. The precise classical probability of an
event A is simply a special case of the imprecise probability, when P (A) = P (A), whereas the
total absence of information about the event A can be reflected by P (A) = 0 and P (A) = 1.
Next, we outline several important aspects of imprecise probability theory relevant to A(n)-
based inference [9]. As a general rule, in imprecise probability theory, the lower and upper
probabilities for the event A are P (A) = 1− P (Ac), which is the conjugacy property, where
Ac represents the complementary event of A. In many cases, this conjugacy property can be
utilised in order to simplify the calculation of imprecise probabilities for events of interest
and their complementary events. For events A and B, such that A ∩ B = ∅, the lower
probability is superadditive and the upper probability is subadditive, that is

P (A ∪B) ≥ P (A) + P (B) and P (A ∪B) ≤ P (A) + P (B)

In the following section, we will introduce the statistical method NPI which assigns lower
and upper probabilities to events involving a future random observation Xn+1.

Furthermore, Coolen and Yan [15] have developed NPI for right-censored data based on
a generalization of A(n), called the right-censoring A(n) assumption, or rc-A(n), but it was
only developed for a single future observation. In practice, however, there may be reasons
to be interested in multiple future observations; it is important that in the NPI approach,
such multiple future observations are not conditionally independent given the data. In this
paper, we develop NPI for two future observations based on the assumption rc-A(n) without
further assumptions and as an example application we consider reliability of series systems.

This rest of the paper is organised as follows. First a brief overview about NPI for right-
censored data is given in Section 2. Using a new approach, we reformulate the NPI lower
and upper probabilities for the event Xn+1 > t in Section 3. In Section 4, we present NPI
for the event Xn+2 > t given Xn+1 > t. NPI for the joint event Xn+1 > t and Xn+2 > t is
presented in Section 5. Section 6 illustrates how these inferences can be applied to quantify
the reliability of a small series system. Finally, this paper ends with concluding remarks in
Section 7. For further details and discussion, we would like to direct the reader to the thesis
of the second author [30].

2. NPI for right-censored data

Hill’s assumption A(n) [31] by itself is not suitable for right-censored data, so Coolen
and Yan [15] presented a generalization of A(n), called the right-censoring A(n) assumption,
abbreviated as rc-A(n), for right-censored data. They added a new assumption to A(n) to
makes it more suitable for dealing with right-censored data. It is assumed that, at the
moment of censoring, the residual lifetime of a right-censored observation is exchangeable
with the residual lifetimes of all other observations that are not yet failed or censored [15].

According to the A(n) assumption [31], the probability distribution for a real-valued
random quantity Xn+1 is partially specified by probability masses assigned to open intervals,
without any further restriction on the spread of the probability mass within each interval
[15, 32]. A probability mass assigned in such a way to an interval (a, b) is denoted by

3



MX(a, b), and referred to as a M -function value for X ∈ (a, b). The M -function value
should satisfy 0 ≤ MX(a, b) ≤ 1 and the M -function values specified on all intervals should
sum up to one [15]. These M -functions are also in the theory presented by Shafer [33].

In this section, we follow the notation and definitions presented by Maturi [34]. Consider
the following data when determining the predictive probabilities for a future observation.
Assume X1, . . . , Xn, Xn+1 are non-negative, exchangeable and continuous random quantities
representing lifetimes. Suppose that there are in total n observations containing u failure
times observations, x1 < x2 < · · · < xu, and ν = n − u right-censoring times, c1 < c2 <
· · · < cν . For ease of notation, x0 = 0 and xu+1 = ∞. Suppose further that there are si
right-censored observations in the interval I i = (xi, xi+1), denoted by c11 < ci2 < · · · < cisi , so∑u

i= si = ν, such that cii∗ ∈ (xi, xi+1), where i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si. Assuming
there are no ties between the data observations, the issue of dealing with ties has been
previously discussed by Maturi [34].

On the basis of n given event times, the assumption A(n) offers a partially specified prob-
ability distribution for Xn+1 in terms of M -function values. To deal with right-censored
observations being present in the data, a generalization of A(n) was considered, that is the

assumption Ã(n) [15].

Definition 2.1. (Ã(n) assumption)
On the basis of data including u event times and ν = n − u right-censoring times, the
assumption Ã(n) partially specifies the probability distribution for the next observation Xn+1

assigning probability masses to two types of open intervals, one formed by consecutive event
times, (xi, xi+1), and the other is formed by a censoring time and infinity, (cii∗ ,∞), expressed
via the following M -function values:

M̃Xn+1(xi, xi+1) =
1

n+ 1
(2)

M̃Xn+1(c
i
i∗ ,∞) =

1

n+ 1
(3)

where i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si.

Note that the notation M̃ used in Equations (2) and (3) indicates that the values of the
M -function are based on the assumption of Ã(n). Based on Equation (2), the probability
masses for the intervals (xi, xi+1) formed by the event times u are equal to 1

n+1
. Moreover,

without any additional assumptions, a probability mass of 1
n+1

is assigned to the interval

(cii∗ ,∞), and as per Equation (3), the lifetime of this observation will occur at any point
past cii∗ . Finally, the probability mass assigned to the interval (cii∗ ,∞) is divided into masses
on sub-intervals, as described in [15].

Let Xci
i∗

denote the random quantity corresponding to the right-censoring at time cii∗ .

According to [15], the probability masses assigned to intervals (cii∗ ,∞) may have caused wide
bounds on probabilities, so it would be helpful if these probability masses can be split into
probability masses on sub-intervals. For this reason, Coolen and Yan [15, 35] proposed the
assumption Shifted-Ã(n) for Xci

i∗
, for which all we know is that the random quantity Xci

i∗
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exceeds cii∗ .

Definition 2.2. (Shifted-Ã(n) assumption)

The assumption shifted-Ã(n) partially specifies the probability distribution for Xci
i∗
, given

that Xci
i∗
> cii∗ , expressed via the following M -function values:

MX
ci
i∗
(xk, xk+1) =

1

ñci
i∗
+ 1

for k = i+ 1, . . . , u, (4)

MX
ci
i∗
(cii∗ , xk+1) =

1

ñci
i∗
+ 1

, (5)

MX
ci
i∗
(cil,∞) =

1

ñci
i∗
+ 1

for l = i∗ + 1, . . . , ν. (6)

where ñci
i∗
represents the number of observations in the risk set at time cii∗ , for c

i
i∗ ∈ (xi, xi+1),

i∗ = 1, 2, . . . , si.

This assumption is related to the fact that if the random quantities X1, X2, . . . , Xr are ex-
changeable, then the random quantities in any subset ofX1, X2, . . . , Xr are also exchangeable
[15, 35]. It also follows that as long as the random quantities X1, X2, . . . , Xr are exchange-
able, then all are also exchangeable when they exceed a given value c [15, 35]. In this sense,
the exchangeability assumption of all random quantities known to be in the risk set just
prior to ci is an appropriate assumption to handle random quantities that are right-censored
at time cii∗ , and in fact implies the assumption of non-informative censoring [15, 35].

Based on the assumption of non-informative censoring, the assumption shifted-Ã(n) allows
us to apply A(n) but with the starting point shifted from the value 0 to the observed right-
censoring time cii∗ [15, 35]. Clearly, the sum of the M -function values for Xci

i∗
over these

sub-intervals, as in Equations (4), (5) and (6), is equal to one [15, 35].
Taking into account the two previously proposed assumptions, Ã(n) for Xn+1 and ’shifted-

Ã(n) for Xci
i∗
, Coolen and Yan [15, 35] proposed the right-censoring Ã(n) assumption, denoted

by rc-Ã(n), which allows splitting the total M -function values for Xn+1 assigned to interval
(cii∗ ,∞) into separate M -function values for Xn+1 assigned to sub-intervals of (cii∗ ,∞).

Definition 2.3. (rc-Ã(n) assumption)
Let Pci

i∗
= MXn+1(c

i
i∗ ,∞) be the M -function value for Xn+1 on the interval (cii∗ ,∞), taking

into account the effects of all previous right-censorings and A(n). The assumption rc-Ã(n)
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splits the probability mass of MXn+1(c
i
i∗ ,∞) as

M
ci
i∗

Xn+1
(xk, xk+1) =

Pci
i∗

ñci
i∗
+ 1

for k = i+ 1, . . . , u, (7)

M
ci
i∗

Xn+1
(cii∗ , xk+1) =

Pci
i∗

ñci
i∗
+ 1

, (8)

M
ci
i∗

Xn+1
(cil,∞) =

Pci
i∗

ñci
i∗
+ 1

for l = i∗ + 1, . . . , ν. (9)

where ñci
i∗
represents the number of observations in the risk set at time cii∗ , for c

i
i∗ ∈ (xi, xi+1),

where i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si.

With the combined assumptions Ã(n) and rc-Ã(n) for r = 1, 2, . . . , i∗ − 1, i∗ = 1, 2, . . . , si,
and for any right-censoring time cii∗ , the Pci

i∗
can be computed by

Pci
i∗
= MXn+1(c

i
i∗ ,∞) =

1

n+ 1

∏
{r:r<i∗}

ñcr + 1

ñcr

. (10)

where ñcr is the number of individuals in the risk set just prior to time cr [15, 35]. Note that
throughout this paper, a product over an empty set is defined to be equal to 1.

Consequently, based on the assumptions Ã(n), given by Definition 2.1, and rc-Ã(n), given
by the Definition 2.3, the M -function values for Xn+1 are finally all assigned to intervals
(xi, xi+1) or (c

i
i∗ , xi+1) for i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si, via considering an assumption

called right-censoring A(n), which is also denoted as rc-A(n) [15, 35].

Definition 2.4. (rc-A(n) assumption)
The assumption rc-A(n) partially specifies the NPI-based probability distribution for the
observable and non-negative random quantity Xn+1, via the following M -function values
[32],

MXn+1(xi, xi+1) =
1

n+ 1

∏
{r:cr<xi}

ñcr + 1

ñcr

(11)

MXn+1(c
i
i∗ , xi+1) =

1

(n+ 1)ñci
i∗

∏
{r:cr<ci

i∗}

ñcr + 1

ñcr

(12)

where i = 0, 1, . . . , u, i∗ = 1, 2, . . . , si and ñcr represents the number of observations in the
risk set just before time cr.

Following Maturi [34] and based on the assumption rc-A(n), all M -function values that
are assigned for Xn+1 to be in one interval created by two consecutive observed event times,
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(xi, xi+1), lead to the following probability for the event Xn+1 ∈ (xi, xi+1),

PXn+1(xi, xi+1) = MXn+1(xi, xi+1) +

si∑
i∗=1

MXn+1(c
i
i∗ , xi+1)

=
1

n+ 1

∏
r:cr<xi+1

ñcr + 1

ñcr

(13)

Based on the rc-A(n) assumption, Maturi [34] derived simple closed-form expressions
for the NPI lower and upper survival functions, SXn+1

(t) = P (Xn+1 > t) and SXn+1(t) =

P (Xn+1 > t). Coolen and Yan [15] compared the NPI lower and upper survival functions
based on the rc-A(n) assumption with the Kaplan–Meier estimator. They showed that the
lower survival function for Xn+1, based on the assumption rc-A(n), becomes zero after the
largest observation, also the KM estimator will behave this way if that observation is an
event time. The upper survival function always remains positive, unless the range of possible
values for Xn+1 is restricted by choosing a finite upper bound [15, 35]. The KM estimate is
always equal to one for the first interval (0, x1), which is the case for the NPI upper survival
function. It is worth mentioning that the KM estimate only decreases at observed event
times. The NPI lower survival function decreases at every observation but the NPI upper
survival function decreases only at event times, like the KM. Coolen and Yan [15] claimed
that the rc-A(n)-based lower and upper survival functions for Xn+1 are more suitable for
graphical presentation compared to the KM-based lower and upper survival functions, as
they show the data in full, including right-censored observations, and can be interpreted in
a predictive manner [15, 35].

Coolen and Yan [15] presented NPI for right-censored data for a single future obser-
vation. There is a challenge to generalise the approach of NPI for right-censored data to
multiple future observations. NPI has been developed to multiple future observations for
uncensored real-valued data [36, 37] and for Bernoulli data [10], however, this is complicated
for right-censored data. In this paper, further theory is developed on NPI for two future
observations with attention to right-censored data. This will be achieved by applying the
rc-A(n) assumption [15], without further assumptions, for Xn+1 and, conditionally on Xn+1,
applying the rc-A(n+1) assumption for Xn+2. The focus is on NPI lower and upper probabil-
ities for the event that both future observations Xn+1 and Xn+2 are greater than time t. We
also illustrate how the proposed method can be applied to system reliability.

3. Reformulating NPI for the first future observation

The main objective of this paper is to develop NPI for two future observations, Xn+1 and
Xn+2, for data that involves right-censored observations. Particularly, we present NPI lower
and upper probabilities for the event Xn+1 > t and Xn+2 > t. According to the rc-A(n) [15]
assumption, the probability distribution for Xn+1 is partially specified by probability mass
assigned to open nested intervals viaM -function values, without further restrictions on where
it is in each interval. We consider Xn+1 and Xn+2 such that Xn+2 is conditioned on Xn+1

and the data set that contains n observations with right-censored observations. Without
making any further assumptions, we aim to apply the rc-A(n) [15] assumption for Xn+1, and
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then, conditionally on Xn+1, we will apply the rc-A(n+1) assumption for Xn+2. However,
determining where to allocate probability masses for specific events of interest to obtain
lower and upper probabilities for the NPI can be challenging. So, we must consider where
the probability mass is for Xn+1 within an interval (xi, xi+1), in order to apply rc-A(n+1) for
Xn+2. In this case, this interval (xi, xi+1), which contains right-censored observations, must
be specified into sub-intervals (cii∗ , xi+1), i

∗ = 1, 2, . . . , si, with respect to that the probability
mass for Xn+1 according to its M -function value assigned to the interval (xi, xi+1), will be
distributed over these sub-intervals (cii∗ , xi+1). To do this, we introduce probabilities denoted
by αi and αci

i∗ , i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si, to enable us to determine where to put the
probability mass per interval over its sub-intervals. In this way, we can minimise or maximise
the probability for any event of interest involving the one or two future observations with
regard to the αi and αci

i∗ values. Overall, this allows deriving the NPI lower and upper
probabilities for the event Xn+1 > t.

To this ends, we start with deriving the lower and upper probabilities for the event
Xn+1 > t, which has been done by Coolen and Yan [15], in a different way. For an interval
I i = (xi, xi+1), i = 0, 1, 2, . . . , u, there are si right-censored observations in this interval, and

αi = (αi
1, α

i
2, . . . , α

i
si+1),where 0 ≤ αi

i∗ ≤ 1 and

si+1∑
i∗=1

αi
i∗ = 1

If there are no censored observations in the interval (xi, xi+1), that is si = 0, then αi = αi
1 = 1.

And, for each censored observation cii∗ , i
∗ = 1, 2, . . . , si, in the interval (xi, xi+1),

αci
i∗ = (α

ci
i∗
1 , α

ci
i∗
2 , . . . , α

ci
i∗
si−i∗+1),where 0 ≤ α

ci
i∗
l ≤ 1 and

si−i∗+1∑
l=1

α
ci
i∗
l = 1.

If there is only one censored observation in the interval (xi, xi+1) then αci
i∗ = α

ci
i∗
1 = 1.

The notation αi and αci
i∗ are the proportion of (a specific) probability mass assigned

to the intervals (xi, xi+1) and (cil, xi+1), respectively, that are distributed over sub-intervals.
It is just a way to specify how the probability mass is divided over sub-intervals, so that
we can then find the NPI lower and upper probabilities for any event of interest involving
Xn+1. The α

i
i∗ are introduced to determine where to place the probability mass per interval

(xi, xi+1) over its sub-intervals, whereas the α
ci
i∗
l are introduced to determine where to place

the probability mass per interval (cil, xi+1) over its sub-intervals.
Consequently, we reformulate the original M -function masses shown in Definition 2.4,

having the notation αi introduced to them, to specify how much of each M -function value
is in sub-intervals.

Definition 3.1. (rc-A(n)- revisited)
Let I ii∗ = (tii∗ , t

i
i∗+1) represent an interval created by the n data observations, where

i = 0, 1, 2, . . . , u, and{
i∗ = 0 if ti0 = xi (failure time or time 0)
i∗ = 1, 2, . . . si, if tii∗ = cii∗ (right-censoring time)
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and for simplicity of notation let tisi+1 = ti+1
0 = xi+1. Thus, the assumption rc-A(n) partially

specifies the NPI-based probability distribution for the observable, non-negative and real-
valued random quantity Xn+1, via the following M -function values.

MXn+1(t
i
i∗ , t

i
i∗+1) = αi

i∗+1MXn+1(xi, xi+1) +
i∗∑
l=1

α
cil
i∗−l+1MXn+1(c

i
l, xi+1) (14)

In Equation (14), the M -function values MXn+1(xi, xi+1) and MXn+1(c
i
i∗ , xi+1) are derived

from Equations (11) and (12), respectively. The MXn+1(t
i
i∗ , t

i
i∗+1), stated in Equation (14),

could be also denoted by MXn+1∈Iii∗
. We do this for convenience in order to be used later in

Section 5.

With respect to that for all αi
i∗ ∈ [0, 1], α

ci
i∗
l ∈ [0, 1],

∑si+1
i∗=1 α

i
i∗ = 1 and

∑si−i∗+1
l=1 α

ci
i∗
l = 1,

the M -function values as specified by rc-A(n) in Definition 3.1 lead to the probability for
the event that Xn+1 ∈ (xi, xi+1), i = 0, 1, . . . , u, denoted by PXn+1(xi, xi+1), which can be
calculated by summing up all M -function values assigned to the interval I i = (xi, xi+1) along
with all M -function values assigned to them sub-intervals (cii∗ , xi+1) for Xn+1, so that

PXn+1(xi, xi+1) =

si∑
i∗=0

MXn+1(t
i
i∗ , t

i
i∗+1)

=

si∑
i∗=0

αi
i∗+1MXn+1(xi, xi+1) +

si∑
i∗=1

i∗∑
l=1

α
cil
i∗−l+1MXn+1(c

i
l, xi+1)

= MXn+1(xi, xi+1) +

si∑
l=1

si−l+1∑
i∗=1

α
cil
i∗MXn+1(c

i
l, xi+1)

= MXn+1(xi, xi+1) +

si∑
l=1

MXn+1(c
i
l, xi+1) (15)

for i = 0, 1, . . . , u. As expected, Equation (15) is identical to Equation (13). For convenience,
PXn+1(xi, xi+1), stated in Equation (15), will be also denoted by PXn+1∈Ii . The first term
after the second equality in Equation (15) is the sum of all M -function values assigned to
the interval (xi, xi+1), and as

∑si+1
i∗=1 α

i
i∗ = 1, this first term is equal to MXn+1(xi, xi+1).

The second term after the second equality in Equation (15) is the sum of all M -function

values assigned to the sub-intervals (cil, xi+1) of (xi, xi+1), and as
∑si−i∗+1

l=1 α
ci
i∗
l = 1, for

i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si, this second term is equal to
∑si

l=1MXn+1(c
i
l, xi+1). Let us

define the following equation

QXn+1(t
i
a, xi+1) =

si∑
i∗=a

αi
i∗+1MXn+1(xi, xi+1) +

si∑
i∗=a

i∗∑
l=1

α
cil
i∗−l+1MXn+1(c

i
l, xi+1) (16)

where for a = 0, Equation (15) and (16) are equivalent. This Equation (16) can be minimised
or maximised in order to derive the NPI lower and upper probabilities for the eventXn+1 > t.

9



For convenience, we may refer to the probability in Equation (16) as QXn+1∈Iia . This notation
will be useful in Section 5.

Now, let us consider the second term of Equation (16), and by rearranging the summa-
tions, we have

si∑
i∗=a

i∗∑
l=1

α
cil
i∗−l+1MXn+1(c

i
l, xi+1) =

a−1∑
l=1

si−l+1∑
i∗=a

α
cil
i∗MXn+1(c

i
l, xi+1) +

si∑
l=a

si−l+1∑
i∗=1

α
cil
i∗MXn+1(c

i
l, xi+1) (17)

The first term on the right-hand side of Equation (17) is related to the probability masses
to the right of tia, corresponding to all cil < tia. The second term in Equation (17) is related

to the probability masses corresponding to all cil ≥ tia, and as
∑si−l+1

i∗=1 α
cil
i∗ = 1, this second

term is equal to
∑si

l=aMXn+1(c
i
l, xi+1). So Equation (16) can be rewritten as

QXn+1(t
i
a, xi+1) =

si∑
i∗=a

αi
i∗+1MXn+1(xi, xi+1) +

a−1∑
l=1

si−l+1∑
i∗=a

α
cil
i∗MXn+1(c

i
l, xi+1)

+

si∑
l=a

MXn+1(c
i
l, xi+1) (18)

To determine the values of αi and αcil that will minimize QXn+1(t
i
a, xi+1) as shown in

Equation (18), we need to allocate all probability masses within the interval (xi, xi+1) to the
left of tia, that is

si∑
i∗=a

αi
i∗+1 = 0 ,

a−1∑
i∗=0

αi
i∗+1 = 1

and
a−1∑
i∗=1

α
cil
i∗ = 1 ,

si−l+1∑
i∗=a

α
cil
i∗ = 0

thus, the minimum value of QXn+1(t
i
a, xi+1) is

Qmin
Xn+1

(tia, xi+1) =

si∑
l=a

MXn+1(c
i
l, xi+1) (19)

Now, to determine the optimal values of αi and αcil that maximize QXn+1(t
i
a, xi+1), as

stated in Equation (18), we need to assign all probability masses in the interval (xi, xi+1) to
the right of tia, that is

si∑
i∗=a

αi
i∗+1 = 1 ,

a−1∑
i∗=0

αi
i∗+1 = 0

and
a−1∑
i∗=1

α
cil
i∗ = 0 ,

si−l+1∑
i∗=a

α
cil
i∗ = 1

10
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Figure 1: The original M -functions based on rc-A(n) assumption for X5, Example 3.1

thus, the maximum value of QXn+1(t
i
a, xi+1) is

Qmax
Xn+1

(tia, xi+1) = MXn+1(xi, xi+1) +
a−1∑
l=1

MXn+1(c
i
l, xi+1) +

si∑
l=a

MXn+1(c
i
l, xi+1)

= MXn+1(xi, xi+1) +

si∑
l=1

MXn+1(c
i
l, xi+1)

= PXn+1(xi, xi+1) (20)

For ease of notation, we will refer to the probabilities Qmin
Xn+1

(tia, xi+1) and Qmax
Xn+1

(tia, xi+1)

presented in Equations (19) and (20) as Qmin
Xn+1∈Iia

and Qmax
Xn+1∈Iia

, respectively.

Consequently, the NPI lower probability for the event Xn+1 > t, for t ∈ [tia, t
i
a+1) with

i = 0, 1, . . . , u and a = 0, 1, . . . , si, can be written as follows.

P (Xn+1 > t) = Qmin
Xn+1

(tia+1, xi+1) +
u∑

j=i+1

PXn+1(xj, xj+1)

=

si∑
l=a+1

MXn+1(c
i
l, xi+1) +

u∑
j=i+1

PXn+1(xj, xj+1) (21)

The corresponding NPI upper probability for the event Xn+1 > t, for t ∈ [xi, xi+1) with
i = 1, 2, . . . , u and a = 0, 1, . . . , si, can be written as follows.

P (Xn+1 > t) = Qmax
Xn+1

(tia, xi+1) +
u∑

j=i+1

PXn+1(xj, xj+1)

=
u∑

j=i

PXn+1(xj, xj+1) (22)

Example 3.1. Suppose that a data set consists of three failure observations at times x1, x2,
x3 and one right-censored observation at time c11, as shown in Figure 1.

First, let us briefly illustrate the assumption rc-A(n) [15]. Let Xc11
denote the random

quantity corresponding to the right-censoring at time c11, where c11 ∈ (x1, x2). Accord-
ing to the Ã(4) assumption, given by Definition 2.1, the M -function values for X5 are

11



1
5
α0
1

1
5
α1
1

1
5
α1
2

1
5
α2
1

1
5
α3
1

(1
5
× 1

3
)α

c11
1

1
5
× 1

3
1
5
× 1

3

0 x1 x2c11 x3 ∞

Figure 2: Reformulating the original M -functions for X5, Example 3.1.

M̃X5(0, x1) = M̃X5(x1, x2) = M̃X5(x2, x3) = M̃X5(x3,∞) = 1
5
, and a further probability

mass 1/5 is distributed over the interval (c11,∞), i.e. M̃X5(c
1
1,∞) = 1

5
, since it is known

without making any further assumptions that X5 will be at any point beyond c11.
As per the non-informative censoring assumption, the residual lifetime of the censored

observation is independent of the censoring process, therefore, the assumption shifted-Ã(2),
given by Definition 2.2, allows us to apply A(2) with the starting point shifted from 0 to the

censoring time c11. Based on the assumption shifted-Ã(2), the probability distribution for Xc11
,

given Xc11
> c11, is partially specified via M -function values for Xc11

assigned to sub-intervals

as MX
c11

(c11, x2) = MX
c11

(x2, x3) = MX
c11

(x3,∞) = 1
3
. Moreover, the assumption rc-Ã(4), given

by Definition 2.3, splits the probability mass of M̃X5(c
1
1,∞) = 1

5
to M -function values for X5

assigned to sub-intervals as M
c11
X5
(c11, x2) = M

c11
X5
(x2, x3) = M

c11
X5
(x3,∞) = 1

5
× 1

3
= 1

15
.

The M -function values for X5 based on the assumption Ã(4), given by Definition 2.1, are

then combined with the M -function values for X5 based on the assumption rc-Ã(4), given
by Definition 2.3, leading to the M -function values for X5 based on the rc-A(4) assumption,
as given by the Definition 2.4 [15, 35]. For example, the M -function value for the event
X5 ∈ (x2, x3) based on the assumption rc-A(4) is derived as MX5(x2, x3) = M̃X5(x2, x3) +

M
c11
X5
(x2, x3) =

1
5
+ 1

15
= 4

15
.

Thus, the original M -function values for the first future observation X5, based on the
assumption rc-A(n) [15], according to the Definition 2.4, are (see also Figure 1),

MX5(0, x1) =
1

5
=

3

15

MX5(x1, x2) =
1

5
=

3

15

MX5(c
1
1, x2) =

1

5
× 1

3
=

1

15

MX5(x2, x3) =
1

5
+

1

15
=

4

15

MX5(x3,∞) =
1

5
+

1

15
=

4

15
.

With the new technique presented in Section 3 on the basis of Definition 3.1, we have
the opportunity to specify the original M -function values for X5, shown in Figure 1, to
probability mass values assigned to their sub-intervals, as shown in Figure 2.

12



From Figure 2, as the data set presented in this example does not include any censored
observations in the intervals I0 = (0, x1), I

2 = (x2, x3) and I3 = (x3,∞), we have α0
1 = α2

1 =
α3
1 = 1. The interval I1 = (x1, x2) contains a single censored observation c11, so we split this

interval into two sub-intervals; I10 = (x1, c
1
1) and I11 = (c11, x2) and we introduce α1

1 and α1
2

for these intervals, respectively, such that the sum of them is one. Using these α1
1 and α1

2

values, we can determine the distribution of a probability per interval over its sub-intervals
in order to minimise or maximise the probability for the event X5 > t.

As for c11 ∈ (x1, x2), it is necessary to determine where to put the probability mass for X5,
that is, MX5(x1, x2) =

1
5
, in this interval. Since there is only one right-censored observation

in (x1, x2), the probability mass MX5(x1, x2) =
1
5
, given by Equation (7), is now assigned into

two sub-intervals, with regard to α1
1 and α1

2 introduced respectively to the two sub-intervals,
as

MX5(x1, c
1
1) =α1

1MX5(x1, x2) =
1

5
α1
1 (23)

MX5(c
1
1, x2) =α1

2MX5(x1, x2) =
1

5
α1
2 (24)

Taking into consideration the probability mass M
c11
X5
(c11, x2) = 1

15
, given by Definition

2.3, we consider the following probability mass, using Definition 3.1, to be assigned to the
sub-interval (c11, x2) for c

1
1 ∈ (x1, x2)

MX5(c
1
1, x2) =α

c11
1 M

c11
X5
(c11, x2) =

1

15
α
c11
1 , where α

c11
1 = 1 (25)

Therefore, the original M -function values for X5 [15], given by the Definition 2.4 and
shown in Figure 1, are now re-distributed based on the Definition 3.1, as follow (see Figure
2),

MX5(0, x1) =
1

5

MX5(x1, c
1
1) =

1

5
α1
1

MX5(c
1
1, x2) =

1

5
α1
2 +

1

15
α
c11
1

MX5(x2, x3) =
1

5
+

1

15

MX5(x3,∞) =
1

5
+

1

15

Then, for the interval (x1, x2) which contains the only right-censored observation c11, we
consider QX5(c

1
1, x2) as representing a probability that can either be maximised or minimised

depending on how much the probability mass value is distributed over the sub-intervals of
the interval (x1, x2). Using Equation (16), the function QX5(c

1
1, x2) is defined by combining

Equations (24) and (25), as

QX5(c
1
1, x2) = α1

2MX5(x1, x2) + α
c11
1 M

c11
X5
(c11, x2)

=
1

5
α1
2 +

1

15
α
c11
1

13



t ∈ (.) P (X5 > t) P (X5 > t)

(0, x1)
4
5

1

(x1, c
1
1)

3
5

4
5

(c11, x2)
8
15

4
5

(x2, x3)
4
15

8
15

(x3,∞) 0 4
15

Table 1: P (X5 > t) and P (X5 > t) according to Example 3.1

but α
c11
1 = 1 since there is only one right-censored observation in the interval (x1, x2), so

QX5(c
1
1, x2) =

1
5
α1
2 +

1
15
.

The function QX5(c
1
1, x2) can be minimised and maximised in order to obtain the NPI

lower and upper probabilities for the event X5 ∈ (c11, x2), using Equations (19) and (20). The
minimum value of the function QX5(c

1
1, x2) is obtained by assigning all probability masses

within the interval (x1, x2) to the left of c11, that is α
1
2 = 0, so α1

1 = 1 and Qmin
X5

(c11, x2) =
1
15
.

The maximum value of the function QX5(c
1
1, x2) is obtained by assigning all probability

masses within the interval (x1, x2) to the right of c11, that is α1
2 = 1, so α1

1 = 0 and
Qmax

X5
(c11, x2) =

1
5
+ 1

15
= 4

15
.

The NPI lower and upper probabilities for the event X5 > t, based on the Definition 3.1,
are derived using Equations (21) and (22) respectively. The lower probability P (X5 > t)
is obtained by considering only the probability mass that necessarily lies in (t,∞). The
corresponding upper probability P (X5 > t) is obtained by considering the probability mass
that could possibly lie within (t,∞).

Taking the case t ∈ (x1, c
1
1) as an example, the lower probability for the event X5 > t

is obtained by considering only probability masses that necessarily lie within (t,∞), using
Equation (21), i.e., PX5

(x1, c
1
1) = Qmin

X5
(c11, x2) +PX5(x2, x3) +PX5(x3,∞) = 1/15 + 4/15 +

4/15 = 3/5. For the case t ∈ (c11, x2), the upper probability for the event X5 > t is
obtained by summing up all probability masses that can be in (t,∞), using Equation (22),
i.e., PX5(c

1
1, x2) = Qmax

X5
(c11, x2)+PX5(x2, x3)+PX5(x3,∞) = 4/15 + 4/15 + 4/15 = 4/5. For

t in an interval which does not contain right-censored observations, the NPI lower and upper
probabilities for the event X5 > t can be derived directly from the closed-form expressions
derived by Maturi [34]. Consequently, the NPI lower and upper probabilities for the event
X5 > t, based on the data in this example, are given in Table 1.

Note that we can straightforwardly apply rc-A(4) for X5, using Definition 2.4, where there
are no assumptions on where the probability mass is within each interval. But, as we aim
to apply rc-A(5) for X6, based on rc-A(4) for X5, later on, we had to consider where the
probability mass is for X5 in this example using the new techniques presented in Section 3.

Next we need to consider the second future observation, Xn+2, based on the first future
observation, Xn+1, as well as the data set that includes n observations with right-censored
observations. Section 4 derives the NPI lower and upper conditional probabilities for Xn+2 >
t given Xn+1 > t, which will enable us to derive the NPI lower and upper probabilities for
the event that both future observations are greater than t, in Section 5.
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4. Lower and upper probabilities for Xn+2 > t given Xn+1 > t

In this section, we will provide the NPI conditional lower and upper probabilities for
the event Xn+2 > t given that Xn+1 > t. To do this, we will use the rc-A(n+1) assumption
for Xn+2, which applied conditionally on Xn+1. Additionally, we will apply the rc-A(n)

assumption to Xn+1, which was previously explained in Section 3.
Based on Definition 3.1, there are n+1 cases of which Xn+1 falls in the intervals created

by the data set that contains n observations including right-censored observations, denoted
as I ii∗ = (tii∗ , t

i
i∗+1), where i = 0, 1, . . . , u, i∗ = 1, 2, . . . , si. For Xn+1 ∈ (tii∗ , t

i
i∗+1), when

considering Xn+2, there will be n + 1 observations of which we have u + 1 event times,
x1 < x2 < · · · < xu < xu+1, and ν = (n + 1)− (u + 1) = n− u right-censored observations,
c1 < c2 < . . . < cν . Note that u+1 refer to the failure observations in the data set including
Xn+1. So, there are n+2 intervals created by the data set that contains n+1 observations,
included Xn+1, and the right-censored observations, denoted by Ijj∗ = (tjj∗ , t

j
j∗+1), where

j = 0, 1, . . . , u + 1, j∗ = 1, 2, . . . , sj. Let x0 = 0 and xu+2 = ∞ for ease of notation. We
assume, in order to simplify our presentation, that no ties exist in the data set, so no two
observations (events or right-censoring) are at the same time value. In case there are ties,
we refer to the discussion in [34].

To derive the NPI conditional lower and upper probabilities for the event Xn+2 > t given
Xn+1 > t, we will introduce the rc-A(n+1) assumption for Xn+2 given Xn+1 ∈ I ii∗ = (tii∗ , t

i
i∗+1).

This follows the approach outlined in Section 3 for the rc-A(n) assumption for Xn+1, where
we consider the probability mass of Xn+1 within an interval (xi, xi+1). Here, in case of the
event Xn+2 > t given Xn+1 > t, we use the same notation that used for the event Xn+1 > t

in Section 3, with replacing the notation αi and αci
i∗ by βi and βci

i∗ .
Given that Xn+1 ∈ I ii∗ = (tii∗ , t

i
i∗+1) and for an interval Ij = (xj, xj+1), j = 0, 1, 2, . . . , u+

1, there are sj right-censored observations in this interval, and

βj = (βj
1, β

j
2, . . . , β

j
sj+1),where 0 ≤ βj

j∗ ≤ 1 and

sj+1∑
j∗=1

βj
j∗ = 1

If there are no censored observations in the interval (xj, xj+1), that is sj = 0, then βj = βj
1 =

1. Also, for each censored observation cjj∗ , j
∗ = 1, 2, . . . , sj, in the interval (xj, xj+1),

βcj
j∗ = (β

cj
j∗

1 , β
cj
j∗

2 , . . . , β
cj
j∗

sj−j∗+1),where 0 ≤ β
cj
j∗

l ≤ 1 and

sj−j∗+1∑
l=1

β
cj
j∗

l = 1.

if there is only one censored observation in the interval (xj, xj+1) then βcj
j∗ = β

cj
j∗

1 = 1.

The notation βj and βcj
j∗ are the proportion of a (specific) conditional probability mass as-

signed to the interval (xj, xj+1) that is distributed over sub-intervals, givenXn+1 ∈ (xj, xj+1).
It is just a way to write how the probability mass is divided over sub-intervals, so that we
can then find the NPI conditional lower and upper probabilities for any event of interest
involving Xn+2 given Xn+1.

Given that Xn+1 ∈ I ii∗ = (tii∗ , t
i
i∗+1), the rc-A(n+1) assumption partially specifies the prob-

ability distribution for the second future observation Xn+2 by the conditional M -functions
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denoted as MXn+2|Xn+1 . We present the conditional M -functions for Xn+2 to be in the inter-

val Ijj∗ = (tjj∗ , t
j
j∗+1), j = 0, 1, . . . , u + 1, j∗ = 1, 2, . . . , sj, given that Xn+1 is in the interval

I ii∗ = (tii∗ , t
i
i∗+1), by the following definition.

Definition 4.1. (Conditional M -functions)
The conditional M -function partially specifies the probability distribution for the second
future observation Xn+2 given Xn+1 ∈ I ii∗ , i.e., xn+1 ∈ (tii∗ , t

i
i∗+1), for i = 0, 1, . . . , u, i∗ =

1, 2, . . . , si, as follows

MXn+2|Xn+1∈Iii∗
(tjj∗ , t

j
j∗+1) = βj

j∗+1MXn+2|Xn+1∈Iii∗
(xj, xj+1)

+

j∗∑
k=1

β
cjk
j∗−k+1MXn+2|Xn+1∈Iii∗

(cjk, xj+1) (26)

where {
j∗ = 0 if tj0 = xj (failure time or time 0)

j∗ = 1, 2, . . . sj if tjj∗ = cjj∗ (right-censoring time)

for j = 0, 1, . . . , u + 1 and j∗ = 1, 2, . . . , sj, and for simplicity of notation let tjsj+1 = tj+1
0 =

xj+1. For simplicity of notation, we can refer toMXn+2|Xn+1∈Iii∗
(tjj∗ , t

j
j∗+1) asMXn+2∈Ijj∗ |Xn+1∈Iii∗

.

Similar to Definition 2.4, one can obtain the expression for the MXn+2|Xn+1∈Iii∗
(xj, xj+1)

and MXn+2|Xn+1∈Iii∗
(cjj∗ , xj+1), given in Equation (26), as

MXn+2|Xn+1∈Iii∗
(xj, xj+1) =

1

n+ 2

∏
{r:cr<xj}

ñcr + 1

ñcr

(27)

MXn+2|Xn+1∈Iii∗
(cjj∗ , xj+1) =

1

(n+ 2)ñcj
j∗

∏
{r:cr<cj

j∗}

ñcr + 1

ñcr

(28)

where ñcr represents the number of observations in the risk set (still functioning or alive and
uncensored) just before time cr. The product terms in Equations (27) and (28) are assumed
to be equal to one if the product is taken over an empty set [15].

By utilising the M -functions for Xn+1 according to Definition 3.1, we arrive at the ex-
pression for PXn+1(xi, xi+1) as shown in Equation (15). Similarly, if we use the conditional
M -functions for Xn+2|Xn+1 based on Definition 4.1, we can obtain PXn+2|Xn+1∈Iii∗(xj, xj+1) as

given in Equation (29). With βj
j∗ ∈ [0, 1], β

cj
j∗

l ∈ [0, 1],
∑sj+1

j∗=1 β
j
j∗ = 1 and

∑sj−j∗+1
l=1 β

cj
j∗

l = 1,
the conditionalM -function values as specified by rc-A(n+1) in Definition 4.1 lead to the condi-

tional probability for the event that Xn+2 ∈ Ijj∗ , where j = 0, 1, . . . , u+ 1, given Xn+1 ∈ I ii∗ ,
where i = 0, 1, . . . , u, denoted by PXn+2|Xn+1∈Iii∗

(xj, xj+1). The PXn+2|Xn+1∈Iii∗
(xj, xj+1) is

calculated by summing up all conditional M -function values assigned to the interval Ij =
(xj, xj+1) given Xn+1 ∈ I ii∗ , along with all conditional M -function values assigned to the
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sub-intervals (cjj∗ , xj+1) for Xn+1, given Xn+1 ∈ I ii∗ so that

PXn+2|Xn+1∈Iii∗(xj, xj+1) =

sj∑
j∗=0

MXn+2|Xn+1∈Iii∗
(tjj∗ , t

j
j∗+1)

=

sj∑
j∗=0

βj
j∗+1MXn+2|Xn+1∈Iii∗

(xj, xj+1) +

sj∑
j∗=1

j∗∑
l=1

β
cjl
j∗−l+1MXn+2|Xn+1∈Iii∗

(cjl , xj+1)

= MXn+2|Xn+1∈Iii∗
(xj, xj+1) +

sj∑
l=1

sj−l+1∑
j∗=1

β
cjl
j∗MXn+2|Xn+1∈Iii∗

(cjl , xj+1)

= MXn+2|Xn+1∈Iii∗
(xj, xj+1) +

sj∑
l=1

MXn+2|Xn+1∈Iii∗
(cjl , xj+1) (29)

for i = 0, 1, . . . , u and j = 0, 1, . . . , u+1. To simplify notation, we will refer to PXn+2|Xn+1∈Ii(xj, xj+1),
in Equation (29), as PXn+2∈Ii|Xn+1∈Ii .

The first term after the second equality in Equation (29) is the sum of all the conditional

M -function values assigned to the interval (xj, xj+1), givenXn+1 ∈ I ii∗ , and as
∑sj+1

j∗=1 β
j
j∗ = 1,

this first term is equal toMXn+2|Xn+1∈Iii∗(xj, xj+1). The second term after the third equality in
Equation (29) is the sum of all the conditionalM -function values assigned to the sub-intervals

(cjl , xj+1) of (xj, xj+1), given Xn+1 ∈ I ii∗ , and as
∑sj−j∗+1

l=1 β
cj
j∗

l = 1, for j = 0, 1, . . . , u + 1
and j∗ = 1, 2, . . . , sj, this second term is equal to

∑sj
l=1MXn+2|Xn+1∈Iii∗

(cjl , xj+1). And let us
define the following

QXn+2|Xn+1∈Iii∗
(tja, xj+1) =

sj∑
j∗=a

βj
j∗+1MXn+2|Xn+1∈Iii∗

(xj, xj+1)

+

sj∑
j∗=a

j∗∑
l=1

β
cjl
j∗−l+1MXn+2|Xn+1∈Iii∗

(cjl , xj+1) (30)

where for a = 0, Equation (29) and (30) are equivalent.
The QXn+2|Xn+1∈Iii∗

(tja, xj+1), given by Equation (30), can be minimised or maximised in
order to derive the NPI conditional lower and upper probabilities for the event Xn+2 > t
given Xn+1 > t. We sometimes denote the conditional probability in Equation (30) by
QXn+2∈Ija|Xn+1∈Iii∗

for convenience. Now, let us consider the second term of Equation (30),

and by rearranging the summations, we have

sj∑
j∗=a

j∗∑
l=1

β
cjl
j∗−l+1MXn+2|Xn+1∈Iii∗

(cjl , xj+1) =
a−1∑
l=1

sj−l+1∑
j∗=a

β
cjl
j∗MXn+2|Xn+1∈Iii∗

(cjl , xj+1)

+

sj∑
l=a

sj−j+1∑
j∗=1

β
cjl
j∗MXn+2|Xn+1∈Iii∗

(cjl , xj+1) (31)

The first term on the right-hand side of Equation (31) is related to the conditional probability
masses to the right of tja, corresponding to all cjl < tja. The second term in Equation
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(31) is related to the conditional probability masses corresponding to all cjl ≥ tja, and as∑sj−j+1
j∗=1 β

cjl
j∗ = 1, this second term is equal to

∑sj
l=a MXn+2|Xn+1∈I∗ii∗(c

j
l , xj+1). So Equation

(30) can be rewritten as

QXn+2|Xn+1∈Iii∗
(tja, xj+1) =

sj∑
j∗=a

βj
j∗+1MXn+2|Xn+1∈Iii∗

(xj, xj+1)

+
a−1∑
l=1

sj−l+1∑
j∗=a

β
cjl
j∗MXn+2|Xn+1∈Iii∗

(cjl , xj+1)

+

sj∑
l=a

MXn+2|Xn+1∈Iii∗
(cjl , xj+1) (32)

To determine the optimal values of βj and βcjl that minimize QXn+2|Xn+1∈Iii∗
(tja, xj+1), as

presented in Equation (32), we need to allocate all conditional probability masses in (xj, xj+1)
to the left of tja, that is

sj∑
j∗=a

βj
j∗+1 = 0 ,

a−1∑
j∗=0

βj
j∗+1 = 1

and
a−1∑
j∗=1

β
cjl
j∗ = 1 ,

sj−l+1∑
j∗=a

β
cjl
j∗ = 0

thus, the minimum value of QXn+2|Xn+1∈Iii∗
(tja, xj+1) is

Qmin
Xn+2|Xn+1∈Iii∗

(tja, xj+1) =

sj∑
l=a

MXn+2|Xn+1∈Ii(c
j
l , xj+1) (33)

Similarly, to find the optimal values of βj and βcjl that maximise QXn+2|Xn+1∈Iii∗
(tja, xj+1), as

stated in Equation (32), we need to assign all conditional probability masses in the interval
(xj, xj+1) to the right of tja, that is

sj∑
j∗=a

βj
j∗+1 = 1 ,

a−1∑
j∗=0

βj
j∗+1 = 0

and
a−1∑
j∗=1

β
cjl
j∗ = 0 ,

sj−l+1∑
j∗=a

β
cjl
j∗ = 1

18



thus, the maximum value of QXn+2|Xn+1∈Iii∗
(tja, xj+1) is

Qmax
Xn+2|Xn+1∈Iii∗

(tja, xj+1) = MXn+2|Xn+1∈Iii∗
(xj, xj+1) +

a−1∑
l=1

MXn+2|Xn+1∈Iii∗
(cjl , xj+1)

+

sj∑
l=a

MXn+2|Xn+1∈Iii∗
(cjl , xj+1)

= MXn+2|Xn+1∈Iii∗
(xj, xj+1) +

si∑
l=1

MXn+2|Xn+1∈Iii∗
(cjl , xj+1)

= PXn+2|Xn+1∈Iii∗
(xj, xj+1) (34)

For convenience, the probabilities in Equations (33) and (34) can also be represented as
Qmin

Xn+2∈Ija|Xn+1∈Iii∗
and Qmax

Xn+2∈Ija|Xn+1∈Iii∗
, respectively.

Consequently, the NPI lower probability for the event Xn+2 > t given Xn+1 > t, for
t ∈ [tja, t

j
a+1) with j = 0, 1, . . . , u+ 1 and a = 0, 1, . . . , sj, is given by t

P (Xn+2 > t|Xn+1 > t) = Qmin
Xn+2|Xn+1∈Iii∗

(tja+1, xj+1) +
u+1∑

z=j+1

PXn+2|Xn+1∈Iii∗
(xz, xz+1)

=

si∑
l=a+1

MXn+2|Xn+1∈Iii∗
(cjl , xj+1) +

u+1∑
z=j+1

PXn+2|Xn+1∈Iii∗
(xz, xz+1) (35)

The corresponding NPI upper probability for the event Xn+2 > t given Xn+1 > t, for
t ∈ [xj, xj+1) with j = 1, 2, . . . , u+ 1 and a = 0, 1, . . . , sj, is given by

P (Xn+2 > t|Xn+1 > t) = Qmax
Xn+2|Xn+1∈Iii∗

(tja, xj+1) +
u+1∑

z=j+1

PXn+2|Xn+1∈Iii∗
(xz, xz+1)

=
u+1∑
z=j

PXn+2|Xn+1∈Iii∗
(xz, xz+1) (36)

One should note that the α approach, which involves minimizing and maximizing Equa-
tion (18), is only used to derive NPI lower and upper probabilities for the event Xn+1 > t.
On the other hand, the β approach, which involves minimizing and maximizing Equation
(32), is only used to derive NPI conditional lower and upper probabilities for the event
Xn+2 > t given that Xn+1 > t. However, both approaches must be used together in order to
derive NPI lower and upper probabilities for the event Xn+1 > t and Xn+2 > t, which will
be explained in Section 5.

Example 4.1. This example aims to demonstrate the assumption of rc-A(n+1) for Xn+2,
which is based on the rc-A(n) assumption for Xn+1 [15] as presented in Section 4. Specifically,
it illustrates how to calculate the NPI conditional lower and upper probabilities for the event
Xn+2 > t given Xn+1 > t, using the data set from Example 3.1. The data set consists of four
observations, including one right-censored observation, as shown in Figure 1.
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In Example 3.1, the probability distribution for X5 was partially specified by five M -
function values associated with five intervals generated by the 4 observations, using Defini-
tion 3.1 (see Figure 2). In that example, we applied rc-A(4) for X5 considering where the
probability mass is for X5. Based on this. we apply rc-A(5) for X6 in this example.

Given that X5 falls in those five intervals created by the n = 4 data observations, i.e.,
I0 = (0, x1), I

1
1 = (x1, c

1
1), I

1
2 = (c11, x2), I

2 = (x2, x3) and I3 = (x3,∞), respectively, so
there are five cases of which X5 falls into these intervals. Then, we consider X6 depending
on X5 being in a specific interval. This enables the probability distribution for X6 to be
partially specified by conditional M -function values assigned to six intervals formed by the
5 observations including X5, using Definition 4.1 separately for each case.

As a result of applying Definition 4.1 with the assumption rc-A(5) given by Equations
(27) and (28), these conditional M -function values for X6 given X5 ∈ {I0, I11 , I12 , I2, I3}, can
be obtained as follows (see Figure 3).

Case 1: Given X5 ∈ I0 = (0, x1), the conditional M -function values for X6|X5 ∈ I0, using
Definition 4.1 with the assumption rc-A(5) given by Equations (27) and (28), are shown in
the first box of Figure 3.

Since there is no censored observation in intervals (0, x5), (x5, x1), (x2, x3) and (x3,∞),
respectively, the corresponding values β0

1 , β
1
1 , β

3
1 and β4

1 introduced to these intervals are
equal to one, i.e. β0

1 = β1
1 = β3

1 = β4
1 = 1, as discussed in Section 4. For c21 ∈ (x1, x2) given

X5 ∈ (0, x1), the conditional M -function value 1
6
that is assigned to interval (x1, x2) will

be split up, based on Definition 4.1, and assigned to two sub-intervals with the M -function
value 1

6
β2
1 assigned to the sub-interval (x1, c

2
1) and the M -function value 1

6
β2
2 assigned to the

sub-interval (c21, x2), where both β2
1 and β2

2 take values between 0 and 1, and β2
1 + β2

2 = 1.

Also, based on Definition 4.1 and Equation (28), the M -function value 1
18
β
c21
1 is assigned to

the sub-interval (c21, x2), where β
c21
1 = 1. Thus, the conditional M -function values for the

event X6|X5 ∈ I0 are

MX6|X5∈I0(0, x5) =
1

6
(37)

MX6|X5∈I0(x5, x1) =
1

6
(38)

MX6|X5∈I0(x1, c
2
1) =

1

6
β2
1 (39)

MX6|X5∈I0(c21, x2) =
1

6
β2
2 +

1

18
β
c21
1

MX6|X5∈I0(x2, x3) =
1

6
+

1

18

MX6|X5∈I0(x3,∞) =
1

6
+

1

18

where the total conditional probability mass for X6 ∈ (0, x1) given X5 ∈ (0, x1), given in
Equations (37) and (38), is 1/6+1/6=2/6, see Case 1 in the first box of Figure 3.

Based on these conditional M -function values, we can derive the conditional probability
for the event X6 ∈ (x1, x2) given X5 ∈ (0, x1), by summing the probability masses assigned

to the sub-intervals (x1, c
2
1) and (c21, x2), so PX6|X5∈I0(x1, x2) =

1
6
β2
1 +

1
6
β2
2 +

1
18
β
c21
1 = 1

6
(β2

1 +

β2
2) +

1
18
β
c21
1 , and as discussed in Section 4, β2

1 + β2
2 = 1 and β

c21
1 = 1, so PX6|X5∈I0(x1, x2) =
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Case 1

1
6
β0
1

1
6
β1
1

1
6
β2
1

1
6
β2
2

1
6
β3
1

1
6
β4
1

(1
6
× 1

3
)β

c21
1

1
6
× 1

3
1
6
× 1

3

0 x1 x2c21 x3 ∞x5

Case 2

1
6
β0
1

1
6
β1
1

1
6
β2
1

1
6
β2
2

1
6
β3
1

1
6
β4
1

(1
6
× 1

3
)β

c21
1

1
6
× 1

3
1
6
× 1

3

0 x1 x2c21 x3
∞x5

Case 3

1
6
β0
1

1
6
β2
1

1
6
β1
1

1
6
β1
2

1
6
β3
1

1
6
β4
1

(1
6
× 1

4
)β

c11
1

1
6
× 1

4
1
6
× 1

4
1
6
× 1

4

0 x1 x2c11 x3 ∞x5

Case 4

1
6
β0
1

1
6
β1
1

1
6
β1
2

1
6
β2
1

1
6
β3
1

1
6
β4
1

(1
6
× 1

4
)β

c11
1

1
6
× 1

4
1
6
× 1

4
1
6
× 1

4

0 x1 x2c11 x3 ∞x5

Case 5

1
6
β0
1

1
6
β1
1

1
6
β1
2

1
6
β2
1

1
6
β3
1

1
6
β4
1

(1
6
× 1

4
)β

c11
1

1
6
× 1

4
1
6
× 1

4
1
6
× 1

4

0 x1 x2c11 x3 ∞x5

Figure 3: The conditional probabilities for X6|X5, Example 5.1
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1
6
+ 1

18
= 4

18
. Moreover, the conditional probabilities for X6 to be in intervals (x2, x3) or

(x3,∞), given X5 ∈ (0, x1), are PX6|X5∈I0(x2, x3) = PX6|X5∈I0(x3,∞) = 1
6
+ 1

18
= 4

18
.

Then from Case 1 in which X5 ∈ (0, x1), we now consider the event X6 > t given
X5 > t, where t ∈ (0, x1) (see the first box of Figure 3). By assigning all conditional
probability masses that must be within (t,∞), Equation (35) is used to determine the NPI
lower conditional probability for the event X6 > t given X5 > t, where t ∈ (0, x1). Thus

P (X6 > t|X5 > t) = Qmin
X6|X5∈I0(0, x1) +

4∑
z=2

PX6|X5∈I0(xz, xz+1)

= MX6|X5∈I0(x5, x1) + PX6|X5∈I0(x1, x2) + PX6|X5∈I0(x2, x3)

+ PX6|X5∈I0(x3,∞)

=
1

6
+

4

18
+

4

18
+

4

18
=

5

6

where the value of Qmin
X6|X5∈I0(0, x1) is obtained by using Equation (33).

The NPI upper conditional probability for the event X6 > t given X5 > t, where t ∈
(0, x1), is derived by assigning all conditional probability masses that could be within (t,∞)
using Equation (36). Thus

P (X6 > t|X5 > t) = Qmax
X6|X5∈I0(0, x1) +

4∑
z=2

PX6|X5∈I0(xj, xj+1)

= PX6|X5∈I0(0, x1) + PX6|X5∈I0(x1, x2) + PX6|X5∈I0(x2, x3)

+ PX6|X5∈I0(x3,∞)

=
2

6
+

4

18
+

4

18
+

4

18
= 1

where the value of Qmax
X6|X5∈I0(0, x1) is obtained by using Equation (34).

Case 2: Given X5 ∈ I11 = (x1, c
1
1), the conditional M -function values for X6|X5 ∈ I10 , using

Definition 4.1 with the assumption rc-A(5) given by Equations (27) and (28), are shown
in the second box of Figure 3. Due to the fact that no censoring is involved in intervals
(0, x1), (x1, x5), (x2, x3) and (x3,∞), respectively, the values β0

1 , β
1
1 , β

3
1 and β4

1 corresponding
to these intervals are equal to 1, as stated in Section 4.

By using Equation (27), based on the assumption rc-A(5), the conditional M -function
value for X6 ∈ (x1, x5)|X5 ∈ I11 is 1

6
. For c21 ∈ (x5, x2) given X5 ∈ I11 , the conditional

M -function value 1
6
that is assigned to interval (x5, x2) will be split up and assigned to two

sub-intervals with the M -function value 1
6
β2
1 assigned to the sub-interval (x5, c

2
1) as well as

the M -function value 1
6
β2
2 assigned to the sub-interval (c21, x2), where both β2

1 and β2
2 take

values between 0 and 1, and β2
1 + β2

2 = 1. Also, based on Definition 4.1 and Equation (28),

the M -function value 1
18
β
c21
1 is assigned to the sub-interval (c21, x2), where β

c21
1 = 1.
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Thus, the conditional M -function values for the event X6|X5 ∈ I11 are

MX6|X5∈I1
1
(0, x1) =

1

6

MX6|X5∈I1
1
(x1, x5) =

1

6
(40)

MX6|X5∈I1
1
(x5, c

2
1) =

1

6
β2
1 (41)

MX6|X5∈I1
1
(c21, x2) =

1

6
β2
2 +

1

18
β
c21
1

MX6|X5∈I1
1
(x2, x3) =

1

6
+

1

18

MX6|X5∈I1
1
(x3,∞) =

1

6
+

1

18

where the total conditional probability mass for X6 ∈ (x1, c
1
1) given X5 ∈ (x1, c

1
1), given

in Equations (40) and (41), is 1/6 (1+β2
1), where β2

1 ∈ [0, 1], see Case 2 in the second box
of Figure 3.

From Case 2, where X5 ∈ I11 = (x1, c
1
1), we use Equation (35) to derive the NPI condi-

tional lower probability for the event X6 > t given X5 > t, where t ∈ (x1, c
1
1), as

P (X6 > t|X5 > t) = Qmin
X6|X5∈I11

(x1, x2) +
4∑

z=3

PX6|X5∈I11 (xz, xz+1)

= MX6|X5∈I11 (x5, x2) + PX6|X5∈I11 (x2, x3) + PX6|X5∈I11 (x3,∞)

=
4

18
+

4

18
+

4

18
=

2

3

where the value ofQmin
X6|X5∈I11

(x1, x2) is obtained by using Equation (33), i.e., Qmin
X6|X5∈I11

(x1, x2) =

1
6
β2
1 +

1
6
β2
2 +

1
18
β
c21
1 = 1

6
(β2

1 +β2
2)+

1
18
β
c21
1 . And for β2

1 +β2
2 = 1 and β

c21
1 = 1, Qmin

X6|X5∈I11
(x1, x2) =

1
6
+ 1

18
= 4

18
.

The NPI upper conditional probability for the event X6 > t given X5 > t, where t ∈
(x1, c

1
1), is derived by using Equation (36) as follows,

P (X6 > t|X5 > t) = Qmax
X6|X5∈I11

(x1, x2) +
4∑

z=3

PX6|X5∈I11 (xz, xz+1)

= PX6|X5∈I11 (x1, x2) + PX6|X5∈I11 (x2, x3) + PX6|X5∈I11 (x3,∞)

=
7

18
+

4

18
+

4

18
=

5

6

where the value ofQmax
X6|X5∈I11

(x1, x2) is obtained by using Equation (34), i.e., Qmax
X6|X5∈I11

(x1, x2) =

PX6|X5∈I11 (x1, x5) + PX6|X5∈I11 (x5, x2) =
1
6
+ 4

18
= 7

18
.

Case 3: Given X5 ∈ I12 = (c11, x2), the conditional M -function values for X6|X5 ∈ I12 , using
Definition 4.1 with the assumption rc-A(5) given by Equations (27) and (28), are shown in
the third box of Figure 3.

The β0
1 , β

2
1 , β

3
1 and β4

1 values corresponding to the intervals (0, x1), (x5, x2), (x2, x3) and
(x3,∞), respectively, are equal to 1, since there no censoring is involved in these intervals.
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For c11 ∈ (x1, x5) given X5 ∈ I12 , the conditional M -function value 1
6
that is assigned to

interval (x1, x5) will be split up and assigned to two sub-intervals with the M -function value
1
6
β1
1 assigned to the sub-interval (x1, c

1
1) as well as the M -function value 1

6
β1
2 assigned to the

sub-interval (c11, x5), where both β1
1 and β1

2 take values between 0 and 1, and β1
1 + β1

2 = 1.

Also, based on Definition 4.1 and Equation (28), the M -function value 1
24
βc11 is assigned to

the sub-interval (c11, x5), where βc11 = 1. Thus, the conditional M -function values for the
event X6|X5 ∈ I12 are

MX6|X5∈I1
2
(0, x1) =

1

6

MX6|X5∈I1
2
(x1, c

1
1) =

1

6
β1
1

MX6|X5∈I1
2
(c11, x5) =

1

6
β1
2 +

1

24
β
c11
1 (42)

MX6|X5∈I1
2
(x5, x2) =

1

6
+

1

24
(43)

MX6|X5∈I1
2
(x2, x3) =

1

6
+

1

24

MX6|X5∈I1
2
(x3,∞) =

1

6
+

1

24

where the total conditional probability mass for X6 ∈ (c11, x2) given X5 ∈ (c11, x2), given

in Equations (42) and (43), is 1/6 (β1
2 +1/4 β

c11
1 + 5/4), where β1

2 ∈ [0, 1] and β
c11
1 = 1, see

Case 3 in the third box of Figure 3.
From Case 3, where X5 ∈ I12 = (c11, x2), we use Equation (35) to derive the NPI lower

conditional probability for the event X6 > t given X5 > t, where t ∈ (c11, x2), as

P (X6 > t|X5 > t) = Qmin
X6|X5∈I12

(x1, x2) +
4∑

z=3

PX6|X5∈I12 (xz, xz+1)

= MX6|X5∈I12 (x5, x2) + PX6|X5∈I12 (x2, x3) + PX6|X5∈I12 (x3,∞)

=
5

24
+

5

24
+

5

24
=

5

8

where the value ofQmin
X6|X5∈I12

(x1, x2) is obtained by using Equation (33), i.e., Qmin
X6|X5∈I12

(x1, x2) =
1
6
+ 1

24
= 5

24
.

The NPI upper conditional probability for the event X6 > t given X5 > t, where t ∈
(c11, x2), is derived by using Equation (36) as follows,

P (X6 > t|X5 > t) = Qmax
X6|X5∈I12

(x1, x2) +
4∑

z=3

PX6|X5∈I12 (xz, xz+1)

= PX6|X5∈I12 (x1, x2) + PX6|X5∈I12 (x2, x3) + PX6|X5∈I12 (x3,∞)

=
10

24
+

5

24
+

5

24
=

5

6

where the value ofQmax
X6|X5∈I12

(x1, x2) is obtained by using Equation (34), i.e., Qmax
X6|X5∈I12

(x1, x2) =

PX6|X5∈I12 (x1, x5) + PX6|X5∈I12 (x5, x2) =
5
24

+ 5
24

= 10
24
.
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Case 4: Given X5 ∈ I2 = (x2, x3), the conditional M -function values for X6|X5 ∈ I2, using
Definition 4.1 with the assumption rc-A(5) given by Equations (27) and (28), are shown in
the fourth box of Figure 3.

The β0
1 , β

2
1 , β

3
1 and β4

1 values corresponding to the intervals (0, x1), (x2, x5), (x5, x3) and
(x3,∞), respectively, are equal to 1, since there no censoring is involved in these intervals.
For c11 ∈ (x1, x2) given X5 ∈ I2, the conditional M -function value 1

6
that is assigned to

interval (x1, x2) will be split up and assigned to two sub-intervals with the M -function value
1
6
β1
1 assigned to the sub-interval (x1, c

1
1) as well as the M -function value 1

6
β1
2 assigned to the

sub-interval (c11, x2), where both β1
1 and β1

2 take values between 0 and 1, and β1
1 + β1

2 = 1.

Also, based on Definition 4.1 and Equation (28), the M -function value 1
24
βc11 is assigned to

the sub-interval (c11, x2), where βc11 = 1. Thus, the conditional M -function values for the
event X6|X5 ∈ I2 are

MX6|X5∈I2(0, x1) =
1

6

MX6|X5∈I2(x1, c
1
1) =

1

6
β1
1

MX6|X5∈I2(c11, x2) =
1

6
β1
2 +

1

24
β
c11
1

MX6|X5∈I2(x2, x5) =
1

6
+

1

24
(44)

MX6X5∈I2(x5, x3) =
1

6
+

1

24
(45)

MX6|X5∈I2(x3,∞) =
1

6
+

1

24

where the total conditional probability mass for X6 ∈ (x2, x3) given X5 ∈ (x2, x3), given
in Equations (44) and (45), is 5/24+5/24=10/24, see Case 4 in the fourth box of Figure 3.

From Case 4, where X5 ∈ I2 = (x2, x3), we use Equation (35) to derive the NPI lower
conditional probability for the event X6 > t given X5 > t, where t ∈ (x2, x3), as

P (X6 > t|X5 > t) = Qmin
X6|X5∈I2(x2, x3) +

4∑
z=4

PX6|X5∈I2(xz, xz+1)

= MX6|X5∈I2(x5, x3) + PX6|X5∈I2(x3,∞)

=
5

24
+

5

24
=

5

12

where the value ofQmin
X6|X5∈I2(x2, x3) is obtained by using Equation (33), i.e., Qmin

X6|X5∈I2(x2, x3) =
1
6
+ 1

24
= 5

24
.

The NPI upper conditional probability for the event X6 > t given X5 > t, where t ∈
(x2, x3), is derived by using Equation (36), as follows,

P (X6 > t|X5 > t) = Qmax
X6|X5∈I2(x2, x3) +

4∑
z=4

PX6|X5∈I2(xz, xz+1)

= PX6|X5∈I2(x2, x5) + PX6|X5∈I2(x5, x3) + PX6|X5∈I2(x3,∞)

=
5

24
+

5

24
+

5

24
=

5

8
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t ∈ (.) P (X6 > t|X5 > t) P (X6 > t|X5 > t)

(0, x1)
5
6

1

(x1, c
1
1)

2
3

5
6

(c11, x2)
5
8

5
6

(x2, x3)
5
12

5
8

(x3,∞) 5
24

5
12

Table 2: Lower and upper conditional probabilities for the event (X6 > t|X5 > t), Example 4.1.

where the value ofQmax
X6|X5∈I2(x2, x3) is obtained by using Equation (34), i.e., Qmax

X6|X5∈I2(x2, x3) =

PX6|X5∈I2(x2, x5) + PX6|X5∈I2(x5, x3) =
5
24

+ 5
24

= 10
24
.

Case 5: Given X5 ∈ I3 = (x3,∞), the conditional M -function values for X6|X5 ∈ I3, using
Definition 4.1 with the assumption rc-A(4+1) given by Equations (27) and (28), are shown in
the fifth box of Figure 3.

The β0
1 , β

2
1 , β

3
1 and β4

1 values corresponding to the intervals (0, x1), (x2, x3), (x3, x5) and
(x5,∞), respectively, are equal to 1, since there no censoring is involved in these intervals.
For c11 ∈ (x1, x2) given X5 ∈ I3, the conditional M -function value 1

6
that is assigned to

interval (x1, x2) will be split up and assigned to two sub-intervals with the M -function value
1
6
β1
1 assigned to the sub-interval (x1, c

1
1) as well as the M -function value 1

6
β1
2 assigned to the

sub-interval (c11, x2), where both β1
1 and β1

2 take values between 0 and 1, and β1
1 + β1

2 = 1.

Also, based on Definition 4.1 and Equation (28), the M -function value for X6,
1
24
βc11 , is

assigned to the sub-interval (c11, x2), where β
c11 = 1. Thus, the conditional M -function values

for the event X6|X5 ∈ I3 are

MX6|X5∈I3(0, x1) =
1

6

MX6|X5∈I3(x1, c
1
1) =

1

6
β1
1

MX6|X5∈I3(c11, x2) =
1

6
β1
2 +

1

24
β
c11
1

MX6|X5∈I3(x2, x3) =
1

6
+

1

24

MX6|X5∈I3(x3, x5) =
1

6
+

1

24
(46)

MX6|X5∈I3(x5,∞) =
1

6
+

1

24
(47)

where the total conditional probability mass for X6 ∈ (x3,∞) given X5 ∈ (x3,∞), given
in Equations (46) and (47), is 5/24+5/24=10/24, see Case 5 in the fifth box of Figure 3.

From Case 5, where X5 ∈ I3 = (x3,∞), we use Equation (35) to derive the NPI lower
conditional probability for the event X6 > t given X5 > t, where t ∈ (x3,∞), as

P (X6 > t|X5 > t) = Qmin
X6|X5∈I3(x3,∞) = MX6|X5∈I3(x5,∞) =

5

24

where the value of Qmin
X6|X5∈I2(x2, x3) is obtained by using Equation (33).

26



The NPI upper conditional probability for the event X6 > t given X5 > t, where t ∈
(x3,∞), is derived by using Equation (36), as follows.

P (X6 > t|X5 > t) = Qmax
X6|X5∈I3(x3,∞) = PX6|X5∈I3(x3, x5) + PX6|X5∈I3(x5,∞)

=
5

24
+

5

24
=

5

12

where the value of Qmax
X6|X5∈I3(x2, x3) is obtained by using Equation (34). Therefore, the

NPI lower and upper conditional probabilities for the event that X6 > t given X5 > t, are
given in Table 2. The values of the NPI lower and upper probabilities at observations are eas-
ily derived from Table 2, using the fact that the lower probability is continuous from the left
at all observations, given by Equation (35), and the upper probability is continuous from the
right at event times, given by Equation (36). An effect of conditioning on the second future
observation X5 to be in the final interval (x3,∞), the NPI lower probability for X6 ∈ (x3,∞)
is positive which is given by theM -function value 5

24
that assigned to the sub-interval (x5,∞).

In the next section, we present NPI lower and upper probabilities for the event Xn+1 > t
and Xn+2 > t, based on the results presented in Sections 3 and 4.

5. Lower and upper probabilities for Xn+1 > t, Xn+2 > t

This section derives the NPI lower and upper probabilities for the event that both future
observations Xn+1 and Xn+2 are greater than time t > 0. The notation used in this section
follow those introduced in Sections 3 and 4. Let I ii∗ = (tii∗ , t

i
i∗+1) be an interval created

by the n data observations, i = 0, 1, 2, . . . , u and i∗ = 1, 2, . . . , si, that is we have n + 1
intervals created by the data, and let I i = (xi, xi+1) be the ith interval created by two
consecutive failures and I ia = (tia, xi+1), i = 0, 1, . . . , u and a = 0, 1, . . . , si. Furthermore,
let MXn+1∈Ijj∗

be the M -function values for Xn+1, based on the assumption rc-A(n) [15], as

defined in Definition 3.1, where j = 0, 1, . . . , u and j∗ = 1, 2, . . . , sj. Let PXn+1∈Ij be the
probabilities for Xn+1 to belong to the intervals Ij = (xj, xj+1) as given by Equation (15).
Let MXn+2∈Ikk∗ |Xn+1∈Ijj∗

be the conditional M -function values for Xn+2 ∈ Ik = (xk, xk+1), k =

0, 1, . . . , u, k∗ = 1, 2, . . . , sk, based on the assumption rc-A(n+1), as defined in Definition 4.1.
Let PXn+2∈Ik|Xn+1∈Ij be the conditional probabilities for the event {Xn+2 ∈ Ik|Xn+1 ∈ Ij},
as given by Equation (29).

To find the NPI lower and upper probabilities for the joint event where Xn+1 > t and
Xn+2 > t for all t > 0, we will utilize the results from Sections 3 and 4. Firstly, we will derive
the NPI upper probability for the event where Xn+1 > t and Xn+2 > t for t ∈ [xi, xi+1),
where i = 0, 1, . . . , u.

Theorem 5.1. The NPI upper probability is derived by summing all probability masses that
can be to the right of t. This means all M -function values assigned to intervals Ikk∗ , I

j
j∗ ∈

{I ia, . . . , I isi , I
i+1
0 , . . . , I i+1

si+1
, . . . , Iusu} will lead to the following NPI upper probability

P (Xn+1 > t,Xn+2 > t) =
u∑

j=i

u∑
k=i

PXn+2∈Ik|Xn+1∈IjPXn+1∈Ij (48)
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Proof. There are four terms of summations that, when added together, lead to derive the
NPI upper probability for the event Xn+1 > t and Xn+2 > t. We refer to these terms as
J1, J2, J3, and J4, stated in Equations (49), (50), (51), and (52), respectively, which are
illustrated in detail below.

First, we sum over Ikk∗ ∈ {I i+1
0 , . . . , I i+1

si+1
, . . . , Iusu} and Ijj∗ ∈ {I i+1

0 , . . . , I i+1
si+1

, . . . , Iusu},
which is equivalent to summing over the intervals Ik and Ij for k, j ∈ {i + 1, . . . , u}. This
will lead to constant probabilities using Equations (15) and (29), respectively, so these prob-
abilities are not functions of the α’s or β’s, so no optimisation is required here. We can write
these summations terms as

J1 =
u∑

j=i+1

u∑
k=i+1

sj∑
j∗=0

sk∑
k∗=0

MXn+2∈Ikk∗ |Xn+1∈Ijj∗
MXn+1∈Ijj∗

=
u∑

j=i+1

u∑
k=i+1

[
sj∑

j∗=0

MXn+1∈Ijj∗

][
sk∑

k∗=0

MXn+2∈Ikk∗ |Xn+1∈Ijj∗

]

=
u∑

j=i+1

u∑
k=i+1

PXn+2∈Ik|Xn+1∈IjPXn+1∈Ij (49)

where summing all M -function values for Xn+1 ∈ Ijj∗ as well as summing up all conditional

M -function values for Xn+2 ∈ Ikk∗|Xn+1 ∈ Ijj∗ , in the second equality, lead to the probabilities
for the event Xn+1 ∈ Ij, as well as to the conditional probability masses for the event
Xn+1 ∈ Ij|Xn+1 ∈ Ij, for j = i+1, . . . , u and k = i+1, . . . , u, as in the third equality. Thus,
we have advanced from the second equality to the third equality by using Equations (15)
and (29), respectively.

Secondly, we sum over Ikk∗ ∈ {I ia, . . . , I isi} and Ijj∗ ∈ {I i+1
0 , . . . , I i+1

si+1
, . . . , Iusu}, which will

lead to a function of the β’s only, so we need to maximise this function. This leads to

J2 =
u∑

j=i+1

sj∑
j∗=0

si∑
k∗=a

MXn+2∈Ikk∗ |Xn+1∈Ijj∗
MXn+1∈Ijj∗

=
u∑

j=i+1

sj∑
j∗=0

MXn+1∈Ijj∗

si∑
k∗=a

MXn+2∈Ikk∗ |Xn+1∈Ijj∗

=
u∑

j=i+1

Qmax
Xn+2∈Iia|Xn+1∈IjPXn+1∈Ij

=
u∑

j=i+1

PXn+2∈Ii|Xn+1∈IjPXn+1∈Ij (50)

where in the third equality, the function Qmax
Xn+2∈Iia|Xn+1∈Ijj∗

is considered to maximise the

conditional probability mass for Xn+2 ∈ I ia = (tia, xi+1) given Xn+1 ∈ Ijj∗ , where j = i +
1, . . . , u, by assigning all conditional M -function values within the interval I i = (xi, xi+1)
to the right of tia. This leads to the conditional probability mass for the event Xn+2 ∈ I i

given Xn+1 ∈ Ij, where I i = (xi, xi+1) and j = i + 1, . . . , u. Then, we are able to move
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from the third equality to the fourth equality via the product of the conditional probability
PXn+2∈Ii|Xn+1∈Ij and the probability mass for the event that Xn+1 ∈ Ij, where I i = (xi, xi+1),
Ij = (xj, xj+1) and j = i + 1, . . . , u. The function Qmax

Xn+2∈Iia|Xn+1∈Ijj∗
, which is a function of

the β’s only, is maximised by using Equation (34).
Thirdly, we sum over Ikk∗ ∈ {I i+1

0 , . . . , I i+1
si+1

, . . . , Iusu} and Ijj∗ ∈ {I ia, . . . , I isi}, which will
lead to a function of the α’s only, so we need to maximise this function. This leads to

J3 =
u∑

k=i+1

si∑
j∗=a

si∑
k∗=0

MXn+2∈Ikk∗ |Xn+1∈Iij∗
MXn+1∈Iij∗

=
u∑

k=i+1

si∑
j∗=a

PXn+2∈Ik|Xn+1∈Iij∗
MXn+1∈Iij∗

=
u∑

k=i+1

PXn+2∈Ik|Xn+1∈Iij∗
Qmax

Xn+1∈Iia

=
u∑

k=i+1

PXn+2∈Ik|Xn+1∈IiPXn+1∈Ii (51)

where in the third equality, the function Qmax
Xn+1∈Iia

is considered to maximise the probability

mass for Xn+1 ∈ Ija = (tja, xj+1), by assigning all M -function values within the interval Ij =
(xj, xj+1) to the right of tia, using Equation (20). This leads to the probability mass for the
eventXn+1 ∈ I i = (xi, xi+1). This has advanced from the third equality to the fourth equality
through the product of the conditional probabilities for the event that Xn+2 ∈ Ik|Xn+1 ∈ I i,
and the probability mass for the event that Xn+1 ∈ I i, where k = i+ 1, . . . , u.

Finally, we sum over Ikk∗ ∈ {I ia, . . . , I isi} and Ijj∗ ∈ {I ia, . . . , I isi}, which will lead to functions
of the α’s and β’s, so we need to maximise both functions. This leads to

J4 =

si∑
j∗=a

si∑
k∗=a

MXn+2∈Iik∗ |Xn+1∈Iij∗
M(Xn+1 ∈ I ij∗)

= Qmax
Xn+2∈Iia|Xn+1∈Iij∗

Qmax
Xn+1∈Iia

= PXn+2∈Ii|Xn+1∈IiPXn+1∈Ii (52)

where in the second equality, the function Qmax
Xn+1∈Iia

is considered to maximise the probability

mass for Xn+1 ∈ I ia = (tia, xi+1), by assigning all M -function values within the interval
Ij = (xj, xj+1) to the right of tia, using Equation (20), which leads to the probability mass
PXn+1∈Ii . Also, the function Qmax

Xn+2∈Iia|Xn+1∈Iij∗
is considered to maximise the conditional

probability mass for Xn+2 ∈ I ia = (tia, xi+1) given Xn+1 ∈ I ij∗ , where j∗ = 1, . . . , sj, by
assigning all conditional M -function values within the interval I i = (xi, xi+1) to the right of
tia, using Equation (34), which leads to the conditional probability mass PXn+2∈Ii|Xn+1∈Ii .

As a result, the NPI upper probability for the event that Xn+1 > t and Xn+2 > t,
for t ∈ [xi, xi+1), i = 0, 1, . . . , u, and for all t > 0, is obtained by summing the values of
J1, . . . , J4, i. e. P (Xn+1 > t,Xn+2 > t) = J1 + J2 + J3 + J4.
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Next, we derive the NPI lower probability for the event that Xn+1 > t and Xn+2 > t, for
t ∈ [tia, t

i
a+1), i = 0, 1, . . . , u and a = 0, 1, . . . , si.

Theorem 5.2. This NPI lower probability is derived by summing all probability masses
that must be assigned to the right of tia+1. This means all M -function values assigned to

intervals Ikk∗ , I
j
j∗ ∈ {I ia+1, . . . , I

i
si
, I i+1

0 , . . . , I i+1
si+1

, . . . , Iusu}. This leads to

P (Xn+1 > t,Xn+2 > t) =
u∑

j=i

sj∑
j∗=a+1

u∑
k=i

sk∑
k∗=a+1

MXn+2∈Ikk∗ |Xn+1∈Ijj∗
MXn+1∈Ijj∗

(53)

where we must start from a + 1; that is, we start from the first right-censored observation
up to si within the interval I i.

Proof. There are four terms of summations that, when added together, lead to derive the
NPI lower probability for the event Xn+1 > t and Xn+2 > t. We refer to these terms as
K1, K2, K3, and K4, stated in Equations (54), (55), (56), and (57), respectively, which are
illustrated in detail below.

First, similar to the summations in the derivation of the NPI upper probability for
this event, given in Equation (49), we sum over Ikk∗ ∈ {I i+1

0 , . . . , I i+1
si+1

, . . . , Iusu} and Ijj∗ ∈
{I i+1

0 , . . . , I i+1
si+1

, . . . , Iusu}, which will lead to constant probabilities using Equations (15) and
(29), respectively, so these probabilities are not functions of the α’s or β’s, so no optimisation
is required here. We can write these summations terms as

K1 = J1 =
u∑

j=i+1

u∑
k=i+1

PXn+2∈Ik|Xn+1∈IjPXn+1∈Ij (54)

Secondly, we sum over Ikk∗ ∈ {I ia+1, . . . , I
i
si
} and Ijj∗ ∈ {I i+1

0 , . . . , I i+1
si+1

, . . . , Iusu}, which will
lead to a function of the β’s only, so we need to minimise this function. This leads to

K2 =
u∑

j=i+1

sj∑
j∗=0

si∑
k∗=a+1

MXn+2∈Iik∗ |Xn+1∈Ijj∗
MXn+1∈Ijj∗

=
u∑

j=i+1

sj∑
j∗=0

MXn+1∈Ijj∗

si∑
k∗=a+1

MXn+2∈Iik∗ |Xn+1∈Ijj∗

=
u∑

j=i+1

sj∑
j∗=0

MXn+1∈Ijj∗
Qmin

Xn+2∈Iia|Xn+1∈Ijj∗

=
u∑

j=i+1

Qmin
Xn+2∈Iia|Xn+1∈IjPXn+1∈Ij (55)

where in the third equality, the function Qmin
Xn+2∈Iia|Xn+1∈Ijj∗

is considered to minimise the

conditional probability mass for Xn+2 ∈ I ia = (tia, xi+1) given Xn+1 ∈ Ijj∗ , where j = i +
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1, . . . , u, by assigning all conditional M -function values within the interval I i = (xi, xi+1)
to the left of tia. This leads to the conditional probability mass Qmin

Xn+2∈Iia|Xn+1∈Ij ; that is we

sum all the conditional probability mass for the event Xn+2 ∈ (cii∗ , xi+1) given Xn+1 ∈ Ij,
where i = 0, 1, 2, . . . , u, i∗ = 1, 2, . . . , si and j = i + 1, . . . , u. Then, we are able to move
from the third equality to the fourth equality via the product of the conditional probability
Qmin

Xn+2∈Iia|Xn+1∈Ij , and the probability masses for the event that Xn+1 ∈ Ij. The function

Qmin
Xn+2∈Iia|Xn+1∈Ijj∗

, which is a function of the β’s only, is minimised by using Equation (33).

Thirdly, we sum over Ikk∗ ∈ {I i+1
0 , . . . , I i+1

si+1
, . . . , Iusu} and Ijj∗ ∈ {I ia+1, . . . , I

i
si
}, which will

lead to a function of the α’s only, so we need to minimise this function. This leads to

K3 =
u∑

k=i+1

si∑
j∗=a+1

sk∑
k∗=0

MXn+2∈Ikk∗ |Xn+1∈Iij∗
MXn+1∈Iij∗

=
u∑

k=i+1

si∑
j∗=a+1

PXn+2∈Ik|Xn+1∈Iij∗
MXn+1∈Iij∗

=
u∑

k=i+1

PXn+2∈Ik|Xn+1∈IiaQ
min
Xn+1∈Iia (56)

where in the third equality, the function Qmin
Xn+1∈Iia

is considered to minimise the probability

mass for Xn+1 ∈ I ia = (tia, xi+1), by assigning all M -function values within the interval
Ij = (xj, xj+1) to the left of tia. This leads to the probability mass for the event Xn+1 ∈
(cii∗ , xi+1), using Equation (19). This enables us to obtain the product of the conditional
probabilities for the event that Xn+2 ∈ Ik|Xn+1 ∈ I ia, and the probability mass Qmin

Xn+1∈Iia
,

where k = i+ 1, . . . , u and I ia = (tia, xi+1).
Finally, we sum over Ikk∗ ∈ {I ia+1, . . . , I

i
si
} and Ijj∗ ∈ {I ia+1, . . . , I

i
si
}, which will lead to

functions of the α’s and β’s, so we need to minimise both functions. This leads to

K4 =

si∑
j∗=a+1

si∑
k∗=a+1

MXn+2∈Iik∗ |Xn+1∈Iij∗
MXn+1∈Iij∗

= Qmin
Xn+2∈Iia|Xn+1∈IiaQ

min
Xn+1∈Iia (57)

where in the second equality, the function Qmin
Xn+1∈Iia

is considered to minimise the probability

mass for Xn+1 ∈ I ia = (tia, xi+1), by assigning all M -function values within the interval
I i = (xi, xi+1) to the left of tia, using Equation (19). Also, the function Qmin

Xn+2∈Iia|Xn+1∈Iia
is considered to minimise the conditional probability mass for Xn+2 ∈ I ia = (tia, xi+1) given
Xn+1 ∈ I ia, by assigning all conditional M -function values within the interval I i = (xi, xi+1)
to the left of tia, using Equation (33).

As a result, the NPI lower probability for the event that Xn+1 > t and Xn+2 > t, for
t ∈ [tia, t

i
a+1), i = 0, 1, . . . , u and a = 0, 1, . . . , si, and for all t > 0, is obtained by summing

the values of K1, . . . , K4, i. e. P (Xn+1 > t,Xn+2 > t) = K1 +K2 +K3 +K4.

Using the results in Sections 3 and 4, we also get the same results of the derivation of
the NPI lower and upper probabilities for the joint event Xn+1 > t and Xn+2 > t, presented
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X6 ∈ I0 = (0, x1) X6 ∈ I11 = (x1, c
1
1) X6 ∈ I12 = (c11, x2) X6 ∈ I2 = (x2, x3) X6 ∈ I3 = (x3,∞) Total

X5 ∈ I0 = (0, x1) 2 · 1
30

1
30
β2
1

1
30
(β2

2 +
1
3
) 1

30
· 4
3

1
30

· 4
3

1
5

X5 ∈ I11 = (x1, c
1
1)

1
30
α1
1

1
30
α1
1(1 + β2

1)
1
30
α1
1(β

2
2 +

1
3
) 1

30
· 4
3
α1
1

1
30

· 4
3
α1
1

1
5
α1
1

X5 ∈ I12 = (c11, x2)
1
30
(α1

2 +
1
3
) 1

30
β1
1(α

1
2 +

1
3
) 1

30
(α1

2 +
1
3
)(β1

2 +
3
2
) 1

30
(α1

2 +
1
3
)(5

4
) 1

30
(α1

2 +
1
3
)(5

4
) 1

5
α1
2 +

1
15

X5 ∈ I2 = (x2, x3)
1
30

· 4
3

1
30

· 4
3
β1
1

1
30

· 4
3
(β1

2 +
1
4
) 1

30
· 10

3
1
30

· 5
3

4
15

X5 ∈ I3 = (x3,∞) 1
30

· 4
3

1
30

· 4
3
β1
1

1
30

· 4
3
(β1

2 +
1
4
) 1

30
· 5
3

1
30

· 10
3

4
15

Table 3: Joint probability of X5 and X6, according to Example 5.1

above, if we straightforwardly multiply the NPI lower and upper probabilities for the event
Xn+1 > t, given by Equations (21) and (22), respectively, in Section 3, with the NPI lower
and upper conditional probabilities for the event that Xn+2 > t given Xn+1 > t, given by
Equations (35) and (36), respectively, in Section 4. So, for t ∈ [tia, t

i
a+1) with i = 0, 1, . . . , u

and a = 0, 1, . . . , si, the NPI lower probability for the joint event Xn+1 > t and Xn+2 > t, is

P (Xn+1 > t,Xn+2 > t) = P (Xn+2 > t|Xn+1 > t)P (Xn+1 > t) (58)

and for t ∈ [xi, xi+1) with i = 0, 1, . . . , u, the corresponding NPI upper probability for the
joint event Xn+1 > t and Xn+2 > t, is

P (Xn+1 > t,Xn+2 > t) = P (Xn+2 > t|Xn+1 > t)P (Xn+1 > t) (59)

Example 5.1 illustrates the NPI lower and upper probabilities for the events X5 > t and
X6 > t, in particular it shows the steps leading to these lower and upper probabilities in
Theorems 5.1 and 5.2. It also demonstrates the results in Equations (58) and (59).

Example 5.1. Consider again the data set used in Examples 3.1 and 4.1, for which we
have n = 4 observations, including one right-censored observation. Based on the probability
masses for X5, presented in Figure 2, and the conditional probability masses for X6|X5, in
Figure 3, the joint probability masses for X5 and X6 are given in Table 3. Note that from

Examples 3.1 and 4.1, α
c11
1 = 1, β

c21
1 = 1, and β

c11
1 = 1.

From Table 3, the upper probability for the event that X5 > t and X6 > t when t ∈
(c11, x2) can be calculated by summing all probabilities represented by blue cells as well as
maximising all probability masses represented by green, purple, and red cells. We refer to
these summations terms as J1, J2, J3, and J4, as given by Equations (49), (50), (51) and
(52), respectively. These summations are illustrated in detail below.

Considering t ∈ (c11, x2), we first sum over I2 and I3, respectively, where X6 is in intervals
I2, I3 givenX5 is in these intervals I2, I3, respectively. This will lead to constant probabilities
which are represented by the blue cells in Table 3, which is not a function of the α’s or β’s,
so no optimisation is required here. These summations are derived by using Equation (49),
as

J1 = PX6∈I2|X5∈I2PX5∈I2 + PX6∈I2|X5∈I3PX5∈I3 + PX6∈I3|X5∈I2PX5∈I2

+ PX6∈I3|X5∈I3PX5∈I3

=
1

9
+

1

18
+

1

18
+

1

9
=

1

3
.
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By using Equation (50), we sum over the case where X6 is in interval I12 = (c11, x2), given
X5 is in intervals I2 and I3, respectively, represented by the red cells in Table 3. This will
lead to a function of the β’s only, so we need to maximise this function. This leads to

J2 = Qmax
X6∈I12 |X5∈I2PX5∈I2 +Qmax

X6∈I12 |X5∈I3PX5∈I3

=
2

45
(β1

2 +
1

4
) +

2

45
(β1

2 +
1

4
) =

2

45
(2β1

2 +
1

2
)

Here, by using Equation (34), the function QX6∈I12 |X5∈Ii = 2β1
2 +

1
2
, for i = 2, 3, which is a

function of the β’s only, is maximised by assigning all conditional M -function values within
the interval I1 = (x1, x2) to the right of c11. This is achieved when β1

2 = 1, so β1
1 = 0 and

Qmax
X6∈I12 |X5∈Ii = 2 + 1

2
= 5

2
. Consequently, J2 =

5
2
× 2

45
= 1

9
.

Using Equation (51), we sum over the case where X6 is in intervals I2 and I3, given X5

is in interval I12 = (c11, x2), respectively, represented by the purple cells in Table 3. This will
lead to a function of the α’s only, so we need to maximise this function. This leads to

J3 = PX6∈I2|X5∈I12Q
max
X5∈I12

+ PX6∈I3|X5∈I12Q
max
X5∈I12

=
1

24
(α1

2 +
1

3
) +

1

24
(α1

2 +
1

3
) =

1

24
(2α1

2 +
2

3
)

Here, the function QX5∈I12 = 2α1
2 +

2
3
, which is a function of the α’s only, is maximised,

using Equation (20), when α1
2 = 1, so α1

2 = 0 and Qmax
X5∈I12

= 2 + 2
3
= 8

3
. Consequently,

J3 =
1
24

× 8
3
= 1

9
.

Finally, by using Equation (52), we sum over the case where X6 given X5 are both in the
interval I12 = (c11, x2), represented by the green cells in Table 3. This will lead to functions
of the α’s and β’s, so we need to maximise both functions. This leads to

J4 = Qmax
X6∈I12 |X5∈I12

Qmax
X5∈I12

=
1

30
(β1

2 +
3

2
)(α1

2 +
1

3
)

By using Equation (20), the function QX5∈I12 = α1
2 +

1
3
is maximised when α1

2 = 1, so α1
1 = 0

andQmax
X5∈I12

= 1+1
3
= 4

3
. And the functionQX6∈I12 |X5∈I12 = β1

2+
3
2
is maximised, using Equation

(34), by assigning all conditional M -function values within the interval I1 = (x1, x2) to the
right of c11, i.e., when β1

2 = 1, so β1
1 = 0 and Qmax

X6∈I12 |X5∈I12
= 1 + 3

2
= 5

2
. Consequently,

J4 =
1
30

× 5
2
× 4

3
= 1

9
.

As a result, the NPI upper probability for the eventsX5 > t andX6 > t, for t ∈ (c11, x2), is
obtained by summing J1+J2+J3+J4, that is 1/3+1/9+1/9+1/9 = 2/3. Thus, the NPI upper
probability for the events X5 > t and X6 > t, where t ∈ (c11, x2), is P (X5 > t,X6 > t) = 2

3

(see Table 4). The NPI upper probabilities for the events X5 > t and X6 > t, for t in other
intervals are given in Table 4, these have all been derived similarly using corresponding values
of J1, . . . , J4.

The NPI lower probability for the event that X5 > t and X6 > t when t ∈ (x1, c
1
1) can

be calculated by summing all probabilities represented by blue cells as well as minimising
all probability masses represented by green, purple, and red cells of the Table 3. We refer to
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t ∈ (.) P (X5 > t,X6 > t) P (X5 > t,X6 > t)

(0, x1)
2
3

1

(x1, c
1
1)

2
5

2
3

(c11, x2)
1
3

2
3

(x2, x3)
1
9

1
3

(x3,∞) 0 1
9

Table 4: NPI lower and upper probabilities for the event (X5 > t,X6 > t), Example 5.1.

these summations terms as K1, K2, K3 and K4, as given by Equations (54), (55), (56) and
(57), respectively. These summations are illustrated in detail below.

First, and similar to the summation of the upper case which was represented by Equation
(49), we sum over I2 and I3, respectively, where X6 is in intervals I2, I3 given X5 is in these
intervals I2, I3, respectively. This will lead to constant probabilities which are represented
by the blue cells in Table 3, which is not a function of the α’s or β’s, so no optimisation is
required here. These summations are derived by using Equation (54), that is K1 = J1 = 1/3.

By using Equation (55), we sum over the case where X6 is in interval I12 , given X5 is in
intervals I2 and I3, respectively, represented by the red cells in Table 3. This will lead to a
function of the β’s only, so we need to minimise this function. This leads to

K2 = Qmin
X6∈I12 |X5∈I2PX5∈I2 +Qmin

X6∈I12 |X5∈I3PX5∈I3

=
2

45
(2β1

2 +
1

2
)

Here, by using Equation (33), the function QX6∈I12 |X5∈I2 = 2β1
2 +

1
2
, for i = 2, 3, which is a

function of the β’s only, is minimised by assigning all conditional M -function values within
the interval I1 = (x1, x2) to the left of c11. This is achieved when β1

2 = 0, so β1
1 = 1 and

Qmin
X6∈I12 |X5∈I2 =

1
2
. Consequently, K2 =

2
45

× 1
2
= 1

45
.

Using Equation (56), we sum over the case where X6 is in intervals I2 and I2, given X5

is in interval I12 , respectively, represented by the purple cells in Table 3. This will lead to a
function of the α’s only, so we need to minimise this function. This leads to

K3 = PX6∈I2|X5∈I12Q
min
X5∈I12

+ PX6∈I3|X5∈I12Q
min
X5∈I12

=
1

24
(2α1

2 +
2

3
)

Here, the function QX5∈I12 = 2α1
2 +

2
3
, which is a function of the α’s only, is minimised, using

Equation (19), when α1
2 = 0, so α1

1 = 1 and Qmin
X5∈I12

= 2
3
. Consequently, K3 =

1
24

× 2
3
= 1

36
.

Finally, by using Equation (57), we sum over the case where X6 given X5 are both in
interval I12 = (c11, x2), represented by the green cells in Table 3. This will lead to functions
of the α’s and β’s, so we need to minimise both functions. This leads to

K4 = Qmin
X6∈I12 |X5∈I12

Qmin
X5∈I12

=
1

30
(β1

2 +
3

2
)(α1

2 +
1

3
)
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Figure 4: NPI lower and upper probabilities for event X5 > t and X6 > t, Example 5.1.
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(c11, x2)
8
15

4
5

5
8

5
6

1
3

2
3

(x2, x3)
4
15

8
15

5
12

5
8

1
9

1
3

(x3,∞) 0 4
15

5
24

5
12

0 1
9

Table 5: NPI lower and upper probabilities for the events (X5 > t), (X6 > t|X5 > t) and (X5 > t,X6 > t),
Example 5.1.

By using Equation (19), the function QX5∈I12 = α1
2 +

1
3
is minimised when α1

2 = 0, so α1
1 = 1

and Qmin
X5∈I12

= 1
3
. And the function QX6∈I12 |X5∈I12 = β1

2 +
3
2
is minimised, using Equation (33),

by assigning all conditional M -function values within the interval I1 = (x1, x2) to the left of
c11, i.e., when β1

2 = 0, so β1
1 = 1 and Qmin

X6∈I12 |X5∈I12
= 3

2
. Consequently, K4 =

1
30

× 3
2
× 1

3
= 1

60
.

As a result, the NPI lower probability for the events X5 > t and X6 > t, for t ∈ (x1, c
1
1),

is obtained by summing K1 +K2 +K3 +K4, that is 1/3 + /45 + /36 + 1/60 = 2/5. Thus,
the NPI lower probability for the events X5 > t and X6 > t, where t ∈ (x1, c

1
1), is P (X5 >

t,X6 > t) = 2
5
(see Table 4). The NPI lower probabilities for the events X5 > t and X6 > t,

for t in other intervals are given in Table 4, and shown in Figure 4, these have all been
derived similarly using corresponding values of K1, . . . , K4.

Finally, if we multiply the results of the NPI lower and upper probabilities for the event
X5 > t, presented in Table 1, with the corresponding results of the NPI lower and upper
conditional probabilities for the event X6 > t|X5 > t, presented in Table 2, then we get
the same results of the NPI lower and upper probabilities for the joint event that X5 > t
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Figure 5: A series system with three types of components A, B and C, with two components of each type.

and X6 > t, shown in Table 4 and Figure 4. The point is clearly illustrated by the results
presented in Table 5, see also Equations (58) and (59).

6. Reliability of a series system

This section illustrates how the proposed method can be applied to the reliability of a
series system. The application focuses on a series system comprising three pairs of parallel
components, as illustrated in Figure 5. Each parallel pair consists of components belonging
to types A, B, or C. For each type, 20 components were tested, leading to the observed failure
times and right-censoring times presented in Table 6. The failure times of components of
different types are assumed to be independent, while failure times of components of the same
type are assumed to be exchangeable. Right-censoring is assumed to be non-informative with
regard to the component’s remaining time to failure.

First we need to introduce some notations. Let mA, mB and mC represent the number of
components of Type A, B and C, respectively, so mA = mB = mC = 2, with 20 observations
for each type, so nA = nB = nC = 20. In addition, let XA

i,1 and XA
i,2, for i = 1, 2, . . . , nA,

XB
i,1 and XB

i,2, for i = 1, 2, . . . , nB, and XC
i,1 and XC

i,2, for i = 1, 2, . . . , nC , represent the two
components of types A, B, C, respectively. Let TA

nA
, TB

nB
and TC

nC
represent the minimum

of the two components in Types A, B, and C, respectively, e.g. TA
nA

= min(XA
i,1, X

A
i,2), etc.

Let P TA
nA+1,T

A
nA+2

(t) and P TA
nA+1,T

A
nA+2

(t) denote the NPI lower and upper probabilities for the

event that the two future failure times of components of Type A are both greater than t,
with similar notation for Types B and C.

The data for the components failure and right-censoring times, presented in Table 6, are
obtained via simulation. For each component of Type A, 20 failure times are simulated from
the Weibull distribution with shape parameter 1.5 and scale parameter 1. Next, the minimum
of these two components is obtained, that is TA

20 = min(XA
i,1, X

A
i,2), for i = 1, 2, . . . , 20. For

each component of Type B, XB
i,1 and XB

i,2, 17 failure times, and three right-censoring times
are simulated from the Weibull distribution with shape parameter 2 and scale parameter 1
and the exponential distribution with a rate of 0.27, respectively. Now, the minimum of these
two components is obtained, that is TB

20 = min(XB
i,1, X

B
i,2), for i = 1, 2, . . . , 20. Also, for each

component of Type C, that are XC
i,1 and XC

i,2, 13 failure times and seven right-censoring times
are simulated from the Weibull distribution with shape parameter 3 and scale parameter 1
and the exponential distribution with rate of 0.35, respectively. Next, the minimum of these
two components is obtained, that is TC

20 = min(XC
i,1, X

C
i,2), for i = 1, 2, . . . , 20.

In order to compute the reliability of the system for the data set shown in Table 6, the
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TA
20 TB

20 TC
20

0.090 0.461 0.115 0.490 > 0.050 0.593
0.147 0.464 > 0.150 0.496 > 0.161 0.602
0.216 0.472 0.185 0.533 > 0.172 0.604
0.224 0.536 > 0.262 > 0.630 0.257 0.607
0.332 0.552 0.343 0.640 > 0.349 0.693
0.342 0.786 0.401 0.647 0.377 0.728
0.356 0.903 0.421 0.654 > 0.421 0.750
0.377 0.937 0.437 0.729 0.522 0.957
0.388 1.036 0.442 0.852 > 0.539 0.966
0.431 1.400 0.450 1.282 0.563 > 0.976

Table 6: Simulated data with the three types of components A, B and C (> indicates a right-censored
observation).

results presented in Section 5 will be first applied separately for each type of component TA
20,

TB
20 and TC

20. As a result, we obtain the NPI lower and upper probabilities for the event that
both future failure times of components from each type exceed t. These probabilities are
summarized in Table 7 and depicted in Figure 6.

For Type A, we derive the NPI lower and upper probabilities, that are [P , P ](TA
21 >

tA, T
A
22 > tA), for tA ∈ (0, data(A),∞) and for Type B, we derive the NPI lower and upper

probabilities, that are [P , P ](TB
21 > tB, T

B
22 > tB), for tB ∈ (0, data(B),∞), and finally for

Type C, we derive the NPI lower and upper probabilities, that are [P , P ](TC
21 > tC , T

C
22 > tC),

for tC ∈ (0, data(C),∞).
Second, the reliability function of the whole system are derived by multiplying the cor-

responding intersection NPI lower and upper probabilities for each type presented in Table
7, with the emphasis that the exact values of the t’s in this table differ for the different
systems. The NPI lower and upper probabilities for the whole reliability system at time t,
denoted as P TS

21
(t) and P TS

21
(t), respectively, are shown in Figure 7. So the reliability func-

tion of the whole system is calculated as [P , P ](T S
21 > t, TC

22 > t) = [P , P ](TA
21 > tA, T

A
22 >

tA)× [P , P ](TB
21 > tB, T

B
22 > tB)× [P , P ](TC

21 > tC , T
C
22 > tC), for t ∈ (0, data,∞).

It is worth mentioning that the NPI for the joint event Xn+1 > t and Xn+2 > t, presented
in this paper, takes into account the dependence between these two variables when there is
limited information in the form of n observations in the data. It is of interest to see the
effect of taking this dependence carefully into account. For this reason, we will compare
the results followed the proposed method with those resulting from ignoring, mistakenly,
the dependency between these two future observations, i.e., one would use the squared NPI
lower and upper probabilities for the event Xn+1 > t. Next, we compare the results of the
proposed method with those that would occur if we ignored the dependence between the
two future observations. And (P TS

21
(t))2 and (P TS

21
(t))2 represent the NPI lower and upper

probabilities based on the wrong assumption of independence of the two future observations
per type of component, as shown in Figure 7.

Figure 7 shows that the proposed method provides lower and upper probabilities P TS
21
(t)

and P TS
21
(t) of the system failure time, that are never smaller than the incorrect ones via the
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t ∈ P TA
21,T

A
22
(t) P TA

21,T
A
22
(t) P TB

21,T
B
22
(t) P TB

21,T
B
22
(t) P TC

21,T
C
22
(t) P TC

21,T
C
22
(t)

(0, t1) 0.909 1 0.909 1 0.909 1
(t1, t2) 0.823 0.909 0.823 0.909 0.905 1
(t2, t3) 0.740 0.823 0.818 0.909 0.900 1
(t3, t4) 0.662 0.740 0.732 0.818 0.895 1
(t4, t5) 0.589 0.662 0.727 0.818 0.795 0.895
(t5, t6) 0.520 0.589 0.642 0.727 0.789 0.895
(t6, t7) 0.455 0.520 0.561 0.642 0.691 0.789
(t7, t8) 0.394 0.455 0.487 0.561 0.684 0.789
(t8, t9) 0.338 0.394 0.417 0.487 0.586 0.684
(t9, t10) 0.286 0.338 0.353 0.417 0.579 0.684
(t10, t11) 0.238 0.286 0.294 0.353 0.482 0.579
(t11, t12) 0.195 0.238 0.241 0.294 0.395 0.482
(t12, t13) 0.156 0.195 0.193 0.241 0.316 0.395
(t13, t14) 0.121 0.156 0.150 0.193 0.246 0.316
(t14, t15) 0.091 0.121 0.144 0.193 0.184 0.246
(t15, t16) 0.065 0.091 0.103 0.144 0.132 0.184
(t16, t17) 0.043 0.065 0.069 0.103 0.088 0.132
(t17, t18) 0.026 0.043 0.041 0.069 0.053 0.088
(t18, t19) 0.013 0.026 0.021 0.041 0.026 0.053
(t19, t20) 0.004 0.013 0.007 0.021 0.009 0.026
(t20,∞) 0 0.004 0 0.007 0 0.026

Table 7: NPI lower and upper probabilities of Type A, Type B and Type C for the data in Table 6.

squared lower and upper probabilities (P TS
21
(t))2 and (P TS

21
(t))2. And they only are equal

at the start (P TS
21
(t) = (P TS

21
(t))2 = 1) or at the end (P TS

21
(t) = (P TS

21
(t))2 = 0). While

the differences between the lower and upper probabilities may only be small, it should be
remarked that for more than two future observations, the differences will be larger. Detailed
investigation is left as a topic for future research, as it requires the development of the NPI
approach for more than two future observations in case of right-censored data.

7. Concluding remarks

In this paper, we have developed NPI for two future observations in the presence of right-
censored data. Specifically, we have considered the event where these two future observations
exceed time t. For the first future observation, we have utilized the rc-A(n) assumption [15]
without any additional assumptions. Then, we have employed the rc-A(n+1) assumption
to establish a partially specified predictive probability distribution for the second future
observation conditioned on the first future observation. By employing an analytical approach
involving the α’s and β’s, we have obtained NPI lower and upper probabilities for various
events involving the next two future observations. These probabilities have been derived
explicitly for the event where both future observations exceed time t, but the method can
be extended to encompass general events.

38



0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

PT21
A  , T22

A (t)
P T21

A  , T22
A(t)

PT21
B  , T22

B (t)
P T21

B  , T22
B(t)

PT21
C  , T22

C (t)
P T21

C  , T22
C(t)

Figure 6: NPI lower and upper probabilities for Types A, B and C of the series system in Table 6.

Through the extension of NPI to two future observations with right-censored data, we
have effectively accounted for the dependence between these variables when the available
information is limited to n observations in the data. We have compared the results of our
proposed method with those obtained by ignoring the dependence between the two future
observations. Additionally, we have applied our findings to analyse the system reliability
of a small series system comprising three types of components, each consisting of multiple
components of the same type. This practical application demonstrates the tangible benefits
of our approach.

The joint event of the next two observations both exceeding t, and hence their mini-
mum exceeding t, was considered in this paper, and illustrated through the corresponding
reliability function for a series system. A similarly detailed approach could be developed
for a parallel system, by considering instead the event that the maximum of the next two
observations exceeds t. This, and generalisations to other system reliability scenarios, is left
as a topic for future research.

However, we acknowledge that the analytical approach becomes exceedingly complex
when dealing with more than two future observations. One possible direction for future
research could involve sampling the first future observation using the M -function values,
as given by Equations (11) and (12), for Xn+1, along with an assumption regarding the
distribution of these probabilities within the intervals. Subsequently, this sampled future
observation can be added to the dataset, and the process can be repeated for the next
observation. The resulting inferences will depend on the assumed distribution per interval,
but the computational aspects of this approach are straightforward. This approach aligns
with the NPI Bootstrap method [38, 39] and smoothed bootstrap for right-censored data
[40].
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Figure 7: NPI lower and upper probabilities for the whole series system.

In summary, the work presented in this paper shows great potential for extension into
various applications, although it is not without its share of mathematical challenges.
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