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Abstract

The reproducibility of research findings is important across many dis-
ciplines and is a fundamental concept in scientific studies. This paper
investigates the reproducibility of statistical hypothesis tests using Non-
parametric Predictive Inference (NPI). NPI is a frequentist statistical
framework based on minimal modelling assumptions, considering future
observations to be exchangeable with the observed data. Its predictive
nature makes it particularly suitable for assessing the reproducibility of
a test. This paper applies NPI to study the statistical reproducibility of
several umbrella alternative tests, including the Mack-Wolfe (MW), Esra
and Fikri (EF), and Jonckheere-Terpstra (JT) tests. These tests evalu-
ate the null hypothesis that location parameters are equal against the
alternative hypothesis that they follow a specific order. Several exam-
ples are provided to illustrate the application of the proposed methods.
The findings suggest that the reproducibility of these tests can be quite
poor, especially when the test statistic is close to the critical value.
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1 Introduction

Recently, much attention has been paid to the reproducibility of statistical
hypothesis tests [1]. However, there is considerable confusion in the litera-
ture regarding the concept of reproducibility. The main question that this
paper aims to address is: if a statistical test were repeated under the same
circumstances, would it lead to the same conclusion regarding rejection or
non-rejection of the null hypothesis? The probability that the repeated test
yields the same conclusion as the original test is known as the reproducibility
probability (RP).

Goodman [2] pointed out that the failure of an experiment to replicate
the statistical significance achieved in previous studies often causes concern
in the medical literature, primarily due to misunderstandings of the p-value.
Goodman also demonstrated that the probability of replicating a statistically
significant result may be lower than generally expected and that the p-value
may lead to overly optimistic interpretations. In a discussion of Goodman’s
work, Senn [3] agreed that RP and the p-value are distinct concepts and
emphasised the importance of reproducibility in statistical tests. However,
he disagreed with Goodman’s claim that the p-value overstates the evidence
against the null hypothesis.

Shao and Chow [4] examined RP in the context of clinical trials using three
approaches: a common power approach, where RP is defined by the estimated
power of a future test using data from the original test; a confidence bounds
approach, where RP is defined as the lower confidence bound of the estimated
power of a second test; and a Bayesian approach based on the posterior predic-
tive distribution. De Martini [5] estimated RP using the test’s estimated power
and the lower confidence bound of the power. De Capitani and De Martini
[6, 7] further demonstrated that RP estimation can be used both to evaluate
statistical test results and to define statistical tests. A comparison between RP
and the p-value was discussed by De Capitani [8], while Boos and Stefanski
[9] extended the work of Shao and Chow [4] by applying the estimated power
approach to one-way ANOVA.

In the Nonparametric Predictive Inference (NPI) framework, reproducibil-
ity is considered a prediction problem. NPI is a frequentist statistical approach
that assumes m future observations are exchangeable with given n data obser-
vations. Its predictive nature makes it particularly well-suited for studying
test reproducibility. The NPI reproducibility probability enables inference
by deriving lower and upper probabilities for the event that a future test,
repeated under similar conditions, will reach the same conclusion as the orig-
inal test—whether rejection or non-rejection of the null hypothesis. This
approach is denoted by NPI-RP [10], with the corresponding lower and upper
reproducibility probabilities denoted by RP and RP , respectively.

In the NPI framework, we typically consider the case m = n, as this
is a logical assumption for studying reproducibility. Research on NPI repro-
ducibility was initiated by Coolen and BinHimd [11], who studied NPI-RP for
several nonparametric tests, including the one-sample sign test, the one-sample
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Wilcoxon signed-rank test, the two-sample rank sum test (Wilcoxon-Mann-
Whitney test), and the two-sample Kolmogorov–Smirnov test. Coolen and
Alqifari [12] extended this work to NPI-RP for a one-sample quantile test
and a two-sample precedence test, both based on order statistics. Simkus et
al. [13] applied NPI reproducibility analysis to the t-test in pharmaceutical
research, while Marques et al. [14] studied RP in the context of likelihood
ratio tests. However, as sample sizes increase, NPI-RP computations become
increasingly demanding due to the growing number of orderings of m future
observations among the given n observations. For some tests, deriving exact
closed-form expressions for the lower and upper reproducibility probabilities
is computationally challenging.

To address these computational challenges, Marques and Coolen [15] intro-
duced the NPI Sampling of Orderings (NPI-RP-SO) method, providing an
approximation for NPI lower and upper reproducibility probabilities, particu-
larly for likelihood ratio tests. Meanwhile, Coolen and BinHimd [16] proposed
the NPI Bootstrap (NPI-B) method as an alternative approximation, which is
more flexible and suitable for complex test statistics and large sample sizes.
However, NPI-B provides a point estimate for RP rather than estimates for
NPI lower and upper reproducibility probabilities.

This paper contributes to the development of NPI for statistical repro-
ducibility by considering tests for umbrella alternatives, specifically the
Mack-Wolfe test, the Esra and Fikri test, and the Jonckheere-Terpstra test.
The remainder of the paper is structured as follows: Section 2 provides an
overview of classical tests for umbrella alternatives, while Section 3 presents
a brief introduction to Nonparametric Predictive Inference (NPI). Section 4
introduces NPI reproducibility for the Mack-Wolfe test, including exact lower
and upper reproducibility probabilities for three groups and their approxima-
tions using the NPI sampling of orderings (NPI-RP-SO) approach. To address
computational challenges associated with large sample sizes, Section 5 proposes
the NPI-based Bootstrap (NPI-B) method for estimating reproducibility prob-
abilities of the three umbrella alternative tests. Several examples are provided
to illustrate the proposed methods. The paper concludes with final remarks in
Section 7.

2 Umbrella Alternatives Tests

The comparison of g ≥ 3 groups in a one-way ANOVA setting may involve
cases where the response increases up to a certain group and then decreases.
This situation is common in many real-world problems, such as the effect of
age on physical capability measures like muscle strength. Another example is
the reaction to increasing drug dosage, where the response improves up to
a certain dose before declining. This ‘up-then-down’ behaviour is known as
‘umbrella ordering’, a term introduced by Mack and Wolfe [17].
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Let µi be the location parameter of the ith population. The g-sample rank
tests are introduced to test the following hypothesis:

H0 : µ1 = µ2 = . . . = µg (1)

against the umbrella alternative:

H1 : µ1 ≤ µ2 ≤ . . . ≤ µp−1 ≤ µp and µp ≥ µp+1 ≥ . . . ≥ µg (2)

for some p ∈ {1, 2, . . . , g}, with at least one strict inequality. The peak of the
umbrella alternative is at p, which may be either known or unknown [18].

Umbrella alternative tests are formulated based on the Mann-Whitney test
statistic, which has been widely used in tests involving ordered alternatives [17,
19–22]. These test statistics are constructed by summing the Mann-Whitney
counts to the left and right of the peak while excluding comparisons across the
peak itself.

Other related approaches for constructing test statistics for umbrella alter-
natives were proposed by Basso and Salmaso [23], Hettmansperger and Norton
[24], Chen and Wolfe [25], and Magel and Qin [26].

2.1 Mack-Wolfe (MW) Test

This section focuses on the Mack-Wolfe test for both known and unknown peak
scenarios [17, 18], with the aim of investigating the statistical reproducibility
of the test in each case.

To compute the Mack-Wolfe statistic Ap for a known peak p, we first deter-
mine the p(p− 1)/2 Mann-Whitney counts Uuv for every pair of groups where
1 ≤ u < v ≤ p, and Uuv is the number of observations from sample u that are
smaller than the observations from sample v. Similarly, for p ≤ u < v ≤ g,
we compute the (g − p+ 1)(g − p)/2 reverse Mann-Whitney counts Uvu. The
Mack-Wolfe statistic Ap is given by:

Ap =

v−1∑
u=1

p∑
v=2

Uuv +

v−1∑
u=p

g∑
v=p+1

Uvu. (3)

The null hypothesis in (1) is rejected at significance level α if

Ap ≥ Ap,α, (4)

where Ap,α is the α-upper percentile of the null distribution of Ap. This value
can be obtained using the function cUmbrPK(α, n, p) from the R package NSM3
[27] or from published tables [17, 28].

For large sample sizes, and under the null hypothesis, the statistic Ap

follows an asymptotic Normal distribution with the following mean and
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variance:

E(Ap) =
N2

1 +N2
2 −

∑g
i=1 n

2
i − n2

p

4
, (5)

σ2(Ap) =
1

72

{
2(N3

1 +N3
2 ) + 3(N2

1 +N2
2 )−

g∑
i=1

n2
i (2ni + 3)− n2

p(2np + 3)

+ 12npN1N2 − 12n2
pN

}
, (6)

where ni is the sample size of group i, N1 =
∑p

i=1 ni, and N2 =
∑g

i=p ni.
Since the peak group p is included in both N1 and N2, the total sample size
is given by N = N1 +N2 − np.

To compute the Mack–Wolfe statistic Ap for an unknown peak p, we first
estimate p using the sample data. This involves determining which group
is most likely to correspond to the peak by calculating g combined sample
Mann–Whitney statistics:

U·q =
∑
i ̸=q

Uiq, q = 1, . . . , g, (7)

where Uiq represents the number of observations in sample i that are smaller
than those in sample q. Under the null hypothesis, each U·q is standardized as
follows:

U ′
·q =

U·q − E(U·q)

σ(U·q)
, q = 1, . . . , g. (8)

where E(U·q) = nq(N − nq)/2 and σ2(U·q) = nq(N − nq)(N + 1)/12.
Let s denote the number of groups that are tied for the maximum value of

U ′
·q, and let D be the subset of {1, 2, . . . , g} corresponding to these tied groups.

The Mack–Wolfe statistic for an unknown peak is then given by

A′
p̂ =

1

s

∑
j∈D

Aj − E(Aj)

σ(Aj)
, (9)

where Aj is the peak-known statistic with peak at the jth group in Equation
(3), and E(Aj) and σ(Aj) are given by Equations (5) and (6), respectively.

The null hypothesis in (1) is rejected at significance level α if:

A′
p̂ ≥ Ap̂,α. (10)

In most cases, s = 1, meaning A′
p̂ reduces to the standardised peak-known

statistic. The critical value Ap̂,α is the upper percentile of the null distribution
of A′

p̂ (where H0 : µ1 = µ2 = ... = µg). It can be computed using the function
cUmbrPU(α, n) from the R package NSM3 [27] or obtained from published tables
[17, 28].
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2.2 Esra and Fikri (EF) Test

Esra and Fikri [21] proposed a modified Mack-Wolfe test for umbrella
alternatives, addressing cases with a known or unknown peak.

For a known peak, the modified Mack-Wolfe statistic Ãp is the weighted
sum of the Mann-Whitney counts to the left of the peak, (v − u)Uuv, and the
weighted reverse Mann-Whitney counts to the right of the peak, (v − u)Uvu.
The test statistic is given by:

Ãp =

p−1∑
u=1

p∑
v=u+1

(v − u)Uuv +

g−1∑
u=p

g∑
v=u+1

(v − u)Uvu. (11)

For balanced data (n1 = . . . = ng = n), and underH0, Ãp is asymptotically
Normally distributed with mean and variance:

E(Ãp) =
n2

2

[(
p+ 1

3

)
+

(
g − p+ 2

3

)]
,

σ2(Ãp) =
n2p2(p2 − 1)(np+ 1)

144

+
n2(g − p+ 1)2[(g − p+ 1)2 − 1][n(g − p+ 1) + 1]

144

+
n3p(p− 1)(g − p)(g − p+ 1)

24
.

The null hypothesis H0 is rejected at significance level α if

Ã∗
p =

Ãp − E(Ãp)

σ(Ãp)
≥ Zα, (12)

where Zα is the upper α-quantile of the standard Normal distribution.

2.3 Jonckheere-Terpstra (JT) Test

For p = 1 or p = g, the MW test reduces to the Jonckheere-Terpstra (JT) test,
which tests the ordered alternative:

H1 : µ1 ≤ µ2 ≤ . . . ≤ µg, (13)

with at least one strict inequality.
The Jonckheere-Terpstra (JT) test, introduced by Jonckheere [29] and

Terpstra [30], requires samples to be ordered according to H1 before data
collection. The test statistic J is:

J =

v−1∑
u=1

g∑
v=2

Uuv. (14)
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The null hypothesis in (1) is rejected in favor of the alternative in (13) at
significance level α if

J ≥ Jα, (15)

where Jα is the upper α-quantile of the null distribution of J . The values of
Jα can be found in tables [31].

For large sample sizes, and under H0, J is asymptotically Normally
distributed with mean and variance:

E(J) =
N2 −

∑g
i=1 n

2
i

4
,

σ2(J) =
N2(2N + 3)−

∑g
i=1 n

2
i (2ni + 3)

72
,

where N is the total number of observations, and ni is the sample size of group
i. Thus, the null hypothesis is rejected at significance level α if

J∗ =
J − E(J)

σ(J)
≥ Zα, (16)

where Zα is the α-upper quantile of the standard Normal distribution.

3 Nonparametric Predictive Inference (NPI)

Nonparametric Predictive Inference (NPI) is a statistical framework based on
the assumption A(n), proposed by Hill [32, 33], which provides direct probabil-
ities for future observations given n observations of related random quantities.
Inferences based on the assumption A(n) are predictive and nonparametric and
seem suitable when there is little or no knowledge about the random quan-
tities of interest, other than the n observations, or when one does not want
to use such information. Such inferences, based on restricted knowledge, are
called ‘low-structure inferences’ [34].

Suppose that X1, X2, . . . , Xn, Xn+1 are continuous and exchangeable ran-
dom quantities. Let the ordered observations X1, X2, . . . , Xn be denoted by
x1 < x2 < . . . < xn, and define x0 = −∞ and xn+1 = ∞ for convenience. We
assume that ties do not occur; if they do, they can be broken by a very small
amount [33]. These n observations partition the real line into n+ 1 intervals,
Ij = (xj−1, xj), for j = 1, . . . , n+1. Given the n observations, the assumption
A(n) for the next future observation Xn+1 is

P (Xn+1 ∈ Ij = (xj−1, xj)) =
1

n+ 1
for j = 1, . . . , n+ 1. (17)

A(n) does not assume anything else and can be considered a post-data assump-
tion related to exchangeability [35]. A(n) alone is not sufficient to derive precise
probabilities for many events of interest, but it provides optimal bounds for
probabilities to quantify uncertainty for all such events involving Xn+1. These
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bounds are lower and upper probabilities in the theories of imprecise proba-
bility and interval probability [36]. Imprecise probability generalises classical
probability in the sense that it describes uncertainty about events via intervals
instead of single numbers. For any event A, the lower probability is denoted
by P (A) and the upper probability by P (A), with 0 ≤ P (A) ≤ P (A) ≤ 1, and
the imprecision is given by △(A) = P (A)− P (A) [37]. The NPI approach has
been introduced for many applications in statistics and reliability and for a
range of data types, such as Bernoulli data [38] and multinomial data [39].

The NPI approach can be generalized for m ≥ 1 future observations, Xn+i

for i = 1, 2, . . . ,m, by assuming that the assumptions A(n), . . . , A(n+m−1) hold
for each future observation [32]. Given a dataset of n observations, the m
future observations are not conditionally independent but are assumed to be
exchangeable random quantities. There are

(
n+m
n

)
possible orderings Oi for

i = 1, 2, . . . ,
(
n+m
n

)
, and all possible orderings are equally likely. Let Sj denote

the number of future observations that fall in the interval Ij = (xj−1, xj) for
j = 1, 2, . . . , n + 1, and define x0 = −∞ and xn+1 = ∞ for ease of notation
[38, 40]. Then, inferences about these m future observations can be based on
the probabilities:

P
( n+1⋂
j=1

{Sj = sj}
)
=

(
n+m

n

)−1

(18)

for any valid combination (S1, . . . , Sn+1), where Sj are non-negative

integers satisfying
∑n+1

j=1 Sj = m [40].
The methodology of NPI for m ≥ 1 future observations, as given in

Equation (18), will be utilised to study the reproducibility of the Mack-Wolfe
test for three groups, as introduced in the next section.

4 NPI Reproducibility for Mack-Wolfe test

In this section, we consider the case of three independent groups, X, Y , and
Z, with nx observations from group X, ny observations from group Y , and nz

observations from group Z. Let x1 < . . . < xnx
be the ordered observed values

of group X, partitioning the real line into nx +1 intervals Ixj = (xj−1, xj), for
j = 1, . . . , nx + 1. Similarly, let y1 < . . . < yny

be the ordered observed values
of group Y , partitioning the real line into ny + 1 intervals Iyi = (yi−1, yi),
for i = 1, . . . , ny + 1, and let z1 < . . . < znz

be the ordered observed values
of group Z, partitioning the real line into nz + 1 intervals Izk = (zk−1, zk),
for k = 1, . . . , nz + 1. For convenience, we define x0 = y0 = z0 = −∞ and
xnx+1 = yny+1 = znz+1 = ∞. We assume no tied observations; if they occur,
a standard tie-breaking method can be used [33].

Let the number of future observations from groups X, Y , and Z be denoted
by mx, my, and mz, respectively. Here, we restrict our attention to the case
where the number of future observations equals the number of data obser-
vations (mx = nx, my = ny, and mz = nz), as this is considered a logical
assumption when studying reproducibility. There are

(
2nx

nx

)
possible orderings
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of mx future observations among the nx data observations, with all possible
orderings equally likely. Similarly, there are

(
2ny

ny

)
possible orderings of my

future observations among the ny data observations, and
(
2nz

nz

)
possible order-

ings of mz future observations among the nz data observations, all of which
are equally likely.

4.1 Exact NPI Reproducibility Probabilities (NPI-RP-E)

To derive the exact NPI lower and upper reproducibility probabilities, we
consider all

(
2nx

nx

)(
2ny

ny

)(
2nz

nz

)
possible orderings, denoted by Oℓ for ℓ =

1, 2, . . . ,
(
2nx

nx

)(
2ny

ny

)(
2nz

nz

)
. For each combination of orderings Oℓ, we consider

the corresponding Mack-Wolfe test statistic, given in Equation (3), which we
denote by Apℓ

. Since future observations are not known precisely, but only
their counts within the intervals partitioned by the original data observations
are known for a given ordering, we cannot compute an exact value of Apℓ

for
a specific combination of orderings. However, we can determine the minimum
and maximum possible values, denoted by Apℓ

and Apℓ
, respectively.

Let a specific ordering of nx future observations among the nx data obser-
vations be denoted by (SX

1 , . . . , SX
nx+1), where SX

j are non-negative integers

satisfying
∑nx+1

j=1 SX
j = nx, as introduced in Section 3. Similarly, let a spe-

cific ordering of ny future observations among the ny data observations be
denoted by (SY

1 , . . . , SY
ny+1), with SY

i being non-negative integers satisfy-

ing
∑ny+1

i=1 SY
i = ny, and let a specific ordering of nz future observations

among the nz data observations be denoted by (SZ
1 , . . . , S

Z
nz+1), with SZ

k being

non-negative integers satisfying
∑nz+1

k=1 SZ
k = nz.

Additionally, let j(i) = max{j : x(j) < y(i)} for i = 1, . . . , ny + 1 and
j = 0, 1, . . . , nx, so that x(j(i)) < y(i) < x(j(i)+1). The rank of y(i) in the
combined ordered data from both groups X and Y is then i+ j(i). Likewise,
let k(i) = max{k : z(k) < y(i)} for i = 1, . . . , ny + 1 and k = 0, 1, . . . , nz, so
that z(k(i)) < y(i) < z(k(i)+1). The rank of y(i) in the combined ordered data
from both groups Z and Y is then i+ k(i).

The minimum and maximum values of Apℓ
are given by

Apℓ
=

ny+1∑
i=1

SY
i

[
i−1∑
b=1

SY
b −

ny+1∑
b=i+1

SY
b +

j(i−1)−1∑
a=1

SX
a +

k(i−1)−1∑
c=1

SZ
c

]
, (19)

Apℓ
=

ny+1∑
i=1

SY
i

[
i−1∑
b=1

SY
b −

ny+1∑
b=i+1

SY
b +

j(i)−1∑
a=1

SX
a +

k(i)−1∑
c=1

SZ
c

]
. (20)

For simplicity, the subscript ℓ is omitted on the right-hand side. A detailed
justification of these results is provided in the Appendix.

The NPI lower and upper reproducibility probabilities depend on whether
the original test conclusion was the rejection or non-rejection of H0. If the
original test rejects H0, the lower reproducibility probability is obtained by
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counting the number of orderings, among the total
(
2nx

nx

)(
2ny

ny

)(
2nz

nz

)
possible

orderings, for which Apℓ
≥ Ap,α. The corresponding upper reproducibility

probability is derived by counting the number of orderings where Apℓ
≥ Ap,α.

Thus, the NPI lower and upper reproducibility probabilities are

RP =
1

h

h∑
ℓ=1

1{Apℓ
≥ Ap,α}, (21)

RP =
1

h

h∑
ℓ=1

1{Apℓ
≥ Ap,α}, (22)

where h =
(
2nx

nx

)(
2ny

ny

)(
2nz

nz

)
, and 1{A} is an indicator function that equals 1 if

event A occurs and 0 otherwise.
If the original test does not reject H0, the lower reproducibility proba-

bility is obtained by counting the orderings where Apℓ
< Ap,α must hold,

while the upper reproducibility probability is derived from the orderings where
Apℓ

< Ap,α can hold. In this case, the NPI lower and upper reproducibility
probabilities are

RP =
1

h

h∑
ℓ=1

1{Apℓ
< Ap,α}, (23)

RP =
1

h

h∑
ℓ=1

1{Apℓ
< Ap,α}. (24)

This method for deriving the lower and upper reproducibility probabilities
of the Mack-Wolfe test is practical for small sample sizes, and we refer to it
as the Exact NPI-RP (NPI-RP-E). However, evaluating all possible orderings
becomes computationally infeasible for larger sample sizes. Heuristic methods
are needed; in this paper, we consider two approaches. The first is the sampling
of orderings, which provides approximate estimates for the lower and upper
RP. The second is the NPI bootstrap-based method, which yields a single-point
estimate for RP. We first consider the sampling of orderings approach.

4.2 NPI Reproducibility Using Sampling of Orderings

As already stated in the previous section, evaluating all possible orderings can
become computationally infeasible for large sample sizes. To address this, we
use the NPI-RP sampling of orderings approach (NPI-RP-SO) to approximate
the lower and upper reproducibility probabilities [15]. This method estimates
RP and RP through simple random sampling, where each ordering has an
equal probability of being selected independently of others. Increasing the
number of sampled orderings improves the accuracy of these approximations.

To implement the NPI-RP-SO method for three groups X, Y , and Z, we
randomly sample r orderings from the

(
2nx

nx

)
possible orderings of mx future
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observations among the nx data observations. Similarly, we randomly sample
r orderings for groups Y and Z in the same manner [14, 15]. Each sampled
ordering from one group is paired with the corresponding sampled orderings
from the other groups. Using these sampled orderings, we compute the mini-
mum and maximum values of the Mack-Wolfe test statistic, Ap, by applying
Equations (19) and (20).

If the original test rejects H0 (i.e., Ap ≥ Ap,α), the NPI lower and upper
reproducibility probabilities are estimated as follows:

R̂P =
1

r

r∑
ℓ=1

1{Apℓ
≥ Ap,α}, (25)

R̂P =
1

r

r∑
ℓ=1

1{Apℓ
≥ Ap,α}. (26)

If the original test fails to reject H0 (Ap < Ap,α), the estimates are

R̂P =
1

r

r∑
ℓ=1

1{Apℓ
< Ap,α}, (27)

R̂P =
1

r

r∑
ℓ=1

1{Apℓ
< Ap,α}. (28)

To quantify the uncertainty in these estimates, a 95% confidence interval can
be computed using the normal approximation π̂ ± zα/2

√
π̂(1− π̂)/r, where π̂

is the estimated lower or upper reproducibility probability, r is the number
of sampled orderings, and zα/2 is the (α/2)-upper quantile of the standard
normal distribution. If π̂ is close to 0 or 1, the normal approximation may
produce bounds outside [0, 1]. In such cases, the exact binomial confidence
interval should be used instead; for details, see [41].

5 NPI Reproducibility Using NPI-Bootstrap

As noted earlier, computing the exact NPI lower and upper reproducibility
probabilities is computationally challenging for large sample sizes due to the
rapid increase in the number of orderings of future observations among the
data observations. Additionally, for some statistical tests, deriving an exact
closed-form expression for these probabilities is difficult. To address these
challenges, the NPI Bootstrap (NPI-B) method was introduced to study the
reproducibility of various statistical tests [10, 11].

NPI-B is based on repeated applications of Hill’s assumption A(n), ensur-
ing that all possible orderings of the m future values among the n original
data observations are equally likely to occur [10]. Unlike Efron’s bootstrap
[42], which is primarily aimed at estimating population characteristics, NPI-B
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is specifically designed for prediction, allowing future observations to extend
beyond already observed values.

It is important to note that NPI-B provides a point estimate of the repro-
ducibility probability rather than estimates for the NPI lower and upper
probabilities. Hereafter, we refer to the reproducibility probability estimate
obtained using NPI-B as NPI-RP-B.

The NPI-B method generates future observations by partitioning the real
line into n+1 intervals based on the original n observations. A future observa-
tion is sampled by first selecting one of these intervals with equal probability
1

n+1 and then drawing a value uniformly from the chosen interval. This process
is repeated m times to construct an NPI-B sample of size m, with a particular
focus on the case where m = n. The procedure is further repeated B times to
generate B NPI-B samples. Special attention is required when sampling from
unbounded intervals. If the selected interval is bounded, such as I1 = (x0, x1)
or In+1 = (xn, xn+1), the future value is drawn in the same manner as other
intervals. However, if the chosen interval is unbounded, i.e., I1 with x0 = −∞
or In+1 with xn+1 = ∞, the future value is drawn with probability 1

n+1 using

a normal distribution tail approximation with mean µ = x1+xn

2 and standard

deviation σ = xn−µ
Φ−1( n

n+1 )
, where Φ−1 is the inverse of the normal cumulative

distribution function. For datasets restricted to (0,∞), if the selected inter-
val is (xn,∞), the future value is sampled from the tail of an exponential

distribution with rate parameter λ = ln(n+1)
x(n)

[10, 11].

To approximate the reproducibility probability for umbrella alternative
tests, the NPI-B method is used to generate B NPI-B samples per group. For
each run i (i = 1, 2, . . . , T ), we compute the proportion of cases where the orig-
inal dataset and the B NPI-B samples lead to the same test conclusion, that
is, whether H0 is rejected or not. Let this proportion be denoted as RPi. The
NPI-B estimate of the reproducibility probability (RP) is then given by the
mean of these RPi values. Additionally, other summary statistics, such as the
minimum, median, and maximum of the RPi values, can also be computed.

Formally, the NPI-B estimate of the reproducibility probability, denoted
as NPI-RP-B, is given by

R̂P boot =
1

T

T∑
i=1

RPi =
1

T

T∑
i=1

[
1

B

B∑
b=1

1{t∗b = t∗}

]
, (29)

where t∗ is the test decision (reject or not reject the null hypothesis) based on
the original data, and t∗b is the decision based on the b-th NPI-B sample.

Algorithm 1 summarises this NPI-B approach for estimating the repro-
ducibility probability for umbrella alternatives tests. Since the NPI-B method
is highly flexible, it will be utilised for estimating reproducibility probabilities
for all three umbrella alternative tests, particularly in cases where deriving
exact closed-form solutions is complicated.
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Algorithm 1 NPI-B algorithm for estimating reproducibility probability for
umbrella alternatives tests

1: Apply the statistical test to the original g-group dataset and record the
test outcome (whether H0 is rejected or not).

2: Generate an NPI-B sample from each group based on the original g-group
dataset, then apply the statistical test to these NPI-B samples.

3: Repeat Step 2 a total of B times, recording the test outcome each time.
4: Compute the proportion of cases where the original dataset and the B

NPI-B samples yield the same conclusion; denote this as RP .
5: Repeat Steps 2–4 a total of T times to obtain RPi for i = 1, 2, . . . , T .

The mean of these values is the NPI-B estimate of the reproducibility
probability.

6 Examples

This section presents five examples that demonstrate the NPI-RP approach for
assessing reproducibility across different statistical tests and scenarios. Exam-
ple 1 illustrates the proposed methodology by evaluating the reproducibility
probability for the Mack-Wolfe (MW) and Esra-Fikri (EF) tests using NPI-
RP-E, and then comparing the results with those from the approximation
methods NPI-RP-SO and NPI-RP-B to examine how well they align with the
exact values. Example 2 extends the analysis to larger samples using NPI-RP-
B, highlighting the influence of test statistic weighting and its relationship with
p-values. Example 3 applies NPI-RP-B to investigate reproducibility for the
Jonckheere-Terpstra (JT) test under ordered alternatives using large-sample
simulations. Example 4 shifts focus to real-world data, applying NPI-RP-SO to
analyse communication patterns in a firm using the MW and EF tests. Finally,
Example 5 explores an advanced scenario in which the MW test is applied
with an unknown peak, using Monte Carlo simulations to determine critical
values. Together, these examples highlight the flexibility and applicability of
different NPI-RP methods across a range of data settings.

Example 1 (NPI-RP for MW and EF tests, small samples, known peak)
This example investigates the reproducibility probability for the Mack-Wolfe (MW)
test and Esra-Fikri (EF) test with g = 3 groups (X, Y , and Z) using the NPI-RP-E
approach, as introduced in Section 4.1. A comparison is then made between NPI-RP-
E, NPI-RP-SO, and NPI-RP-B to evaluate whether NPI-RP-B estimates lie within
the lower and upper bounds of NPI-RP-E and NPI-RP-SO.

The study considers artificial rank-based datasets with equal sample sizes: nx =
ny = nz = 3 and nx = ny = nz = 5. The hypothesis of interest is H0 : µx = µy = µz

against the umbrella alternative H1 : µx ≤ µy ≥ µz , where the peak is at the second
group (p = 2). The significance level is α = 0.05.

For the MW test with nx = ny = nz = 3 and nx = ny = nz = 5, the discrete
nature of the test statistic results in nominal significance levels of 0.0476 and 0.0496,
respectively, as shown in Tables 1 and 2. Accordingly, the decision rule for the MW
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Table 1: RP for the MW test and the EF test, with H1 : µx ≤ µy ≥ µz, p = 2,
nx = ny = nz = 3, A2,0.0476 = 16, Z0.05 = 1.645

Ranks Test conclusion NPI-RP-E NPI-RP-B NPI-RP-SO

X Y Z Ap Ã∗
p p-value H0 RP RP Min Mean Median Max R̂P R̂P

1,2,3 7,8,9 4,5,6 18 2.324 0.010 R 0.125 1 0.955 0.971 0.971 0.983 0.114 1
2,3,4 7,8,9 1,5,6 18 2.324 0.010 R 0.125 1 0.760 0.789 0.790 0.822 0.123 1
1,2,3 6,8,9 4,5,7 17 2.066 0.019 R 0.106 0.930 0.645 0.676 0.676 0.720 0.107 0.934
1,2,3 5,8,9 4,6,7 16 1.807 0.035 R 0.081 0.825 0.441 0.478 0.476 0.516 0.089 0.830
1,2,7 5,8,9 3,4,6 16 1.807 0.035 R 0.086 0.832 0.369 0.398 0.397 0.429 0.089 0.824
1,2,3 6,7,9 4,5,8 16 1.807 0.035 R 0.081 0.825 0.459 0.494 0.495 0.536 0.078 0.829
1,2,3 4,8,9 5,6,7 15 1.549 0.061 NR 0.318 0.950 0.591 0.639 0.640 0.676 0.314 0.953
2,3,4 5,7,9 1,6,8 15 1.549 0.061 NR 0.273 0.939 0.603 0.645 0.646 0.684 0.275 0.930
4,6,7 3,8,9 1,2,5 14 1.291 0.098 NR 0.386 0.950 0.656 0.690 0.691 0.722 0.414 0.953
4,5,6 1,8,9 2,3,7 12 0.775 0.219 NR 0.476 0.950 0.713 0.753 0.754 0.784 0.473 0.952
1,4,8 3,5,9 2,6,7 11 0.516 0.303 NR 0.578 0.977 0.826 0.865 0.866 0.888 0.566 0.977
1,2,3 4,5,6 7,8,9 9 0.000 0.500 NR 0.790 1 0.997 0.999 1 1 0.790 1
1,2,8 4,5,6 3,7,9 9 0.000 0.500 NR 0.720 0.995 0.944 0.958 0.958 0.973 0.715 0.997
1,3,4 2,5,6 7,8,9 7 -0.516 0.697 NR 0.833 1 0.986 0.993 0.993 1 0.824 1
1,2,6 3,4,5 7,8,9 6 -0.775 0.781 NR 0.855 1 1 1 1 1 0.846 1
1,2,9 3,4,5 6,7,8 6 -0.775 0.781 NR 0.855 1 0.998 1.000 1 1 0.848 1
5,3,9 1,2,8 7,4,6 5 -1.033 0.849 NR 0.814 0.995 0.926 0.948 0.947 0.966 0.818 0.995
1,4,5 2,3,6 7,8,9 5 -1.033 0.849 NR 0.870 1 0.987 0.993 0.993 1 0.872 1
1,4,7 2,3,5 6,8,9 4 -1.291 0.902 NR 0.889 1 0.996 0.999 0.999 1 0.892 1
4,5,6 1,2,3 7,8,9 0 -2.324 0.990 NR 0.933 1 1 1 1 1 0.932 1

Table 2: RP for the MW test and the EF test, with H1 : µx ≤ µy ≥ µz, p = 2,
nx = ny = nz = 5, α = 0.05, A2,0.0496 = 39, Z0.05 = 1.645

Ranks Test conclusion NPI-RP-E NPI-RP-B NPI-RP-SO

X Y Z Ap Ã∗
p p-value H0 RP RP Min Mean Median Max R̂P R̂P

1,2,3,4,5 11,12,13,14,15 6,7,8,9,10 50 3.062 0.001 R 0.441 1 0.997 0.999 0.999 1 0.443 1
1,2,6,7,8 11,12,13,14,15 3,4,5,9,10 50 3.062 0.001 R 0.441 1 0.974 0.985 0.985 0.997 0.443 1
1,2,3,4,5 10,12,13,14,15 6,7,8,9,11 49 2.939 0.002 R 0.402 0.997 0.966 0.977 0.977 0.987 0.406 0.999
1,2,3,4,5 9,12,13,14,15 6,7,8,10,11 48 2.817 0.002 R 0.367 0.988 0.916 0.939 0.939 0.957 0.367 0.991
1,2,3,4,5 10,11,12,13,14 6,7,8,9,15 45 2.450 0.007 R 0.300 0.932 0.805 0.832 0.832 0.860 0.300 0.927
1,2,3,4,5 9,10,11,13,15 6,7,8,12,14 43 2.205 0.014 R 0.224 0.884 0.695 0.730 0.730 0.767 0.223 0.878
1,2,3,4,5 8,9,10,14,15 6,7,11,12,13 41 1.960 0.025 R 0.172 0.807 0.536 0.586 0.586 0.627 0.174 0.812
1,2,3,4,6 5,11,12,13,14 7,8,9,10,15 40 1.837 0.033 R 0.178 0.775 0.434 0.474 0.474 0.509 0.174 0.784
1,2,3,4,15 5,10,12,13,14 6,7,8,9,11 39 1.715 0.043 R 0.161 0.754 0.393 0.434 0.433 0.469 0.157 0.764
1,3,5,6,14 7,10,11,12,13 2,4,8,9,15 38 1.592 0.056 NR 0.284 0.858 0.571 0.602 0.600 0.648 0.278 0.853
1,3,5,7,14 6,10,11,12,13 2,4,8,9,15 37 1.470 0.071 NR 0.322 0.872 0.617 0.653 0.653 0.698 0.322 0.865
1,2,3,7,11 6,8,9,12,15 4,5,10,13,14 35 1.225 0.110 NR 0.401 0.915 0.663 0.699 0.701 0.735 0.401 0.917
1,2,3,4,5 7,8,9,10,14 6,11,12,13,15 33 0.980 0.164 NR 0.521 0.957 0.732 0.763 0.763 0.794 0.498 0.954
1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 25 0.000 0.500 NR 0.821 1 0.998 1.000 1 1 0.799 1
1,2,3,6,7 4,5,8,9,10 11,12,13,14,15 21 -0.490 0.688 NR 0.866 1 0.993 0.998 0.998 1 0.850 1

1,2,10,14,15 3,4,5,9,12 6,7,8,11,13 18 -0.857 0.804 NR 0.853 0.996 0.956 0.969 0.969 0.982 0.843 0.994
1,12,13,14,15 2,3,4,5,11 6,7,8,9,10 10 -1.837 0.967 NR 0.933 1.000 0.981 0.989 0.989 0.997 0.930 1
1,6,7,11,12 2,3,4,5,9 8,10,13,14,15 8 -2.082 0.981 NR 0.950 1.000 0.995 0.999 0.999 1 0.946 1
4,7,8,9,10 1,2,3,5,6 11,12,13,14,15 2 -2.817 0.998 NR 0.969 1 1 1 1 1 0.969 1
6,7,8,9,10 1,2,3,4,5 11,12,13,14,15 0 -3.062 0.999 NR 0.972 1 1 1 1 1 0.973 1

test is to reject H0 if the test statistic satisfies Ap ≥ A2,0.0476 = 16 for nx = ny =
nz = 3, and Ap ≥ A2,0.0496 = 39 for nx = ny = nz = 5. Similarly, for the EF test,

the null hypothesis is rejected if the test statistic satisfies Ã∗
p ≥ Z0.05 = 1.645.

Throughout this paper, the original test conclusion is denoted as R (Rejection)
when H0 is rejected and NR (Non-Rejection) otherwise. Reported values in the
tables are rounded to three decimal places, except for precise values of 1, which are
presented without additional decimals. The NPI-RP results in Tables 1 and 2 are
identical for the MW and EF tests, as both are applied to three groups with p = 2.
Consequently, the analysis that follows applies to both tests.

To compute the exact NPI lower and upper reproducibility probabilities, we
consider all possible orderings of future observations among the given data. For
nx = ny = nz = 3, there are

(6
3

)
= 20 possible orderings per group, leading to a

total of 203 = 8000 ordering combinations. For nx = ny = nz = 5, the number of
possible orderings per group increases to

(10
5

)
= 252, resulting in 2523 = 1.600×1017

ordering combinations.
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The results in Tables 1 and 2 show that RP is substantially below 0.5 in several
cases and tends to be lower when the test statistic is close to the threshold. Addi-
tionally, RP is lower when H0 is rejected compared to cases of non-rejection, as the
directionality of the alternative hypothesis affects reproducibility. This suggests that
test results near the critical threshold, particularly those leading to rejection, do not
provide strong evidence for reproducibility.

For the exact lower reproducibility probability, H0 is rejected in the future sam-
ples only if all future Y ranks are greater than the smallest observed Y rank, meaning
they do not fall in the first interval for Y ; all future X ranks are smaller than the
largest observed X rank, meaning they do not fall in the last interval for X; and all
future Z ranks are smaller than the largest observed Z rank, meaning they do not
fall in the last interval for Z.

For instance, in the first row of Table 1, where RP = 0.125, this means that all
future Y ranks are greater than 7, all future X ranks are less than 3, and all future
Z ranks are less than 6. Since each of these individual events occurs with probability
0.5 in the NPI framework, and the three groups are independent, the overall lower
reproducibility probability is calculated as 0.5× 0.5× 0.5 = 0.125. So, there are

(5
3

)
possible orderings for each of the future X, Y , and Z ranks, leading to a total of(5
3

)(5
3

)(5
3

)
= 1000 ordering combinations out of the 8000 total combinations.

Conversely, if at least one future X rank exceeds the largest observed X rank,
one future Y rank is smaller than the smallest observed Y rank, or one future Z rank
exceeds the largest observed Z rank, then H0 will not be rejected in all cases. This
occurs because unbounded intervals allow future X ranks to exceed future Y ranks
or future Z ranks to exceed Y , which affects the test outcome. Thus, for the extreme
case in the last row of Table 1, where RP = 0.933, all future Y ranks are greater than
3, all future X ranks are smaller than 4, and all future Z ranks are smaller than 7.

Tables 1 and 2 show that, in most cases, different rank configurations within a
sample can lead to the same test statistic value, yet the NPI-RP estimates differ.
This indicates that NPI-RP depends on the specific ranks rather than solely on the
test statistic value. An exception occurs in Table 1 for two cases with Ap = 6, where
the estimates coincide due to an identical number of orderings leading to the same
test result. However, this is not a general property.

In Table 1, the NPI lower and upper reproducibility probabilities exhibit signifi-
cant imprecision due to the small sample size per group, resulting in large differences
between the corresponding lower and upper estimates. As sample sizes increase,
as seen in Table 2, the imprecision decreases, reflecting the greater amount of
information available.

For cases where reproducibility is close to 1, the imprecision is minimal, whereas
for lower reproducibility values, the imprecision is relatively higher. Since the NPI-RP
approach is data-driven, imprecision generally decreases with larger sample sizes.

For larger samples, exhaustively evaluating all possible orderings becomes compu-
tationally infeasible. For instance, with nx = ny = nz = 7, the NPI-RP-E approach

requires evaluating
(
14
7

)3
= (3432)3 = 4.024 × 1010 possible orderings of future

observations, making exact calculations impractical. Therefore, alternative compu-
tational methods, such as NPI-RP-SO and NPI-RP-B, are required to approximate
NPI reproducibility probabilities.

For NPI-RP-SO, r∗ = 2000 orderings were sampled. The NPI-RP-B method
was applied using Algorithm 1 with B = 1000 and T = 100. Summary statis-
tics—including the minimum, mean, median, and maximum—were computed for
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RPi, i = 1, 2, . . . , T . The results were then examined to determine whether NPI-RP-B
estimates fell within the bounds of NPI-RP-E and NPI-RP-SO.

From Tables 1 and 2, it is evident that 100% of NPI-RP-B estimates fall within
the bounds of NPI-RP-E and NPI-RP-SO. This is expected due to the construction of
NPI lower and upper probabilities, which make no assumptions about how probability
masses are assigned within the intervals between consecutive observations. While
this result may not hold in rare cases due to the randomness inherent in bootstrap
inference, it reinforces the reliability of NPI-RP-B, demonstrating consistency with
the bounds of NPI-RP-E and NPI-RP-SO.

Similar findings have been reported in previous NPI studies. In one study, it was
found that 100% of NPI-RP-B estimates fell within the bounds of NPI-RP-E for
the one-sample signed rank test and the Wilcoxon-Mann-Whitney test [10]. Another
study found that 88% of NPI-RP-B estimates were within the bounds of NPI-RP-SO
for the likelihood ratio test, demonstrating a strong consistency given the inherent
variability of bootstrap-based methods [43].

Example 2 (NPI-RP-B for MW and EF tests, known peak, large samples)
This example examines the reproducibility probability for the MW and EF tests with
a known peak using simulations. The reproducibility probability is estimated using
the NPI-RP-B method, as described in Algorithm 1, with B = 1000 and T = 100
iterations. The null hypothesis is H0 : µ1 = µ2 = · · · = µg, with the alternative
hypothesis H1 : µ1 ≤ µ2 ≤ · · · ≤ µp−1 ≤ µp ≥ µp+1 ≥ · · · ≥ µg. The level of
significance is α = 0.05.

Data were simulated under both H0 and H1, with g = 5 groups, n = 20, and a
peak at p = 3. Table 3 presents the reproducibility probability (RP) estimates for
data generated under H0 from a standard normal distribution. Table 4 provides the
RP estimates for data generated under H1 from normal distributions with means
µx = 0.1, µy = 0.2, µz = 0.5, µv = 0.2, and µw = 0.1, with a common standard
deviation of 1.

The reproducibility probability estimates differ between the MW and EF tests
due to differences in how their test statistics are computed. Specifically, in the EF
test, the Mann-Whitney sums are not uniformly weighted with a value of 1, as they
are in the case of g = 3. This results in varying reproducibility probability values
between the two tests. Figure 1 explores the relationship between NPI-RP-B and the
p-value for both the MW and EF tests.

From Figure 1, it is evident that NPI-RP-B estimates tend to be lower when
the observed p-value is close to the significance threshold α = 0.05, particularly in
cases where the null hypothesis is rejected. This is due to the presence of direc-
tional alternatives. When the p-value is further from the threshold, the data provide
stronger evidence supporting the reproducibility of the original test result. These find-
ings align with previous studies on NPI-based reproducibility probability estimation
[10, 15, 43, 44].

Example 3 (NPI-RP-B for JT test, large samples) This example examines the
reproducibility probability for the Jonckheere-Terpstra (JT) test for five groups, X,
Y , Z, V , and W , using simulations with large sample sizes. The reproducibility
probability is estimated using the NPI-RP-B method, as described in Algorithm 1.
The hypothesis under consideration is H0 : µx = µy = µz = µv = µw versus
the ordered alternative H1 : µx ≤ µy ≤ µz ≤ µv ≤ µw, with equal sample sizes
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Table 3: RP for the MW test and the EF test under H0, n = 20, α = 0.05,
A3,0.05 = 1410, Z0.05 = 1.645

Ap p-value H0 Min Mean Median Max Ã∗
p p-value H0 Min Mean Median Max

1406 0.053 NR 0.515 0.546 0.546 0.600 1.572 0.058 NR 0.524 0.558 0.560 0.606
1371 0.090 NR 0.576 0.611 0.610 0.647 1.352 0.088 NR 0.572 0.606 0.606 0.646
1328 0.157 NR 0.690 0.719 0.720 0.755 1.111 0.133 NR 0.650 0.679 0.679 0.712
1244 0.365 NR 0.799 0.826 0.827 0.853 0.362 0.359 NR 0.797 0.827 0.827 0.851
1206 0.481 NR 0.842 0.867 0.867 0.894 0.058 0.477 NR 0.840 0.868 0.868 0.889
1189 0.534 NR 0.851 0.880 0.879 0.899 -0.131 0.552 NR 0.851 0.884 0.885 0.905
1146 0.664 NR 0.907 0.927 0.926 0.947 -0.398 0.655 NR 0.908 0.926 0.927 0.942
1123 0.727 NR 0.930 0.948 0.948 0.961 -0.598 0.725 NR 0.929 0.946 0.946 0.961
1086 0.815 NR 0.949 0.962 0.963 0.974 -0.881 0.811 NR 0.945 0.961 0.962 0.973
994 0.947 NR 0.974 0.984 0.984 0.991 -1.625 0.948 NR 0.975 0.985 0.985 0.993

Table 4: RP for the MW test and the EF test under H1, n = 20, α = 0.05,
A3,0.05 = 1410, Z0.05 = 1.645

Ap p-value H0 Min Mean Median Max Ã∗
p p-value H0 Min Mean Median Max

1578 0.001 R 0.746 0.779 0.779 0.811 2.841 0.002 R 0.734 0.763 0.763 0.790
1520 0.006 R 0.696 0.731 0.733 0.762 2.511 0.006 R 0.690 0.729 0.730 0.761
1467 0.018 R 0.564 0.610 0.611 0.647 2.201 0.014 R 0.593 0.641 0.641 0.678
1431 0.035 R 0.475 0.515 0.514 0.545 1.829 0.034 R 0.493 0.525 0.525 0.556
1415 0.046 R 0.445 0.489 0.490 0.524 1.730 0.042 R 0.456 0.504 0.506 0.538
1364 0.099 NR 0.591 0.623 0.624 0.658 1.279 0.100 NR 0.587 0.623 0.624 0.656
1328 0.157 NR 0.683 0.709 0.710 0.733 0.975 0.165 NR 0.680 0.711 0.711 0.738
1292 0.235 NR 0.722 0.756 0.757 0.783 0.750 0.227 NR 0.716 0.746 0.747 0.773
1167 0.602 NR 0.884 0.907 0.907 0.925 -0.294 0.615 NR 0.896 0.915 0.917 0.934

nx = ny = nz = nv = nw = 20 and a significance level of α = 0.05. The null
hypothesis is rejected at the nominal level α = 0.0499 if J ≥ 2271.

Data were simulated under both H0 and H1. In Table 5, data under H0 were
generated from the standard normal distribution. In Table 6, data under H1 were
generated from normal distributions with increasing means: µx = 0, µy = 0.1, µz =
0.2, µv = 0.3, and µw = 0.4, with a common standard deviation of 1.

The simulation study follows these steps: Algorithm 1 is applied with B = 1000
and T = 100. For each iteration, a sample is generated for each group, the JT test
is performed, and the test outcomes are recorded. The reproducibility probability
estimates for 20 simulated datasets per scenario are reported in Tables 5 and 6.

The relationship between NPI-RP-B and the p-value of the JT test is examined.
The p-value is used for visualization rather than the critical value, as each simulation
scenario has a different threshold based on sample size and the number of groups.
Despite this distinction, both approaches lead to the same conclusion about rejecting
or not rejecting H0. The vertical line in Figure 2 represents the significance level
α = 0.05.

Figure 2a shows that when samples are generated under H0, i.e., from N(0, 1),
the null hypothesis is rarely rejected. Conversely, Figure 2b illustrates that under H1,
where groups are sampled with increasing means, the null hypothesis is rejected more
frequently, as expected. This aligns with the concept that higher power increases the
likelihood of correctly rejecting H0 when H1 is true.

As expected, reproducibility probabilities are low when the observed p-value is
close to the threshold 0.05, with RP estimates tending to be lower in rejection cases
than in non-rejection cases—often substantially below 0.5. This is due to the direc-
tional nature of the ordered alternatives. The RP estimates increase as the observed
p-value moves further from the threshold, regardless of whether H0 is rejected. The
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Fig. 1: NPI-RP-B for the MW test and EF test, n = 20, α = 0.05

similarity between the median and mean of RPi (i = 1, . . . , T ) across simulated
datasets suggests that the distribution of RPi values is reasonably symmetric for
each scenario.

Example 4 (NPI-RP-SO for MW and EF tests, real-world data with dif-
ferent assumptions for peak) This example applies the NPI-RP-SO method to
the MW test using the Telephone Communications data from [45], provided in Table
7. In this study, a firm seeks to enhance the cost-effectiveness of its communica-
tion strategies. Ten home office executives were randomly selected from the Sales,
Production, and Research and Development departments to participate in the study.
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Table 5: RP for the JT test under H0, n = 20, J0.0499 = 2271
J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

2278 0.046 R 0.428 0.470 0.471 0.505 1935 0.655 NR 0.893 0.916 0.917 0.934
2261 0.057 NR 0.515 0.547 0.548 0.577 1902 0.725 NR 0.925 0.942 0.942 0.955
2228 0.083 NR 0.560 0.608 0.610 0.645 1892 0.745 NR 0.943 0.959 0.959 0.973
2195 0.119 NR 0.643 0.667 0.666 0.695 1850 0.820 NR 0.930 0.951 0.951 0.965
2157 0.171 NR 0.701 0.731 0.732 0.761 1814 0.871 NR 0.966 0.978 0.978 0.987
2148 0.185 NR 0.692 0.727 0.726 0.753 1736 0.946 NR 0.977 0.987 0.987 0.996
2114 0.245 NR 0.743 0.775 0.776 0.799 1660 0.981 NR 0.989 0.995 0.996 1
2093 0.287 NR 0.766 0.806 0.808 0.835 1609 0.992 NR 0.992 0.998 0.998 1
2071 0.334 NR 0.790 0.829 0.829 0.858 1556 0.997 NR 0.995 0.999 0.999 1
1988 0.530 NR 0.873 0.896 0.896 0.914 1397 1.000 NR 0.997 1.000 1 1

Table 6: RP for the JT test under H1, n = 20, J0.0499 = 2271
J p-value H0 Min Mean Median Max J p-value H0 Min Mean Median Max

2518 0.001 R 0.815 0.837 0.837 0.862 2206 0.106 NR 0.623 0.659 0.659 0.692
2469 0.002 R 0.755 0.780 0.780 0.810 2190 0.125 NR 0.628 0.652 0.653 0.683
2457 0.003 R 0.711 0.737 0.737 0.768 2151 0.180 NR 0.682 0.715 0.716 0.747
2427 0.005 R 0.673 0.706 0.707 0.736 2072 0.332 NR 0.764 0.798 0.798 0.828
2375 0.011 R 0.596 0.633 0.632 0.666 2029 0.431 NR 0.814 0.854 0.854 0.877
2330 0.022 R 0.533 0.567 0.570 0.605 2003 0.494 NR 0.886 0.912 0.912 0.932
2308 0.031 R 0.501 0.538 0.540 0.570 1964 0.588 NR 0.896 0.914 0.915 0.933
2286 0.041 R 0.462 0.496 0.497 0.528 1923 0.681 NR 0.917 0.932 0.932 0.948
2280 0.044 R 0.438 0.483 0.484 0.515 1842 0.832 NR 0.953 0.968 0.968 0.980
2242 0.071 NR 0.535 0.581 0.581 0.615 1789 0.901 NR 0.969 0.981 0.981 0.990
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Fig. 2: NPI-RP-B for the JT test, with g = 5, n = 20, α = 0.05

The hypothesis of interest is H0 : µx = µy = µz against H1 : µx ≤ µy ≥ µz , with
equal sample sizes of nx = ny = nz = 10. The test is conducted at a significance level
of α = 0.05, with a threshold value of A2,0.0498 = 138, meaning the null hypothesis

is rejected if Ap ≥ 138. For the EF test, the null hypothesis is rejected if Ã∗
p ≥ 1.645.

Three different cases are considered, as summarised in Table 8. Since the EF test
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Table 7: Telephone communications data
Data mean std. dev.

Sales 343 495 602 666 796 813 894 920 960 1499 798.8 315.637
Production 126 156 216 291 345 488 516 542 546 1362 458.8 355.422
Research and Development 391 450 472 496 609 645 705 763 910 1309 675 273.985

Table 8: Test results for the three cases of Telephone Communications data
Cases X Y Z Ap Ã∗

p Reject H0?

Case 1 Production Sales Research and Development 148 2.112 Reject H0

Case 2 Sales Research and Development Production 110 0.440 Do not reject H0

Case 3 Sales Production Research and Development 42 -2.552 Do not reject H0

reaches the same conclusions as the MW test, its outcomes are shown in Table 8 but
omitted from further analysis.

Table 9: NPI-RP-SO for the MW test with H1 : µx ≤ µy ≥ µz, p = 2,
α = 0.05, A2,0.0498 = 138

Case 1: Sales is the peak(Y )

r∗ R̂P CI(95%) R̂P CI(95%)
10 0.400 (0.096, 0.704) 0.700 (0.416, 0.984)

100 0.350 (0.257, 0.443) 0.830 (0.756, 0.904)
500 0.284 (0.244, 0.324) 0.794 (0.759, 0.829)

1,000 0.364 (0.334, 0.394) 0.800 (0.775, 0.825)
5,000 0.331 (0.318, 0.344) 0.807 (0.796, 0.818)

10,000 0.327 (0.318, 0.336) 0.801 (0.793, 0.809)
50,000 0.320 (0.316, 0.324) 0.805 (0.802, 0.808)

100,000 0.322 (0.319, 0.325) 0.803 (0.801, 0.805)
150,000 0.320 (0.318, 0.322) 0.807 (0.805, 0.809)

Case 2: Research and development is the peak(Y )

r∗ R̂P CI(95%) R̂P CI(95%)
10 0.800 (0.444, 0.975) 1 (0.692, 1)

100 0.650 (0.557, 0.743) 0.950 (0.907, 0.993)
500 0.680 (0.639, 0.721) 0.958 (0.940, 0.976)

1,000 0.622 (0.592, 0.652) 0.945 (0.931, 0.959)
5,000 0.656 (0.643, 0.669) 0.950 (0.944, 0.956)

10,000 0.658 (0.649, 0.667) 0.954 (0.950, 0.958)
50,000 0.661 (0.657, 0.665) 0.953 (0.951, 0.955)

100,000 0.663 (0.660, 0.666) 0.954 (0.953, 0.955)
150,000 0.664 (0.662, 0.666) 0.955 (0.954, 0.956)

Case 3: Production is the peak(Y )

r∗ R̂P CI(95%) R̂P CI(95%)
10 1 (0.692, 1) 1 (0.692, 1)

100 0.970 (0.915, 0.994) 1 (0.964, 1)
500 0.978 (0.965, 0.991) 1 (0.993, 1)

1,000 0.976 (0.967, 0.985) 1 (0.996, 1)
5,000 0.976 (0.972, 0.980) 0.999 (0.999, 1)

10,000 0.980 (0.977, 0.983) 0.999 (1.000, 1)
50,000 0.979 (0.978, 0.980) 0.999 (1.000, 1)

100,000 0.979 (0.978, 0.980) 0.999 (1.000, 1)
150,000 0.978 (0.977, 0.979) 0.999 (1.000, 1)
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For Case 1, the MW test is applied with Production as group X, Sales as group
Y , and Research and Development as group Z, yielding Ap = 148, which exceeds the
threshold of 138. Thus, the null hypothesis is rejected. In Case 2, Sales is considered
as group X, Research and Development as group Y , and Production as group Z,
leading to Ap = 110 < 138, so the null hypothesis is not rejected. In Case 3, Sales is
group X, Production is group Y , and Research and Development is group Z, yielding
Ap = 42 < 138, again resulting in non-rejection of the null hypothesis.

Since computing exact lower and upper reproducibility probabilities requires
evaluating

(20
10

)(20
10

)(20
10

)
= 6.307× 1015 ordering combinations, it is computationally

infeasible. Instead, the sampling of orderings method is used to approximate these
probabilities. Random samples of orderings r are drawn for each group, and the
sampled orderings are used to compute the minimum and maximum MW test statis-
tics. This allows for approximate estimation of the lower and upper reproducibility
probabilities, along with their corresponding 95% confidence intervals.

From Table 9, in Case 1, the lower reproducibility probability is relatively low
since the test statistic Ap = 148 is close to the threshold. In contrast, for Case 3, R̂P
is higher because Ap = 42 is far from the threshold, making the test outcome more
stable under future replications.

The table also shows that increasing r has a minor impact on the estimates,
with changes occurring only in the second decimal place. This suggests that reason-
able approximations of the NPI lower and upper reproducibility probabilities can be
obtained with r ≥ 10, 000, which is significantly smaller than the total number of
orderings. The first application of NPI-RP-SO for test reproducibility, as carried out
by [14] for the likelihood ratio test, suggests that sampling at least 2,000 orderings is
sufficient for reliable estimates. Thus, NPI-RP-SO provides a computationally effi-
cient way to approximate lower and upper reproducibility probabilities while avoiding
the computational burden of exhaustive enumeration.

Example 5 (NPI-RP-B for MW Test with Unknown Peak) This example
examines the NPI reproducibility probability for the MW test when the peak position
is unknown and must be estimated from the data. The NPI-RP-B method is applied
using Algorithm 1, with B = 1000 and T = 1. The peak is estimated by first
computing standardised Mann–Whitney statistics for each group, and identifying the
group(s) with the maximum value. The Mack–Wolfe statistic is then calculated based
on this estimated peak position. This setup enables us to investigate how uncertainty
in peak estimation impacts the reproducibility of test results.

In this example, the reproducibility probability is assessed for g = 3 groups, X,
Y , and Z, each with sample size n = 10. The hypothesis of interest is H0 : µ1 = µ2 =
· · · = µg against H1 : µ1 ≤ µ2 ≤ · · · ≤ µp−1 ≤ µp ≥ µp+1 ≥ · · · ≥ µg, where the
peak position p is unknown. The level of significance is set at α = 0.05, leading to
the critical value A0.0498 = 2.112, obtained from [28]. The null hypothesis is rejected
if A′

p̂ ≥ 2.112. For the MW test with an unknown peak and large sample sizes, the
Monte Carlo Approximation is used to obtain the critical values.

In Table 10, the original data are generated from Normal distributions with means
µx = 0, µy = 1.5, and µz = 1, with a standard deviation of 1. The table presents
the NPI-RP estimates for 10 original samples. For each sample, the probability of
reaching the same test conclusion in the future is computed based on the B = 1000
bootstrap replications. Additionally, the contribution of each peak position to this
probability is shown.
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Table 10: NPI-RP-B for the MW test with unknown peak, k = 3, X ∼
N(0, 1), Y ∼ N(1.5, 1), Z ∼ N(1, 1), n = 10, α = 0.05, A0.0498 = 2.112,
B = 1000, T = 1

Test conclusion Rejection Non-rejection
Samples p̂ A′

p̂ H0 NPI-RP-B p̂ = 1 p̂ = 2 p̂ = 3 NPI-RP-B p̂ = 1 p̂ = 2 p̂ = 3

1 2 4.267 R 0.992 0.000 0.984 0.008 0.008 0.000 0.006 0.002
2 3 3.384 R 0.812 0.000 0.041 0.771 0.188 0.007 0.021 0.160
3 3 3.004 R 0.867 0.000 0.257 0.610 0.133 0.008 0.053 0.072
4 2 2.948 R 0.746 0.001 0.618 0.127 0.254 0.012 0.133 0.109
5 2 2.772 R 0.855 0.002 0.587 0.266 0.145 0.008 0.092 0.045
6 2 2.640 R 0.782 0.004 0.561 0.217 0.218 0.013 0.152 0.053
7 2 2.552 R 0.888 0.001 0.436 0.451 0.112 0.002 0.051 0.059
8 2 2.376 R 0.560 0.013 0.477 0.070 0.440 0.059 0.261 0.120
9 3 2.281 R 0.587 0.001 0.113 0.473 0.413 0.023 0.098 0.292
10 2 1.628 NR 0.369 0.017 0.278 0.074 0.631 0.124 0.306 0.201

For example, in the first sample in Table 10, the estimated peak group in the
original data is the second group (p̂ = 2), and the null hypothesis is rejected. The
probability of rejecting H0 in the 1000 bootstrap replications is 0.992. The majority
of this probability comes from cases where the peak remains in the second group
(p̂ = 2) in future samples, contributing 0.984 to the estimate. Cases where the peak
shifts to the third group contribute 0.008, while no future samples have a peak at
p̂ = 1.

In general, the estimated peak group in the original sample contributes the most
to the reproducibility probability in future bootstrap samples. The NPI reproducibil-
ity probability is lower when the test statistic is close to the threshold, particularly
when the null hypothesis is rejected. Conversely, when the test statistic is further from
the threshold, NPI-RP-B estimates are higher, indicating greater reproducibility.

7 Concluding Remarks

This paper introduced NPI-based methods for assessing the reproducibil-
ity of the Mack-Wolfe (MW) test, the Esra and Fikri (EF) test, and the
Jonckheere-Terpstra (JT) test. Exact lower and upper reproducibility proba-
bilities were derived for the MW test with three groups; however, for larger
sample sizes and more than three groups, exhaustive enumeration of all
possible orderings becomes computationally infeasible. To address this, two
NPI-based approaches were implemented: the sampling of orderings and the
NPI-bootstrap technique. These methods provide feasible alternatives for com-
puting reproducibility probabilities across all sample sizes. The computational
efficiency and consistency of results obtained using NPI-B and sampling-
based methods demonstrate their effectiveness in overcoming computational
challenges in large samples. This work extends the development of NPI repro-
ducibility, originally introduced by Coolen and BinHimd [11], and the findings
align with previous NPI studies on test reproducibility. Notably, the results
confirm that reproducibility probability tends to be low when the test statistic
is close to the decision threshold. A close similarity between the reproducibil-
ity probability estimates for the MW and EF tests is observed, particularly in
large-sample settings, as demonstrated in Example 2.
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Several research challenges remain for advancing NPI methods in repro-
ducibility probability. This study examined the reproducibility of the JT
test using the NPI-B approach, but deriving exact lower and upper repro-
ducibility probabilities for the JT test remains an open problem that may
require methodological developments. Similarly, while deriving exact lower
and upper reproducibility probabilities for the MW test with more than
three groups remains an open problem, the computational challenges involved
may make it more practical to explore alternative methods for efficiently
approximating these probabilities. Further investigations could also explore
the reproducibility of other umbrella alternatives tests, such as the Modified
Jonckheere-Terpstra test [46], the Page test [47], the Chen and Wolfe test
[25], and the Hettmansperger and Norton test [24], contributing to a broader
understanding of reproducibility in nonparametric hypothesis testing.
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Appendix A

Proof of Equations (19) and (20) We consider the hypothesis test H0 : µx = µy =
µz against the alternative H1 : µx ≤ µy ≥ µz , where p = 2 refers to the second
group, Y . In this case, the Mack-Wolfe test for three groups X, Y , and Z is based
on the sum of the Mann-Whitney counts UXY and UZY , expressed as:

Ap = UXY + UZY =

[
RXY − ny(ny + 1)

2

]
+

[
RZY − ny(ny + 1)

2

]
,

where RXY is the sum of the ranks of group Y when X and Y are combined,
and RZY is the sum of the ranks of group Y when Y and Z are combined.

For each combination of orderings Oℓ, the corresponding Mack-Wolfe test statis-
tic is denoted by Apℓ . Within the NPI framework, no assumptions are made about
the exact locations of future observations within the intervals (xj−1, xj), (yi−1, yi),
and (zk−1, zk). However, the number of future observations falling within each inter-
val is known. As a result, an exact value of Apℓ for a given ordering cannot be
determined, but its minimum and maximum possible values, denoted by Apℓ

and

Apℓ , respectively, can be derived. For simplicity, we omit the index ℓ in the following
derivations.

To determine the minimum value, Apℓ
, all SX

j future X observations in the

interval (xj−1, xj) are set to xj , all S
Y
i future Y observations in the interval (yi−1, yi)

are set to yi−1, and all SZ
k future Z observations in the interval (zk−1, zk) are set

to zk. Under these conditions, the ranks of the SY
i future Y observations at yi−1 in

the combined X&Y dataset are:

i−1∑
b=1

SY
b +

j(i−1)−1∑
a=1

SX
a + 1, . . . ,

i−1∑
b=1

SY
b +

j(i−1)−1∑
a=1

SX
a + SY

i . (A1)

Similarly, in the combined Z&Y dataset, the ranks are:
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i−1∑
b=1

SY
b +

k(i−1)−1∑
c=1

SZ
c + 1, . . . ,

i−1∑
b=1

SY
b +

k(i−1)−1∑
c=1

SZ
c + SY

i . (A2)

Summing these ranks gives:

[(
SY
i

[ i−1∑
b=1

SY
b +

j(i−1)−1∑
a=1

SX
a

]
+

SY
i (SY

i + 1)

2

)
− ny(ny + 1)

2

]
+

[(
SY
i

[ i−1∑
b=1

SY
b +

k(i−1)−1∑
c=1

SZ
c

]
+

SY
i (SY

i + 1)

2

)
− ny(ny + 1)

2

]
. (A3)

Summing over all i = 1, . . . , ny + 1 and using
∑ny+1

i=1 SY
i = ny leads to:

Apℓ
=

ny+1∑
i=1

SY
i

[
i−1∑
b=1

SY
b −

ny+1∑
b=i+1

SY
b +

j(i−1)−1∑
a=1

SX
a +

k(i−1)−1∑
c=1

SZ
c

]
. (A4)

To determine the maximum value,Apℓ , all S
X
j futureX observations in (xj−1, xj)

are set to xj−1, all S
Y
i future Y observations in (yi−1, yi) are set to yi, and all SZ

k

future Z observations in (zk−1, zk) are set to zk−1. The ranks of the SY
i future Y

observations at yi in the combined X&Y dataset are:

i−1∑
b=1

SY
b +

j(i)−1∑
a=1

SX
a + 1, . . . ,

i−1∑
b=1

SY
b +

j(i)−1∑
a=1

SX
a + SY

i . (A5)

Similarly, in the combined Z&Y dataset, the ranks are:

i−1∑
b=1

SY
b +

k(i)−1∑
c=1

SZ
c + 1, . . . ,

i−1∑
b=1

SY
b +

k(i)−1∑
c=1

SZ
c + SY

i . (A6)

Summing these ranks gives:

[(
SY
i

[ i−1∑
b=1

SY
b +

j(i)−1∑
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SX
a

]
+

SY
i (SY
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2

]
+

[(
SY
i

[ i−1∑
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SY
b +
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c

]
+

SY
i (SY

i + 1)

2

)
− ny(ny + 1)

2

]
. (A7)

Summing over all i = 1, . . . , ny + 1 and using
∑ny+1

i=1 SY
i = ny leads to:

Apℓ =

ny+1∑
i=1

SY
i

[
i−1∑
b=1

SY
b −

ny+1∑
b=i+1

SY
b +

j(i)−1∑
a=1

SX
a +

k(i)−1∑
c=1

SZ
c

]
. (A8)

□
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