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Abstract

Reproducibility of experimental conclusions is an important topic in
various fields, including social studies. The lack of reproducibility in
research results not only limits scientific progress but also wastes time,
resources, and undermines society’s confidence in scientific findings.
This paper focuses on the statistical reproducibility of hypothesis test
outcomes based on data collected using randomised response tech-
niques (RRT). Nonparametric predictive inference (NPI) is used to
quantify reproducibility, which is well-suited to treat reproducibil-
ity as a prediction problem. NPI relies on few model assumptions
and provides lower and upper bounds for reproducibility probabilities.
This paper concludes that less variability in the reported responses
of RRT methods leads to higher reproducibility of statistical hypoth-
esis tests based on RRT data with the same degree of privacy.
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1 Introduction

In statistics, reproducibility refers to the ability to reproduce a study’s conclu-
sions if the study is repeated in the same way. Science depends substantially on
reproducibility to ensure that its findings are valid. Goodman [1] emphasised
the importance of the statistical reproducibility challenge for investigations.
He argued that p-values have been inaccurately used and misunderstood in
research, providing the results a misleading aspect of confidence and ability
for generalisation. He pointed out that p-values do not indicate effect size or
reproducibility probability, which are crucial to research. Goodman [1] advo-
cated a more detailed and open approach to statistical inference, one that
involves effect sizes, confidence intervals, reproducibility probability, and other
measures. Senn [2] agrees with Goodman that the p-value and reproducibil-
ity probability are separate measurements. He did not agree with Goodman’s
claim that the p-value overstates the strength of the evidence against the null
hypothesis; however, Senn [2] argued that there is a connection between the
p-values and reproducibility probability.

Coolen and BinHimd [3] presented NPI for the reproducibility of some
basic tests. Wilcoxon’s signed rank test and the two sample rank sum test were
used to introduce nonparametric predictive inference (NPI) for reproducibility
probability (RP) [3]. NPI for Bernoulli quantities [4] and for real-valued data
[5] were both used for these inferences. They produced NPI lower and upper
reproducibility probabilities, RP and ﬁ, instead of precise values. The NPI-
bootstrap approach, as developed and demonstrated by BinHimd [32] for the
Kolmogorov-Smirnov test, can be used to provide NPI for more complex test
situations.

In order to increase the validity of scientific findings, Billheimer [6] empha-
sises the significance of predictive inference and scientific reproducibility.
Additionally, Billheimer argues that predictive inference provides a suitable
method for inference on reproducibility by taking the distribution of future
data into account. Next, he models the predictive distribution for the next
observation, X, 1, given the original observation X,,, and uses the de Finetti
representation theorem [7]. His viewpoint is that parametric modelling is a
useful approximation of the prior distribution of either parameters or possible
observations, with parameter choices only affecting the distribution of future
observables. Additionally, findings or actions based on predictions should be
evaluated in the context of the research problem. He also refers to the impor-
tance of the predictive inference method which encourages statisticians to
characterise interesting findings using observable quantities and predict the
probability of them in future studies.

This paper reports the first study of reproducibility of statistical inferences
based on data collected using RRT methods. The RRT methods used can
be considered to be classical methods, which seemed to be a good starting
point to explore aspects of reproducibility. In recent years, many important
contributions have been published on RRT methodology, leading to quite a
wide variety of RRT methods. While these mostly still build on the classic
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ideas, they consider, for example, more explicitly the respondent privacy and
efficiency [40, 41]. It will be of great importance to study reproducibility of
inferences based on data using such more modern RRT methods in the future.

Thus, in this paper, we study the reproducibility of statistical tests based
on data collected from randomised response techniques (RRT). These RRTs
can be used in social studies to elicit a true response to sensitive questions,
which can be an effective method to determine the proportion of sensitive
characteristics. We define the reproducibility probability (RP) of a test as the
probability that the test result, whether the null hypothesis is rejected or not,
will be the same if the test is repeated using an experiment done in the same
way as the original experiment.

This paper is organised as follows. Section 2 introduces the RRT meth-
ods for the study in this paper. Nonparametric Predictive Inference (NPI)
is demonstrated in Section 3. Section 4 explains NPI for RP (NPI-RP) for
one-sided tests. Section 5 introduces a measure of reproducibility probability
(MRP) and presents a comparison of the reproducibility of hypothesis tests
using data collected by RRT. Section 6 presents a discussion of related topics
for further research.

2 Randomised response techniques (RRT)

Randomised response techniques (RRT) are used to avoid possible embarrass-
ment when respondents are asked sensitive questions. A spinner, a deck of
cards, or a coin can be used as a randomisation device, and the responses
are hidden from the interviewer. These methods help individuals to main-
tain their privacy. There are two basic RRT method approaches: qualitative
randomised response techniques using 'Yes’ or 'No’ responses and quantita-
tive randomised response methods using real numbers. In this paper, we only
consider qualitative RRT methods.

2.1 Qualitative randomised response techniques

In this section, we introduce qualitative RRT for surveys in which sensitive
questions are answered using qualitative binary response variables, typically
‘Yes’ or ‘No’. Warner [8] presented the first RRT method, which we refer to
as the Warner Method (WM). Suppose that we want to estimate the propor-
tion 7t of a population who have a sensitive characteristic A using the WM
method. In this method, there are two questions, Q; and Qs, to determine if
the respondent is in the target group A (they have the sensitive characteris-
tic) or if they do not have the sensitive characteristic so they belong to A, as
follows:

Q1 : Are you a member of group A7
Q> : Are you a member of group A?
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Assume that a sample of size n is selected from a target population, and there
is a randomisation device which helps respondents to choose the question.
Suppose that with probability y, the respondent is asked question Qp, which
is sensitive, and with probability 1 — y, the respondent is asked question Qa,
which is also sensitive, where y is known to the interviewer. As a result, the
number of people who get question Q7 is Binomially distributed with sample
size n and parameter y. Each response is either Yes (Y) or No (N). The
probability of a "Yes’ answer is:

Py =yn+(1-y)1-n) (1)

Warner [8] suggested that the probability of a sensitive question in the
randomisation device should be greater than 0.5. The reason for this choice
is that if ¥ = 0.5, then the probability of respondent i saying ‘Yes’ will not
depend on 7 in Equation (1), so, the response would provide no information
about m. If y = 1, we just return to the non-RRT method and use the direct
question. If we choose 0.5 < ¥y <1 or 0 < y < 0.5, the respondent provides
a useful response, and the respondent does not reveal to which group they
belong [8].

Assume that Y is the Binomial random quantity of the number of ‘Yes’
responses to the chosen question where Y ~ Bin(n, P;,)) and Y € {0,1,...,n}.
Then, the expected value of Y is E(Y) = nPj, , and the estimator 7t(Y) of the
proportion 7t of people who have the sensitive characteristic is

1
where OS)/SLV#& (2)

The expectation of the estimator 7(Y) [8] is

nly-1)+Y

(2y = Dn - ®)

Emwan[

So 7i(Y) is an unbiased estimator of 7t. The variance of the estimator 7(Y) is
[9]:

Var(7t(Y)) =

(n-m*)  yd-y) 1
n n(2y —1)2 - 2

The first term in Equation (4) is the binomial variance related to the sensitive
question. The second term is the extra variance due to the uncertainty caused
by using a randomisation device.

The Greenberg technique [9] and the Forced Method [10] are other RRT
approaches for binary responses which are used in this paper. The Greenberg
Method (GB) [9] is a variation of the WM method [8] in which respondents
are also randomly asked one of two questions using the randomisation device.
Assume that we have a sample of size n, and random quantity Y is the number
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of ‘Yes’ answers to the chosen question. Let A represent the sensitive charac-
teristic of interest, whereas B denotes a neutral characteristic that is unrelated
to A. The unrelated question aims to encourage respondents to answer the
selected question truthfully. Let m4 and mp represent the proportions of indi-
viduals belonging to groups A and B, respectively. If both proportions 74
and 7t are unknown, it is necessary to choose two independent samples from
the population, assuming a basic random sampling with replacement method
and two separate methods of randomisation are used for the two samples. If
7 is only known, only one sample and decks of cards are needed. Each card
contains either a sensitive or an unrelated question, which occurs with proba-
bility y and 1 -y, respectively. Each question can result in one of two possible

answers: a Yes (Y) or a No (N). The two questions could be:

Q1 : Are you a member of group A7

Q2 : Are you a member of group B?

Then, the probability of the event that a person answers ‘Yes’ to the selected
question of the GB Method is

P; =yna+(1—-y)np (5)

Note that, as for WM, in applying GB, the interviewer is unaware of the
question being asked. It is preferable to choose mp close to zero [11]. The
estimator 714(Y) of proportion of people who have the sensitive characteristic
is

Y
. - me(l—y)
RA(Y) = nf (6)
Using Bayes’ rule, the conditional probabilities that the respondent belongs to
groups A or B are calculated as follows:

naPc(Y] A)

Po(4] V) = FAE
G

(7)

where P&(Yl A) =g+ (1 —mp)y, and P&(YI B) = mg(1 — y). The expected
value of the estimator 7t4(Y) is

E(@a(Y)) =E

(%—(1—y)n3) _Pe-(-y)ms

v
_ymat+ (A —y)mp— (1 - y)mp
)4

=TlA (8)
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So, 4(Y) is an unbiased estimator of the population proportion 14. The
variance of 7t4(Y) is [12]:

Var(7t4(Y)) = Var(w)

_ ma(l=T1a) . (1 —y)?mp(l —mp) + y(1 — y)(ma + mp — 2mATIR)
B n ny?2

9)

where 0 <y < 1 and y # 3, using that Var = 0 because y and mp

((1 —))ns )
)4
are constants.

The Forced Method (FM) [10] is another RRT method, where the randomi-
sation device forces the respondent to answer ‘Yes’ to the selected question
with probability )1, or ‘No’ with probability y,, or to answer the sensitive
question with probability y, where y =1-y1 -y and 0<y; <1,0< <1
and y1 +7y2 < 1 [10]. Each response can result in one of two possible outcomes:
a Yes (Y) or a No (N).

Assume a sample of size 1, and random quantity Y is the number of people
who answer ‘Yes’ to the sensitive question they are asked. The probability of

a respondent answering ‘Yes’ is
Pr=y1+ma(l—y1—y2) (10)

where 714 is again the proportion of people who have the sensitive characteristic
A. The estimator of 14 is

Y
a1

fta(Y) = [RepTa—s

(1)

Using Bayes’ rule, the conditional probabilities of the event that the respondent
belongs to groups A given the response ‘Yes’ or ‘No’ are

Pr(A| Y) = %}M (12)
F

Pr(A] Y) = w (13)
F

where P;(Yl A)=1-y9, and P;(Yl A) = y1. The expected value of t4(Y) is

Y _ Pr —
B0 = B ) <
1-=y1-vy2 I=y1—-72
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:y1+nA(1—y1—7/2)—7/1 o
1—y1—9y2

(14)

So 7ta(Y) is an unbiased estimator of the population proportion 74. The
variance of the estimator 74 (Y) is [10]:

R _ P\ Pr
Var(nA(Y))—Var m = Var m
_mama=1) o male—y) -y (15)
n nl-y1-y2) n(l-y1-y)?

Other RRT methods have been proposed, each with specific procedures
and assumptions, such as scenarios with studying reproducibility of statistical
inference based on data collected by these methods is an interesting topic for
future research, e.g. multiple randomisation devices [13-16]. Such methods are
not considered in this paper.

2.2 RRT efficiency comparison and privacy degree

When applying RRT methods, the efficiency and degree of privacy need to
be considered. The efficiency of randomised response methods refers to the
ability of these methods to accurately estimate the proportion of individuals
in a population who have a sensitive characteristic. An efficient randomised
response method produces estimates that are close to the true proportion of
people who have the sensitive characteristic. There are several measures of the
efficiency of RRT methods [9, 17]. Since the basic attention in this research
is the relationship between RP and the variation in reported RRT responses,
we do not take efficiency measures into account. However, RRT methods are
considered more efficient when reported responses have less variability.

Another fundamental challenge in RRT is how to provide accurate esti-
mates of the population proportion of people with sensitive characteristics
while maintaining respondents’ privacy. Several privacy measures have been
proposed for qualitative and quantitative randomised response methods, with
different implications for optimal study design. When there is a high degree
of privacy, respondents are more likely to participate in surveys and to
answer truthfully. If respondents are satisfied with their privacy, they reduce
bias resulting from false responses. Furthermore, protecting the privacy of
respondents is an essential ethical consideration.

Privacy measures typically involve conditional probabilities for the event
that the respondents have the sensitive characteristic A given the response
‘Yes’ or ‘No’ [18, 19]. Clearly, the higher the conditional probability of belong-
ing to A, given a ‘Yes’ response, P(A| Y), the more embarrassing it may be to
provide that response even when the actual question being asked is unknown
to the interviewer. One RRT method could be considered more useful than
another if max(P(A| Y), P(A| N)) of the first RRT method is smaller than for
the second method [20].
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Zhimin and Zaizai [12] presented a method to measure the privacy of RRT
methods. To derive the privacy measure, remember that the conditional prob-
abilities of the event that a respondent has the sensitive characteristic A given
the response ‘Yes’ or ‘No’ are

Py = TP (16)
P(a[Y) = AP0 a7)

Then, the proposed privacy measure A is:
SRR ) 0

where small values of A indicate a high privacy level because the conditional
probabilities P(A| Y) of the event that the respondents have the sensitive
characteristic A given the response ‘Yes’ or ‘No’ are close to 74, which means
P(Y| A P(N| A
both PEYll A; and PEN: A;
The privacy degrees Agp of the Greenberg Method, and Arps of the Forced
Method as explained in Section 2.1 and using Equation (18) are

close to 1, that hence A is close to 0.

_ y(1=2mp(1-7y))
Aos = (2mp(1 = y)(1 = mp(1 - y))‘ (19)
_ 7/1(3—2)/1)+)/2(1—2)/1)—1‘
Arm = 11— 1) (20)

We consider these measures together with reproducibility in Example 6.

3 Nonparametric Predictive Inference (INPI)

Nonparametric Predictive Inference (NPI) is a statistical method based on
Hill’s assumption A(y) [21], which provides direct conditional probabilities for a
future observable random quantity based on observed values of related random
quantities [4, 22]. To introduce the assumption A,), suppose that there are
n + 1 real-valued random quantities, Y7, ..., Y}, Y;,+1. Assume that the ordered
observed values of the random quantities Y3, ..., Y, are denoted by y; < y3 <
... <Yy, and define yy = —co and y,4+; = 0. The n observations split the real-
line into n + 1 intervals I; = (i1, yi), where i = 1,...,n + 1. The assumption
Ay [21] for one future observation Y1 is

1 .
P(Yn+1€11)—m for i=1,...,n+1 (21)
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A(n) is a post-data assumption related to exchangeability [7]. The lower
and upper probabilities for the future observations Y41 € U, for any A C R,
are [4, 22]:

n+l n+l

P(Vp €)= Y Ul S WPy €)= — = S LW (22

i=1

_ n+1 1 n+1

P(Ypsy € ) = ; WL NA# 0PV € 1) = —— ; L NA =0} (23)
where 1{E} is the indicator function which is equal to 1 if event E is true and
0 otherwise.

In NPI, De Finetti’s Fundamental Theorem of Probability [7] is used to
determine optimal bounds for the probability of an event of interest involv-
ing Yy+1 [4], given the probabilities in Equation (21). This theory has strong
consistency properties and provides reliable predictive results [4] in the theory
of imprecise probability [23] and interval probability [24]. NPI has been intro-
duced for several applications such as statistical process control [25, 26], the
field of trading [27] and the area of finance [28, 29].

3.1 NPI for Bernoulli random quantities

In this paper, NPI for Bernoulli random quantities is used [5]. It is based on
a latent variable representation of Bernoulli data. This presentation assumes
underlying real-valued quantities and a threshold so that values on one side of
the threshold are successes and values on the other side of the threshold are
failures. The consecutive assumptions A, ..., A+m—1) are used for linking
the m future observations to the n data observations.

Assume there is a sequence of n + m exchangeable Bernoulli trials, each
having the possible outcomes ‘success’ and ‘failure’, with data consisting of s
successes in n trials. If Y]' denotes the random number of successes in trials 1
to 1, then an adequate representation of the data for NPT is Y]' = s. Let Y,'"
denote the random number of successes in the future trials n + 1 to n + m.
Let Ry = {ry,r2,...,7+} with 1 <t < n+ 1 and integer values 0 < r; < ry <

. < ry <m. The NPI upper probablhty [5, 30] for the event Y™ € R; given

n+1
Y;:lm =g, fors€{0,1,...,n},is

-1 t
w0 S

j=1
(24)

It is assumed that all (";m) orderings of the successes are equally likely.
The corresponding NPI lower probability can be derived using the conjugacy
property, that is P(A) = 1 — P(A°) for any event A and its complementary
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event A€, so
P e R =s5)=1- 1_3(1/;:{” € R{Y{" =5) (25)

where Rf = {0,1,...,m}\R;.

The NPI lower and upper probability for the events Y7 > c and 0 < ¢ <
n, are [5, 31]:

wam " n+m\ [Ss+l-1\(n+m—-s—1
P, >c| Y] =5)=1~ X

n n-—s
I=1

e

D gy [ (| &

I=c+1

(26)

jS(Yn+m

n+1

\%

where s € {1,...,n — 1}. The minimum value of the NPI lower probability is
0.5, which happens when half of all orderings of the successes s based on the
future test comes before the ordering of the successes r based on the original
test due to the exchangeability assumption. This is shown in detail by Coolen
and BinHimd [3]. The maximum value of the NPI upper probability is 1 for
Y/" = 0 and Y]' = n, which occurs if all outcomes in the original test are failures
or if all outcomes are successes, respectively [32].

If the observed data are all successes (so s = n) or all failure (so s = 0),
then the NPI upper probabilities for this event Y"/7" > c are:

PO > c|Y =n) =1 (28)
-1
POtz et =0 = (7)) (29)
n n
and the NPI lower probabilities for this event Y)',7" > c are:
n+m\ n+c—1
PO > el = m) =1 - ( ) ( ) (30)
n n
P, 2 eV =0) =0 (31)

3.2 NPI reproducibility

One important feature of practical research related to test results is the repro-
ducibility of a given test. The concept and understanding of reproducibility
have attracted more attention within the traditional frequentist statistical
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framework, encouraging further research and academic interest in the past few
years. The NPI method of frequentist statistics focuses explicitly on future
observations while making few assumptions and using lower and upper proba-
bilities to quantify uncertainty. This makes it possible to draw inferences about
reproducibility probability (RP) given the explicitly predictive nature of NPI.

NPI reproducibility was first introduced by Coolen and BinHimd [5],
denoted by NPI-RP, and defined as the probability that, if a test is repeated
based on an experiment performed in the same way as the original experiment,
the test outcome, that is, whether the null hypothesis is rejected or not, will be
the same. Coolen and BinHimd [5] considered a few basic nonparametric tests,
namely the sign test, Wilcoxon’s signed rank test, and the two sample rank
sum test [33]. NPI for Bernoulli quantities [32] and for real-valued data [34]
were used for these inferences. This led to NPI lower and upper reproducibil-
ity probabilities, denoted by RP and RP, respectively, rather than precisely
determined reproducibility probabilities.

The NPI-RP method has also been presented for two basic tests using order
statistics [35]: a test for a specific population quantile value and a precedence
test for comparing data from two populations. These latter tests are typically
used for lifetime data experiments when one wishes to reach a conclusion
before all observations are available. For these inferences, NPI for future order
statistics is used to provide the lower and upper reproducibility probability for
quantile and basic precedence tests [35].

More research has been published on NPI-RP, such as NPI for test repro-
ducibility by sampling future data orderings [36]. In this work, Coolen and
Marques investigated the NPI reproducibility of likelihood ratio tests using
the test criterion in terms of the sample mean. This happens by taking into
account all orderings of m future observations among the n data observations,
all of which are equally likely based on an exchangeability assumption. How-
ever, because of the computing limitations of this method, exact lower and
upper probability can only be computed for very small values of n. Then, the
ordering sampling method is proposed to generate possible ordering of all sam-
ples for both exponential and normal distributions and it is examined how well
it works to approximate the NPI lower and upper reproducibility probability.

Furthermore, another study examines reproducibility probability for like-
lihood ratio tests [37] between two Beta distributions. For simple hypotheses,
the exact distribution is obtained using Gamma or Generalized Integer Gamma
distributions. For more complex cases, near-exact or asymptotic approxima-
tions are developed using logarithm transformation and characteristic function.
Numerical studies demonstrate the precision of the approximations, while
simulations analyse test power and reproducibility probability.

More investigation introduces a statistical reproducibility for pairwise t-
tests in pharmaceutical research using an NPI algorithm [38]. Simkus et al.
[38] studied the statistical reproducibility of pairwise t-tests in pharmaceuti-
cal product development. They compared the reproducibility of t-tests and
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Wilcoxon Mann-Whitney tests, and also considered the reproducibility of final
decisions based on multiple related t-tests.

4 Reproducibility of one-sided hypothesis tests
based on RRT data

Reproducibility of one-sided hypothesis tests based on data sampled using
randomised response methods (NPI-RP-RRT') considers how likely it is that
a future similar test of the null hypothesis will lead to the same conclusion
as the original test. In this paper, we restrict attention to qualitative data
collected using an RRT method. We consider the one-sided hypothesis test on
the proportion w4 of people with a sensitive characteristic A:

H{ :ma =ma, versus Hj:7p > g, (32)

where 14, € [0,1]. Let PL(Y = Y | Hj) = Péo be the probability of a ‘Yes’
answer to the selected question for the Greenberg method (GB) based on the
proportion m4,, which is the proportion of people who have characteristic
A. In this section, we use Equation (5) to link between ma, and Pz;o, and
then investigate how the reproducibility probability is affected by m4, and
P&O under Hy. Therefore, the hypothesis test in P}, corresponding to the
hypothesis test using Equation (32), with level of significance @ = 0.05, is

Ho:P% =P; and H:P%> Py (33)

This test can be performed based on the respondents’ answers. A logical
test rule is to reject the null hypothesis if Y > ¢, where ¢ is determined, for
chosen significance level a, as the minimal integer value for which:

P(Y>c|Hy<a (34)

Let Y{" denote the random number of ‘Yes’ answers in the original sample and
Yanl denote the random number of ‘Yes’ answers in the future sample. The
NPI upper and lower reproducibility probabilities for the event Y. > ¢, given

n+1
Y/' =y, are

RP(y)=P(Y? >c|Y'=y), RP(y)=P(YX >c|Y'=y) (35

n+1

If the random number of ‘Yes’ answers in the original test 1 to n is less than
¢, so Hy is rejected, then the upper and lower reproducibility probabilities for

2n .
the event Y%, < c are:

RP(y)=P(Y?" <c|Y'=y), RP(y)=P(Y?" <c|Y'=y)  (36)

Examples 1 and 2 illustrate this method.
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Table 1 NPI-RP-GB at a =0.05, ¢ =22

RP(y) RP(y) y RP(y) RP(y) y RP(y) RP(y)
1.0000 1 11 0.9956 0.9980 22 05 0.6145
1.0000 1.0000 12 0.9909 0.9956 23 0.6145 0.7240
1.0000 1.0000 13 0.9824 0.9909 24 0.7240 0.8198
1.0000 1.0000 14 0.9680 0.9824 25 0.8198 0.8954
1.0000 1.0000 15 0.9449 0.9680 26 0.8954  0.9479
1.0000 1.0000 16 0.9101 0.9449 27 0.9479  0.9790
1.0000 1.0000 17 0.8605 0.9101 28 0.9790  0.9939
0.9999 1.0000 18 0.7941 0.8605 29 0.9939  0.9990
0.9997 0.9999 19 0.7102 0.7941 30 0.9990 1
0.9992 0.9997 20 0.6106 0.7102

0.9980 0.9992 21 0.5 0.6106

S0 0o W e o

Table 2 NPI-RP-GB at a = 0.01, ¢ = 23.

RP(y) RP(y) 'y RP(y) RP(y) y RP(y) RP(y)
1.0000 1 1109981 09992 22 0.5 0.6145
10000 1.0000 12 0.9959 0.9981 23 0.5 0.6195

1.0000 1.0000 13 0.9916 0.9959 24 0.6195 0.7340
1.0000 1.0000 14 0.9837 0.9916 25 0.7340 0.8333
1.0000 1.0000 15 0.9702 0.9837 26  0.8333  0.9097
1.0000 1.0000 16 0.9483 0.9702 27 0.9097 0.9601
1.0000 1.0000 17 0.9149 0.9483 28 0.9601 0.9872
1.0000 1.0000 18 0.8666 0.9149 29 0.9872  0.9977
0.9999 1.0000 19 0.8007 0.8666 30 0.9977 1
0.9997 0.9999 20 0.7163 0.8007

0 0.9992 0.9997 21 0.6145 0.7163

= © 000 Uk W~ Ol

Example 1 This example explains NPI reproducibility for one-sided hypothesis tests
based on data collected using the GB method (NPI-RP-GB). Suppose that we have a
sample of size n = 30 and are interested in a sensitive characteristic A. The unknown
proportion of people with the sensitive characteristic is 4, = 0.7, and g = 0.3 is
the proportion of people who would respond ‘Yes’ to the unrelated question. In this
example, we assume that a randomisation device is used with a probability y = 0.7
that the sensitive question is asked. We want to test:

H{:mp =0.7 versus Hj:mp > 0.7 (37)

with level of significance @ = 0.05. The hypothesis test on P&’ corresponding to the
hypothesis test in Equation (37), is

Ho : P, =0.58 versus Hj :Pg > 0.58 (38)

The corresponding threshold value for this one-sided test is ¢ = 22 calculated using
Equation (34). Therefore, Hy is rejected at 0.05 level of significance if Y* > 23. Then,
the claim that the proportion of people who answer ‘Yes’ is 0.7 would be rejected at
the 0.05 significance level.

The NPI lower and upper reproducibility probabilities for the event Yffl >c=23
under Hg are presented in Table 1. The minimum value of the lower reproducibility
probability is 0.5 as explained in Section 3.1. This happens for the values y = 21 and

y = 22. Similarly, the NPI lower and upper reproducibility probabilities for the event
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Table 3 NPI-RP-FM with @ =0.05, ms, = 0.7, y1 = 0.15, y2 = 0.10, c = 24.

RP(y) RP(y) y RP(y) RP(y) y RP(y) RP(y)
1.0000 1 11 0.9993 0.9997 22 0.6195 0.7240
1.0000 1.0000 12 0.9983 0.9993 23 0.5 0.6195
1.0000 1.0000 13 0.9964 0.9983 24 0.5 0.6260

1.0000 1.0000 14 0.9925 0.9964 25 0.6260 0.7469
1.0000 1.0000 15 0.9854 0.9925 26 0.7469 0.8505
1.0000 1.0000 16 0.9731 0.9854 27 0.8505 0.9273
1.0000 1.0000 17 0.9527 0.9731 28 0.9273 0.9738
1.0000 1.0000 18 0.9210 0.9527 29 0.9738  0.9947
1.0000 1.0000 19 0.8742 0.9210 30 0.9947 1
0.9999 1.0000 20 0.8092 0.8742

0 0.9997 0.9999 21 0.7240 0.8092

= © 00O Uik WN R~ O

Table 4 NPI-RP-FM with & = 0.01, 714, = 0.7, y1 = 0.15, y5 = 0.10, ¢ = 25.

RP(y) RP(y) 'y RP(y) RP(y) y RP(y) RP(y)
1.0000 1 11 00998 0.9999 22 0.7340 0.8198
1.0000 1.0000 12 0.9994 0.9998 23 0.6260 0.7340
1.0000 1.0000 13 0.9986 0.9994 24 0.5 0.6260
1.0000 1.0000 14 0.9969 0.9986 25 0.5 0.6347

1.0000 1.0000 15 0.9937 0.9969 26 0.6347  0.7642
1.0000 1.0000 16 0.9875 0.9937 27 0.7642  0.8729
1.0000 1.0000 17 0.9765 0.9875 28 0.8729  0.9486
1.0000 1.0000 18 0.9580 0.9765 29 0.9486  0.9881
1.0000 1.0000 19 0.9284 0.9580 30 0.9881 1
1.0000 1.0000 20 0.8837 0.9284

0 09999 1.0000 21 0.8198 0.8837

= © 000 Uk WwN - Ol

Yanl > ¢ are presented in Table 2 for significance level 0.01, and the worst case for
NPI lower reproducibility probability under the assumed model is 0.5 for the values
y=22and y =23.

If the original test leads to rejection of H{ : ma = 0.7 for the event Y]' > ¢ =
22 at a = 0.05, then the NPI reproducibility probability is the probability that
the null hypothesis will also be rejected in the future test. Then, the NPI lower

reproducibility and the NPI upper reproducibility probabilities for the event Yln > 22
has the probability of y > 23: RP(y) = RP(y — 1) due to P(Y?", > Y =y =

n+1
ﬁ(Yfﬁl 2 c|Y]" = y = 1). Conversely, if the reproducibility probability of Y* which
is less than the rejection threshold ¢ = 22, the NPI lower and upper probabilities of
the events Y] < 21, which is RP(y) = RP(y + 1) for Y{* < 21 due to B(Yffl <clYf' =
y) = I_J(Yr?fl <clYj'=y+1).

In Tables 1 and 2, the NPI lower and upper reproducibility probabilities are
presented and can be drawn as a line-segment between these values, based on data
collected from the GB at significance level &« = 0.05 and a = 0.01, with rejec-
tion threshold values 22 and 23 respectively. The larger value of the NPI lower and
upper reproducibility probabilities suggest that a test gets the same outcome as the

hypothesis test, with a probability close to 1.
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Ezxample 2 This example introduces the reproducibility probability for one-sided
hypothesis tests with data collected using the Forced Method. Assume that a sample
of size n is taken from a population with a possible sensitive characteristic A. Suppose
that the Hp value which we want to test is 4, = 0.7. The randomisation device
leads to the sensitive question being asked with probability y = 0.75, or the answer is
forced to ‘Yes’ with probability y1 = 0.10 or forced to ‘No’ with probability y2 = 0.15.
The significance level for the hypothesis test is a = 0.05.

To start with, assume a sample with size n = 30, the null hypothesis that the
proportion of people who have characteristic A is H(’) : ma = 0.7, which is tested
against Hi 114 > 0.7. So, the hypothesis test is

Hj:ma=0.7 vs H]:my>0.7 (39)
Using Equation (10), this hypothesis test corresponds to the test:

Hp : Pp =0.625 vs Hj:Pp>0.625 (40)
where the probability P;O of a respondent saying ‘Yes’, using Equation (10), is

P;U =y1+ma,(1-y1—y2)=0.625 (41)

The threshold value for this one-sided test is ¢ = 24. Consequently, the null
hypothesis Ho is rejected when the observed value of Y] is greater than or equal to
24; otherwise, the null hypothesis is not rejected. Similarly, the threshold value for
this one-sided test is ¢ = 25 at the significance level of 0.01. The NPI lower and upper
probabilities for the event Yr?fr’l > ¢, based on the FM data, are presented in Tables 3
and 4. The threshold values in Tables 3 and 4 are greater than the threshold values
of reproducibility probability of statistical tests based on the GB data as presented
in Tables 1 and 2.

As shown in Tables 3 and 4, the NPT lower and upper reproducibility probabilities
based on FM data increase more than the NPI lower and upper reproducibility
probabilities based on GB data as shown in Tables 1 and 2. In addition, the NPI lower
reproducibility probabilities are closer to the NPI upper reproducibility probabilities
based on FM data than the NPI lower reproducibility probabilities are closer to the
NPI upper reproducibility probabilities based on GB data.

In general, the NPI lower and upper reproducibility probabilities based on FM
data are greater than the NPI lower and upper reproducibility probabilities based on
GB data, as shown in Tables 1 and 2 and Tables 3 and 4 respectively. Furthermore,
the NPI lower reproducibility probabilities based on FM data are closer than the NPI
upper reproducibility probabilities and the NPI lower reproducibility probabilities
based on GB data.

5 A measure of reproducibility for statistical
hypothesis tests

One objective of the study of reproducibility of hypothesis tests based on RRT
methods is to compare RRT methods with regard to such reproducibility.
This is non-trivial, particularly if the different RRT methods require differ-
ent sample sizes to achieve a similar level of significance and power for a
specific alternative hypothesis. In this section, we propose a new measure of
reproducibility for such comparisons.
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5.1 A measure of lower reproducibility for statistical
hypothesis tests

The measure of the lower reproducibility probability under Hj (MRPf)(z))
is the probability, under Hy, for the event that RP(Y) > z, for z € [0,1].

Therefore, with a sample of size n and probability P of a ‘Yes’ answer under
Hy, MRPE) under Hy for the one-sided test is

MRP{(z) = P(RP(Y) = z|Hy) = P[RP(Y) = z |Y ~ Bin(n, P)]
b(z)
—1- Y, (s (12)

y=a(z)

where a(z) and b(z) are any two y values for any two consecutive RP(Y)
values. Due to the fact that MRPé(z) is based on the NPI lower reproducibility
probability and that its lowest value is 0.5, so MRP(IJ(Z) =1 for z € [0,0.5).
The probability Pj, in this paper, depends on the RRT method used, so it
is either P*GO or P;O, which are derived from Equations (5) or (10) in Section
2.1. To apply this measure, we specify all the values of y = a(z) and y = b(z)
for any two consecutive RP(Y) values where RP(Y) > z, and then calculate
the summation of probabilities of all these Y = y values except [a(z), b(z)] as
shown in Equation(42) such that a(z) is the lowest integer values such that the
condition RP(y) > z for y < a(z) is selected. Similarly, the b(z) is the largest
integer value such that the condition RP(y) > z for each y > b(z) is selected.

Similarly, we can investigate the measure of reproducibility under the alter-
native hypothesis Hy : P* > P§, where the probability of people who say “Yes’
under H; is P] which is not a single value. These values P] can be selected to
provide high power more than 0.90 for the statistical hypothesis test. So, the
measure of lower reproducibility probability under H; is:

MRP!(z) = P(RP(Y) > z|H,) = P[RP(Y) > z |Y ~ Bin(n, P})]
b(z)
=1- Z (’;)(p;)y(1—P;)"—y (43)

y=a(z)

where P] represents the probability of people who say ‘Yes’ to the selected
question under the hypothesis H;. The probability P] depends on the RRT
method used, so it is either Pgl or P;17 which are derived from Equations (5)
and (10) in Section 2.1, which relate to Hy. Example 3 illustrates this measure
using the Greenberg method as explained in Section 2.1.

It is noticed that the alternative hypothesis H; : P* > P( where the values of
P} are greater than Pj and less than 1. Therefore, we linked between the power
and the alternative hypothesis because power is defined as the probability of
being able to reject the null hypothesis correctly in the case that the alternative
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Fig. 1 MRPL(z) and MRP/ (z) with GB data with n = 30, s, = 0.7, ma, = 0.9, 7 = 0.3,
y =0.7, =005, P, =0.58, P, =0.72

hypothesis is true, then power is equal to 1 minus the probability of Type II
error  in the event that the alternative hypothesis is true. So, in order to
increase power and the probability that the alternative hypothesis would come
true, we select § = 0.1 and P] =0.9.

Example 3 This example illustrates the measure of reproducibility probability
(MRPé) for one-sided hypothesis tests using data collected by the GB method [11].
We use the same parameters of the GB method of n, 4, g and y in Example 1.
We want to test the null hypothesis H(’) :ta = 0.7 against the alternative hypothesis
Hi : 1ty > 0.7. The corresponding null hypothesis Hg : P*G = 0.58 against the
alternative hypothesis Hj : Pz; > 0.58 using Equation (5) of the GB method. Under
the null hypothesis H, assume that m4, = 0.7 and under alternative hypothesis H,
suppose that 4, = 0.9, so the proportion under Hy and H; are:

P&U =ymp, +(1-y)ng = 0.58 (44)
P*Gl =ymg, +(1—-y)np =0.72 (45)

The MRP(I) and MRPI1 are calculated as explained in Section 5.1. The results
for MRP], and MRP! for different values of z are shown in Figure 1 and Tables
2 and 3, respectively. It has been observed that the MRPé(z) and MRPZ1 (z) show
a decreasing trend when the value of z increases. In the case that the values of z
get closer to 1, they cause MRPS(Z) and MRPll(Z) to decrease because of the lower
reproducibility probabilities get higher values due to the number of ‘Yes’ responses y
is close to either 0 or the total number of responses n. In both cases, these responses
provide substantial support for either the null or alternative hypothesis, and the NPI
lower reproducibility probabilities indicate that if all responses are ‘Yes’ (‘No’), the

responses do not provide evidence against the possibility that the responses are ‘No’
(‘Yes”).
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Table 5 MRP!(z) with GB data with n = 30, 4, = 0.7, ma, = 0.9, 15 = 0.3, y = 0.7,
@ =005, Py =058, Py =0.72

z MRP! (z) z MRP (z) z MRP! (z)
0.5000  0.9020  0.8954  0.3667  0.9939  0.0151
0.6106  0.8067  0.9101  0.2400  0.9956  0.0056
0.6145  0.7898  0.9449  0.1420  0.9980  0.0018
0.7102  0.6644  0.9479  0.1419  0.9990  0.0018
0.7240  0.6575  0.9680  0.0755  0.9992  0.0005
0.7941 05137  0.9790  0.0754  0.9997  0.0001
0.8198  0.5115  0.9824  0.0358  0.9999  0.0000
0.8605  0.3673  0.9909  0.0151  1.0000  0.0000

Table 6 MRP! (z) with GB data with 1 = 30, 74y = 0.7, 74, = 0.9, 75 = 0.3, y = 0.7,
a=0.05, P; =058, Py =0.72

z MRP (z) z MRP (z) z MRP (z)
0.5000  0.6866  0.8605  0.0721  0.9824  0.0009
0.6106  0.5618  0.8954  0.0392  0.9909  0.0007
0.6145  0.4181  0.9101  0.0254  0.9939  0.0001
0.7102  0.3299  0.9449  0.0197  0.9956  0.0001
0.7240 02221  0.9479  0.0071  0.9980  0.0001
0.7941  0.1678  0.9680  0.0050  0.9990  0.0000
0.8198  0.1013  0.9790  0.0016

The reproducibility probabilities included in MRPé(Z) and MRPll(Z) area close
to 1 for all values of z within the range of 0 to 0.6. Both MRPS(Z) and MRPll(z) have
values on nearby to 0 when z = 1. The values of MRPI1 are greater than the values
of MRPé for all values of z inside the interval [0, 1] if the GB has a large threshold
value or large P} under Hj. Variations in the MRPEJ(Z) and MRPZI(Z) are caused by
variations in the method’s parameters y, 7a,, 7, and @. When these values are

increased, there is a corresponding increase in MRPé(z) and MRPll(Z) respectively.
The upper reproducibility probabilities can be used to derive MRPS(Z) and

MRPY(z) for the RRT methods, similar to the derivation of MRPB(Z) and MRPll(Z)
of the lower reproducibility probabilities. Furthermore, the FM technique or other
RRT methods can be used to make a comparison between them.

However, the RRT method parameters must be chosen carefully in order to calcu-
late the minimum required sample size to obtain the required power of the hypothesis
tests and with a specific significance level that can provide a high reproducibility
probability of hypothesis tests based on RRT data, as applied in Example 4.

To determine the minimum sample size n, required for this case for getting an
approximate power (i.e. 1—f) at a level of significance of (i.e., « = 0.05), use Equation
(46) [39].

Z1—aPE(1 = PY) + z1_g+/PX(1 = P¥) 12
rmz[ VEC = Po) gy 1] (46)
1770
where the approximate power is calculated using [39]:
n(P; — P}) + z1—anPr(1 - P
1—ﬁzP(Zz (o = Py) 210yl 0)) (47)
\nPj(1—P})
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The value of z1-4 and z;1-p indicate to the (1 —a)x 100 and (1 — ) X 100 percentiles

of standard normal distribution respectively. If the hypothesis tests do not provide

a required power of 0.90 with sample size n,, Fleiss et.al [15] recommended adding
1

Propr 88 2 continuity correction to [n,].
1 0

n=[n+ (48)

|P] = Pgl
where [11,] is the minimal integer greater than or equal to 7;, and the probability P
are P"GO or P;O which are derived from Equations (5) or (10) in Section 2.1 under Hg.

5.2 The area under MRP (AUMRP)

In Section 5.1, we introduce MRP as a measurement of reproducibility prob-
ability of statistical tests based on data collected by the GB and the FM
methods. In order to compare the reproducibility probability of statistical
tests based on different RRT methods, we introduce an overall measure based
on MRP, namely the area under MRP(z) under Hy and under H; which are
denoted by AUMRPé(Z) and AUMRPll(Z), respectively. Given MPRf)(Z) and
MF’RI1 (z), computed by Equations (42) and (43), the AUMRP, and AUMRP,
are calculated as follows.

Let AUMRP :[0,1] > R be a function defined on a closed interval
[0,1] of the real numbers, R, and D as a partition of the interval [0,1].
Let z; represent the real number that bounds each subinterval on the
number line. Here, i ranges from 0 to n, and D is defined as follows:
D ={[zo0,z1],[z1,22],-- - [2Zn-1,2n]} where 0=z9<2z; <zy3<---<z,=1
Therefore, AUMRPé and AUMRPI1 over [0,1] with partition D are

n
AUMRP. = ZMRP{)(Z;‘)AZ,- (49)
i=1

n
AUMRP! = Z MRP!(z}) Az; (50)

i=1

where Az; = z; — z;—y where z} € [z;1,z;]. Example 3 introduces MRPI0 and
MRPI1 of the GB method.

Example 4 This example derives AUMPRf) and AUMRPI1 of one-sided hypothesis
tests based on the GB method [11] using the minimum required sample size as
explained in Section 5.1 to get high reproducibility. We use the same combinations
of the GB method of 714, mp and y in Example 1.

Assume that Hg and H; values which we want to test are mq, = 0.7 and 4, =
0.9, respectively, with significance level a = 0.05 and power 0.90. Then, we derive
AUMPR% and AUMRPI1 using Equations (49) and (50) and using the minimum
required sample size n.

As shown in Table 7, the results give the required minimum sample sizes for differ-
ent values of tg. So, if g = 0.10, then the threshold value is 71, the AUMRP% equals
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Table 7 AUMRP!, AUMRP! of the GB method with = 0.7, 14, = 0.7, 74, = 0.9,
a=0.05,=0.1

TR 0 0.1 0.25 0.3 0.45 0.6
n 121 119 115 113 106 98
c 68 71 74 74 74 73
PE;O 0.4900 0.5200 0.5650 0.5800 0.6250 0.6700
P’*G1 0.6300 0.6600 0.7050 0.7200 0.7650 0.8100

power 0.9262 0.9123 0.9090 0.9227 0.9316 0.9313
AUMRPg) 0.8070  0.8190 0.8225 0.8112 0.8029 0.8049
AUMRP, 0.8235 0.8114 0.8087 0.8200 0.8281 0.8278

Table 8 The AUMRP], AUMRP! of the FM method with ma, = 0.7, 4, = 0.9,
y2=0.10, @ = 0.05, = 0.1

Y1 0.10 0.13 0.15 0.23 0.27 0.29
ny 76 80 84 100 109 115
c 57 60 64 " 85 90
P;U 0.6600 0.6690 0.6750 0.6990 0.7110 0.7170
Py 0.8200 0.8230 0.8250 0.8330 0.8370  0.8390

F1
power 0.9210 0.9367 0.9124 0.9358 0.9275 0.9315
AUMRPIP 0.8122 0.7966 0.8200 0.8010 0.8073 0.8047
AUMRP; 0.8194 0.8335 0.8119 0.8319 0.8238 0.8274

0.8190 and AUMRP! equals 0.8114 with power is 0.9123, whereas the AUMRP],
equals to 0.8225 and AUMRPI1 equals to 0.8087 for g = 0.25 with threshold value is
74 and power is 0.9090. It is noted that for all values of g € [0, 0.6], AUMRPé and
AUMRPZ1 taking values between 0.80 and 0.81 and the AUMRPI1 is always greater
than the AUMRPG except the case of mg = 0.1 and 0.25. Similarly, we drive AUMPRé

and AUMRF‘I1 of one-sided hypothesis tests based on the FM method using the same
procedure as explained in Example 5.

Ezxzample 5 This example derives AUMPRé and AUMRPI1 of one-side hypothesis
tests using the FM method. Assume that the probability of being asked the sensitive
question is 0.75, the forced ‘Yes’ answer is Y1 = 0.10 and the forced ‘No’ answer is
y2 = 0.15, where the significance level is @ = 0.05, and power 0.90.

Let us consider that the Hy value which we want to test is w4, = 0.7, while the
alternative proportion of people with the sensitive characteristic is 74, = 0.90. For
varying values of y2, the required minimum sample sizes and values of AUMRPé and
AUMRPZ1 are determined.

Table 8 presents the values of AUMRPé and AUMRPZ1 for the FM method under
the null hypothesis Hg and the alternative hypothesis Hy, calculated using Equations
(49) and (50), respectively. The values of AUMRPé are within the range of 0.79 to
0.82 while AUMRP! takes values within the range of 0.81 to 0.83. The AUMRP], is
always greater than the AUMRPI1 except in the case of y1 = y2 = 0.15. Nevertheless,
the patterns of AUMRPé or AUMRPZ1 are not clear. The FM method requires a
smaller sample size (1, = 76) compared to the GB method (n = 121) in order to
reach a power of 0.92 and obtain value 0.81 of the AUMRPS and AUMRPll.
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Table 9 The Var(fia,)gp AUMRF’B7 AUMRF’I1 of one-sided tests based on the GB
method with 7t = 0.4, y = 0.5554, 74, = 0.9, P =0.6777, a = 0.05, f = 0.1, A = 1.224

A, 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.700

Var(ftag)gg 0.8103  0.8104 0.8105 0.8104 0.8104 0.8103 0.8101 0.7961
n 72 74 76 78 80 83 85 181

P(*;0 0.4944  0.4972 0.5000 0.5027 0.5055 0.5083 0.5110 0.5666

Power 0.9075 0.9183 0.9278 0.9363 0.9126 0.9100 0.9200 0.9262

AUMRP;) 0.8207 0.8121 0.8033 0.7945 0.8154 0.8193 0.8098 0.8103
AUMRP; 0.8097 0.8184 0.8267 0.8348 0.8133 0.8110 0.8192 0.8218

Now, it is worth to compare the reproducibility of statistical tests based on
different RRT methods, taking into account the variance of the estimators and repro-
ducibility of statistical hypothesis tests at the same degree of privacy. In order to
increase the reproducibility probability, we choose the required minimum sample size
when using the GB and FM methods while selecting different parameters for the RRT
methods to get equivalent privacy and variance for the estimator #t4,. This is due
to the study of the relationship between using required minimum sample sizes and
reproducibility probability at the same degree of privacy. This choice of the param-
eters gives the same values of both variances of the estimator ft4, and the same
privacy degree of the GB and FM method to check the changes in reproducibility of
statistical hypothesis tests as assumed in Example 6.

Ezxample 6 Assume that we use the requird minimum sample size n of the parame-
ters y = 0.5554, 4, = 0.9 of the GB method, and 1 = 0.20829, y2 = 0.10, t4, = 0.9,
a =0.05, B = 0.1 as parameters of the FM method.

The aim of this example is to compare the GB and FM methods throughout
various values of 74, specifically focusing on their reproducibility. Both methods
are assumed to have the same privacy degree of approximately 1.224 but differ in
regards to the variance of the estimator 7t4,. Tables 9 and 10 provide the relevant
details for this comparison.

The variance for various values of ft4, ranging from 0.79 to 0.81 is presented in
Table 9 for the GB technique with a privacy degree of Agp = 1.224. Both AUMRPS
and AUMRPI1 show no visible pattern, with a high power level of more than 0.90.
The value of AUMRPé shows a range of values from 0.79 to 0.82, whereas AUMRPé
displays a range of values from 0.80 to 0.83 for varying 74, .

The FM method with privacy degree, denoted as App; = 1.224, has reduced
variance for various values of 714, compared to the variance of the estimator of the
GB, as seen in Table 10. The AUMRPé and AUMRPI1 show no apparent trend, and
the power is more than 0.90. The value of AUMRPé shows a range of values between
0.78 and 0.81, whereas AUMRPE) shows a range of values between 0.86 and 0.88 for
varying m4,. The estimator of the FM method has a smaller variance compared to
the estimator of the GB methods, although the AUMRPS of the GB method shows

higher reproducibility than the FM method. Conversely, the AUMRPI1 of the FM
method shows more reproducibility than the GB method when both are given the
same privacy degree of 1.224.

As evidenced by the information presented in Tables 9 and 10, while the variances
of the estimator 7t4, are low in order to improve reproducibility, it could be less
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Table 10 The Var(ftag)py, AUMRPE, AUMRPI1 of one-sided tests based on FM method
with ¥ = 0.10, y1 = 0.20829, 74, = 0.9, P =0.8308, a = 0.05, f = 0.1, Apy = 1.224

A 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.700

Var(ftag)py  0.2554  0.2546  0.2539  0.2531  0.2523 0.2515  0.2507  0.2351
n 49 50 52 53 55 56 58 117

P;O 0.6026  0.6060 0.6095 0.6129 0.6164 0.6199 0.6233 0.6925

Power 0.9041 0.9020 0.9052 0.9026 0.9050 0.9019 0.9716 0.9672

AUMRP;J 0.7958 0.8035 0.7843 0.7913 0.8113 0.8173 0.7973 0.8102
AUMRPY 0.8769 0.8690 0.8881 0.8808 0.8658 0.8581 0.8776 0.8690

possible to assume the parameters mentioned above in order of reducing the level
of privacy. Hence, it is essential to consider several hypothetical values and different
parameters in order to achieve an equivalent level of privacy with less variability in
the actual responses and higher reproducibility.

6 Concluding remarks

This paper introduces an innovative method to assess the reproducibility prob-
ability of statistical hypothesis tests using data obtained by RRT methods,
including the GB and FM methods. This approach uses the number of ‘Yes’
responses within a specific sample and the threshold to perform the tests.
Next, use the Nonparametric Predictive Inference (NPI) method for Bernoulli
variables in order to calculate the lower and upper reproducibility probabil-
ity of one-sided hypothesis tests. The advantage of employing reproducibility
of statistical tests is that they can be designed for any RRT method because
this method depends on the number of orderings of yes responses, not on the
binomial distribution.

For reproducibility of one-sided hypothesis tests, we introduced the mea-
surement of lower and upper reproducibility probability MRPé and MRPI1
under Hy using the threshold values. Then, we compared the GB and the FM
methods by derivation of the required minimum sample size with respect to a
higher power of more than 0.90 and @ = 0.05. After that, we calculated the
area under MRPIO and MRPII. In addition, derive the lower and upper thresh-
old values to find the same area of the threshold value of MRPG and MRPI1
using different parameters of the RRT method. The finding is the GB method
has more reproducibility than the FM methods for one-sided tests under Hy
especially if both methods have the same sample size, the threshold value or
the probability of people who say ‘Yes’. Conversely, the FM method has more
reproducibility than the GB methods for one-sided tests under H;.

For using the required minimum sample size, the same privacy degree, and
with the same proportion of sensitive characteristics in the population 114, , the
FM method takes smaller samples than the GB method requires. As a result,
choosing the same parameters within significance level @ = 0.05 and power
more than 0.90 needs to increase the sample size of the GB method than the
FM method to obtain the AUMRPé and AUMRPI1 for one-sided tests with
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the same privacy degree. In addition, high reproducibility of hypothesis tests
based on a randomised response method provides a probability, denoted as P
(P7), which represents the probability of people that respond ‘Yes” and close
to the Hy and H; values which we want to test are 74, (74,), under the null
hypothesis Hy and H; respectively.

Furthermore, less variability in the reported responses of any RRT method
leads to higher reproducibility with the same degree of privacy.
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