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Abstract

In this paper, three smoothed bootstrap methods are introduced for
bivariate data. Two of them are based on Nonparametric Predictive
Inference for bivariate data with both parametric and non-parametric
copulas [10, 28, 29, 30]. The nonparametric predictive inference meth-
ods combined with copulas use generalizations of Hill’s A(n) assumption
[23] for bivariate data. The third smoothed bootstrap method is based
on uniform kernels. All smoothed bootstrap methods are compared to
Efron’s bootstrap method for bivariate data [14] through simulations.
The comparison is conducted in terms of the coverage of percentile con-
fidence intervals for the Pearson, Kendall and Spearman correlations,
while also two simple functions of the bivariate observations are consid-
ered. From the study, it is found that the smoothed bootstrap methods
mostly perform better than Efron’s method in case of data simulated
from a symmetric distribution and in case of the correlation between the
variables is low or medium, in particular for small data sets. In the case of
high dependence level between the variables, Efron’s bootstrap method
provides better results for the Pearson, Kendall and Spearman correla-
tions due to its restriction in sampling from the data only, contrary to the
smoothed bootstrap methods, which allow more variation in sampling.
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1 Introduction

The bootstrap approach [13] is a simple non-parametric method introduced
to infer accuracy of statistical estimates. It has been widely used for a variety
of statistical problems as it relies on few mathematical assumptions and it
leads to provide good results [17]. In situations where only little information is
available to support the use of a specific probability distribution for statistical
inference, the bootstrap method is of great practical use [11].

Efron [13] introduced the bootstrap method for univariate real-valued data.
The method uses the original data set to create multiple bootstrap samples by
sampling with replacement, and based on each bootstrap sample the statistic
of interest is calculated. The empirical distribution of the resulting values
can be used to approximate the distribution of the statistic of interest. Many
references describe Efron’s bootstrap method with applications, e.g. Berrar
[4], Davison and Hinkley [11] and Efron and Tibshirani [17]. Based on kernels,
linear interpolation and histospline smoothing, several smoothed bootstrap
methods have been introduced to obtain better results; see e.g. Banks [3],
De Angelis and Young [12], Hall [20], Silverman and Young [36], Young [41]
for more details.

In 1981, Efron [14] introduced the bootstrap method for univariate right-
censored data. It is very similar to the one for real-valued data. The bootstrap
samples are created by resampling from the original data set, and the statis-
tic of interest is computed based on each bootstrap sample. The empirical
distribution of those resulting values can be used for analysis. Based on
the right-censoring A(n) assumption, proposed by Coolen and Yan [9], a
new smoothed bootstrap method has been introduced for better results; see
Al Luhayb [1] and Al Luhayb et al [2] for more details.

Efron and Tibshirani [16] presented the bootstrap method for bivariate
real-valued data. This method is quite similar to the method for univariate
data. Multiple bootstrap samples are created by sampling with replacement
from the original data set, and the statistic of interest is calculated based
on each bootstrap sample. The empirical distribution of the resulting values
can be a good proxy for the distribution of the statistic of interest. However,
Efron’s bootstrap method provides poor results for small data sets.

This paper introduces three smoothed bootstrap methods based on Non-
parametric Predictive Inference with parametric and non-parametric copulas
and uniform kernels. Advantages of the new smoothed bootstrap methods
are discussed on four aspects. First, simulation studies mostly show that the
proposed methods provide better results than Efron’s method when the data
distribution is symmetric. Secondly, the smoothed bootstrap methods provide
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better results than Efron’s method for small data sets. Thirdly, they can pro-
vide better estimates in case of low and medium dependence levels between
the variables. Fourthly, bootstrap samples created in the new methods do
not include tied observations, which can be an advantage compared to the
bootstrap samples created by Efron’s method.

This paper is organized as follows: Section 2 presents Efron’s bootstrap
methods for univariate data and bivariate data. Section 3 presents an overview
of the combination of NPI with parametric and non-parametric copulas for
bivariate data [10, 28, 29]. Section 4 introduces two smoothed bootstrap meth-
ods based on NPI with copulas for such data and it presents the third smoothed
bootstrap method based on box kernels assigned to the original observations.
An example with data from the literature is presented in Section 5 to illus-
trate application of the proposed smoothed bootstrap methods and Efron’s
method. Comparisons between the proposed smoothed bootstrap methods and
Efron’s bootstrap method for bivariate data are presented in Section 6. Section
7 presents concluding remarks.

2 Efron’s bootstrap methods

This section introduces Efron’s bootstrap methods for univariate and
bivariate data. For univariate data, let the real-valued random quantities
X1, X2, . . . , Xn be independent and identically distributed with distribution F ,
and x1, x2, . . . , xn be the observations corresponding to the random quantities
X1, X2, . . . , Xn. Furthermore, let θ(F ) be the statistic of interest.

In 1979, Efron [13] presented the bootstrap method for univariate real-
valued data. Multiple bootstrap samples of size n are created by sampling with
replacement from the original data set and the statistic of interest is computed
based on each bootstrap sample. Let B denote the number of bootstrap sam-
ples, it is important that quite a large number of such samples is used, e.g.
B = 1000. This leads to B values of the test statistic, and the empirical dis-
tribution of these B values is used as an estimate for the distribution of the
statistic of interest, θ(F ).

For bivariate real-valued data, Efron and Tibshirani [16] generalized the
bootstrap method and it is used for different measures of statistical accuracy,
e.g. standard errors and confidence intervals of some statistics of interest. Let
the random quantities (Xi, Yi) ∈ R2, for i = 1, 2, . . . , n, be independent and
identically distributed with distributionH, and let the observation correspond-
ing to (Xi, Yi) be denoted by (xi, yi). Furthermore, let the statistic of interest
be θ(H). Multiple bootstrap samples, e.g. B = 1000, of size n are created by
sampling with replacement from the observed data, and based on each boot-
strap sample, the statistic of interest is calculated. This leads to B values, and
the empirical distribution of these B values is used as a proxy for the distri-
bution of the statistic of interest; this is the same basic idea as for univariate
data.
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To derive a bootstrap estimate of the standard error of the sample statis-
tic θ̂, denoted by σ̂boot, the standard deviation of the B resulting values,
θ̂∗1, θ̂∗2, . . . , θ̂∗B , can be computed by

σ̂boot =

√∑B
j=1(θ̂

∗j)2 − (
∑B

j=1 θ̂
∗j)2/B

B − 1
(1)

For standard errors, Efron and Tibshirani [17] considered B to be in the range
25 to 200; however for hypotheses tests and confidence intervals, B should be
at least 1000 for good results. In this paper, we use B = 1000.

3 Combination of nonparametric predictive
inference and copulas

In 1959, Sklar [37] introduced the copula concept, which is a multivariate
cumulative distribution function with uniform marginals on [0, 1], which we
denote by C(., .) in the case of bivariate data. It enables modelling dependence
between random variables and constructing multivariate distributions. In the
literature, copulas have been widely used for a variety of statistical applica-
tions due to their ability to model the dependence between random variables
separately from the marginal distributions. Parametric and non-parametric
copulas have been presented in the literature, and most of them are symmetric,
see [6, 24, 31, 40] for more details. If the variables X and Y are exchangeable
then the corresponding copula is symmetric. This symmetry can be writ-
ten as C(FX(x), FY (y)) = C(FY (y), FX(x)), where FX(x) and FY (y) are the
cumulative distribution functions of the variables X and Y , respectively.

Coolen-Maturi et al [10] and Muhammad et al [29] used parametric and
non-parametric copulas in combination with nonparametric predictive infer-
ence (NPI) on the marginals. The methods provide a partially specified
predictive distribution for one future bivariate observation, and they both con-
sist of two steps. For these methods, NPI is first assumed for the individual
variables, then a copula is assumed in the second step to take the depen-
dence between the variables into account. If a parametric copula is assumed
in the second step, the method is referred to as the semi-parametric predic-
tive method. If a non-parametric kernel-based copula is assumed in the second
step, the method is referred to as the non-parametric predictive method.

To describe the two predictive methods, we use the notations and def-
initions presented in [10, 28, 29]. Let (xi, yi), for i = 1, 2, . . . , n, be the
n bivariate real-valued observations corresponding to n exchangeable bivari-
ate random quantities with no ties. For simplicity, the observations of each
individual variable are ordered and denoted by xi and yj . This leads to
x1 < x2 < . . . < xi < . . . < xn and y1 < y2 < . . . < yj < . . . < yn. Hill [23]
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A(n) assumption is used for the marginals, so we have

P (Xn+1 ∈ (xi−1, xi)) =
1

n+ 1
and P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1
(2)

for i, j = 1, 2, . . . , n+ 1, where x0 = ax, y0 = ay, xn+1 = bx and yn+1 = by in
case of finite support [ax, bx] for Xn+1 and [ay, by] for Yn+1, or with x0 = −∞,
y0 = −∞, xn+1 = +∞ and yn+1 = +∞ in case the support is not restricted.

To link the first step to the second step of the predictive methods, where
the copula concept takes the dependence structure in the data into account
[10], a natural transformation of the random variables is used. Let X̃n+1 and
Ỹn+1 denote transformed versions of the random quantities Xn+1 and Yn+1,
respectively, such that

(Xn+1 ∈ (xi−1, xi), Yn+1 ∈ (yj−1, yj)) ⇐⇒(
X̃n+1 ∈ (

i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)

)
(3)

for i, j = 1, 2, . . . , n+ 1.
After the transformation, the A(n) assumptions for the marginals are as

follows

P

(
X̃n+1 ∈ (

i− 1

n+ 1
,

i

n+ 1
)

)
= P (Xn+1 ∈ (xi−1, xi)) =

1

n+ 1
(4)

P

(
Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)

)
= P (Yn+1 ∈ (yj−1, yj)) =

1

n+ 1
(5)

Two important points should be mentioned here. First, the transformation
leads from the real space R2 to [0, 1]2, where [0, 1]2 is partitioned into (n+1)2

equal-sized blocks based on the n observed bivariate observations, as illustrated
in Figure 1. Secondly, the uniform marginal distributions have been discretized
on [0, 1]2, so that each column and each row has probability 1

n+1 .

3.1 The semi-parametric predictive method

The semi-parametric predictive method [10, 28] is as follows. The NPI method
is used for the marginals in the first step as described above, and a parametric
copula is assumed to take the dependence structure between the variables
into account [28], which is the second step. To estimate the copula parameter,
it is possible to use the transformed data, where the original observations

are replaced by (
rxi

n+ 1
,

ryi
n+ 1

), where rxi is the rank of the observation xi

among the x-observations, and ryi is the rank of the observation yi among the
y-observations.

The above descriptions for the first and second steps of the semi-parametric
predictive method show that the NPI approach used for the variables is com-
bined with the parametric copula to provide a partially specified predictive
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Fig. 1 Presentation of the transformed space.

distribution for one future bivariate observation. A probability is assigned to
each of the (n+ 1)2 blocks by the following formula

hij(β̂) = P

(
X̃n+1 ∈ (

i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)|β̂
)

(6)

for i, j = 1, 2, . . . , n + 1, where P (.|β̂) represents the assumed copula-based
probability for the transformed data based on the original data and estimated
copula parameter β̂. The probabilities hij satisfy three conditions. hij ≥ 0.∑n

i=1 hij =
1

n+ 1
for all j ∈ {1, 2, . . . , n + 1} and

∑n
j=1 hij =

1

n+ 1
for all

i ∈ {1, 2, . . . , n+ 1}. This implies
∑

i,j hij = 1.
The copula parameter can be estimated by multiple procedures presented

in the literature, see [18, 19, 25] for more details. In this paper, two estima-
tion methods are considered for the semi-parametric predictive method, and
those methods are widely used in the literature. The first estimation method
is referred to as pseudo maximum likelihood estimation (PMLE), where the
log pseudo likelihood function is [19]

ℓ∗(β) =

n∑
i=1

ln

(
cβ(

rxi
n+ 1

,
ryi

n+ 1
)

)
(7)

where cβ(u, v) =
∂2

∂u∂v
Cβ(u, v), and Cβ(u, v) is the cumulative distribution

function of a parametric copula. The pseudo maximum likelihood estimator is
the value β̂ that maximizes ℓ∗.

The second estimation method is the inversion of Kendall’s tau (Itau),
where the Kendall’s tau formula and its population version in terms of the
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copula are [19]

τ =
4

n(n− 1)
P − 1 and τ(Cβ) = 4

∫ 1

0

∫ 1

0

Cβ(u, v) dCβ(u, v)− 1 (8)

where P is the summation of concordant pairs in the sample. To compute the
concordant pairs, we first order the pairs (xi, yi), for i = 1, 2, . . . , n, based on
the x observations from smallest to greatest and rank the y observations, then
at each ordered pair, we compute the number of y ranks that are greater than
the y rank of that ordered pair. The summation of the resulting values will
be P . τ is the sample Kendall’s correlation. The Itau estimator is the value β̂
resulting from solving the equation τ = τ(Cβ). Both estimation methods are
available in the R package VineCopula [33].

For more accuracy in estimating the copula parameter, Genest et al [18]
and Kojadinovic and Yan [25] showed that the pseudo maximum likelihood
estimation is better than the inversion of Kendall’s tau method with con-
sideration to mean square error when the sample size is greater than 100
or Kendall’s correlation τ ≥ 0.4; otherwise, the Itau method provides more
accurate estimates.

3.2 The non-parametric predictive method

In the non-parametric predictive method for bivariate data [28, 29], the NPI
approach is used for the variables, as described before, as first step. For the
second step, a kernel smoothing copula is used, and an estimated probability
density function ĉ can be defined as [28]:

ĉ(x, y) =
1

nbXbY

n∑
i=1

K

(
x− FX(X̃i)

bX
,
y − FY (Ỹi)

bY

)
(9)

where K : R2 → R is a bivariate kernel function, bX , bY > 0 are the

bandwidths, which are the smoothing parameters, and FX(X̃i) =
rix
n+1 and

FY (Ỹi) =
riy

n+1 .
Now, the NPI approach assumed for the marginals is combined with the

non-parametric kernel-based copula to take the dependence structure into
account. The kernel K(., .) in Equation (9) can be any kernel function, pop-
ular choices for kernels in such copulas are e.g. Gaussian, Epanechnikov or
Uniform, which are available in the R package np [21]. The values hij can be
found by the following equation

hij(ĉ) = P

(
X̃n+1 ∈ (

i− 1

n+ 1
,

i

n+ 1
), Ỹn+1 ∈ (

j − 1

n+ 1
,

j

n+ 1
)|ĉ
)

(10)
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where i, j = 1, 2, ..., n+1 and P (.|ĉ) is the non-parametric kernel-based copula
probability with estimated kernel density function ĉ. Note that the values hij

satisfy the three conditions mentioned after Equation (6) in Subsection 3.1.
To implement this predictive method, it is important to choose the

bandwidths bX and bY for the kernel. In the literature, there is a range of rec-
ommendations for different scenarios, see e.g. [22, 26, 28, 35] for more details.
In this paper, we use Equation (11) as the normal reference rule-of-thumb
bandwidth.

bZ = 1.06 ÂZ n−1 (11)

where ÂZ = min
(
σ̂Z ,

IQR(Z)
1.349

)
, σ̂Z is the estimate of the standard deviation

of the variable Z, IQR(Z) is the interquartile range of Z, the 1.349 value is
the interquartile range of the standard normal distribution and n is the sample
size.

4 Smoothed bootstrap methods

This section introduces the smoothed bootstrap methods for bivariate data
based on the predictive methods presented in Section 3 and on uniform kernels.
They are presented based on the theory of NPI and kernel methods, and then
their performances are investigated and compared with Efron’s method in
terms of the coverage probability. Furthermore, they avoid ties, which occur
in the bootstrap samples created by Efron’s bootstrap method. The smoothed
bootstrap method based on the semi-parametric predictive method is referred
to by SBSP, and the one based on the non-parametric predictive method by
SBNP. We call the smoothed bootstrap method based on uniform kernels the
smoothed Efron’s bootstrap and refer to it by SEB.

Let the random variables (Xi, Yi) ∈ R2, for i = 1, 2, . . . , n, be inde-
pendent and identically distributed with distribution F , and let (xi, yi), for
i = 1, 2, . . . , n, be the observations corresponding to these random variables.
Furthermore, suppose that θ(F ) is the statistic of interest.

4.1 The SBSP method

Based on the original data set, the semi-parametric predictive method creates
(n+1)2 squares dividing the sample space and this method assigns probabilities

hij(β̂) to those squares by Equation (6) [28]. For simplicity, the smoothed
bootstrap algorithm for bivariate data based on the semi-parametric predictive
method is described as follows [1]:

1. Apply the semi-parametric predictive method to the original data to create
(n+ 1)2 squares and compute their estimated probabilities hij(β̂).

2. Sample with replacement n squares with their estimated probabilities
hij(β̂), then draw one bivariate observation from each chosen square. This
leads to create one smoothed bootstrap sample of size n, and it is denoted
by D∗

boot = {(x∗
1, y

∗
1), (x

∗
2, y

∗
2), . . . , (x

∗
n, y

∗
n)}.

3. Calculate the statistic of interest, θ̂∗ = θ̂(D∗
boot).
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4. Perform Steps (2) and (3) B times to create B bootstrap samples with

their statistics of interest θ̂∗1, θ̂∗2, . . . , θ̂∗B .

For the case of finite support, all squares dividing the sample space are
finite. This enables uniform sampling from the selected squares during the
bootstrap procedure. In contrast, when the sample space is infinite from any
side, infinite shapes will occur, and this makes it impossible to sample uni-
formly from those infinite shapes. For this issue, we will use the idea proposed
by BinHimd [5], Coolen and Himd [8] for the infinite intervals when the data
is univariate, but the idea is generalized for two dimensional data. If an infi-
nite shape is selected during the bootstrap procedure and the block’s range is
(−∞, x1) or (xn,+∞), Normal distribution tails will be assumed with mean
µ and standard deviation σ, and these parameters are defined such that the
probability in the interval is 1

n+1 . Therefore, the parameters are computed by

µ̂ =
x(1) + x(n)

2

σ̂ =
x(n) − µ

Φ−1( n
n+1 )

(12)

where Φ is the standard Normal cumulative distribution function.
After assuming the Normal distribution tails, a value is sampled from the

left tail for (−∞, x1), and a value is sampled from the right tail for (xn,+∞).
The x observation sampled from either tail of the Normal distribution will
be considered as the x value of the bivariate future observation. For the case
of infinite internals from either lower or upper bound, the block’s range is
(−∞, y1) or (yn,+∞), the same method will be applied with regard to the
variable Y . The y observation sampled from either tail will be considered as
the y value of the bivariate future observation.

4.2 The SBNP method

In this smoothed bootstrap method, the non-parametric predictive method is
used to divide the sample space into (n+1)2 squares based on the original data
and to compute the probabilities hij(ĉ) by Equation (10) [28]. For simplicity,
the algorithm of this bootstrap can be described as follows [1]:

1. Apply the non-parametric predictive method to the original data to create
(n+ 1)2 squares and compute their estimated probabilities hij(ĉ).

2. Sample with replacement n squares with their estimated probabilities
hij(ĉ), then draw one bivariate observation from each chosen square. This
leads to create one smoothed bootstrap sample of size n, and it is denoted
by D∗

boot = {(x∗
1, y

∗
1), (x

∗
2, y

∗
2), . . . , (x

∗
n, y

∗
n)}.

3. Calculate the statistic of interest, θ̂∗ = θ̂(D∗
boot).

4. Perform Steps (2) and (3) B times to create B bootstrap samples with

their statistics of interest θ̂∗1, θ̂∗2, . . . , θ̂∗B .
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For the case of infinite support, we follow the technique we described in
Section 4.1 to sample observations from the Normal distribution tails for the
infinite intervals.

4.3 Smoothed Efron’s bootstrap

With Efron’s bootstrap samples, ties occur due to the resampling procedure
from the original data set to create the bootstrap samples. To avoid ties to
occur in the bootstrap samples, we need to relax the resampling assumption of
Efron’s bootstrap method. In this section, a new smoothed bootstrap method is
introduced based on uniform kernels assigned to the observed data points, and
the method is referred to as smoothed Efron’s bootstrap method, SEB. Each
observation is surrounded by a block of size bX × bY , where the observation is
located in the center of its corresponding block. Due to the distances among
the observations and the size of blocks, the created blocks could be overlapping.
To create one smoothed Efron’s bootstrap sample, we sample n blocks with
replacement, then sample one observation uniformly from each selected block.
To illustrate the smoothed Efron’s bootstrap method, n equal-sized blocks
are created and assigned to the observed data points, as shown in Figure 2
for n = 4, where bX and bY are computed by Equation (11), but we replace
n−1 by n− 1

4 to have more smoothness in sampling; we discuss the choice of
bandwidths later for best performance in Section 6.2. The algorithm of this
smoothed version of Efron’s bootstrap is as follows [1]:

1. Create n blocks of size bX × bY with the observed data points at their
center.

2. Sample n blocks with replacement, then sample one bivariate obser-
vation uniformly from each selected block. This step creates one
smoothed bootstrap sample of size n, which is denoted by D∗

boot =
{(x∗

1, y
∗
1), (x

∗
2, y

∗
2), . . . , (x

∗
n, y

∗
n)}.

3. Calculate the estimate of the statistic of interest, θ̂∗ = θ̂(D∗
boot).

4. Perform Steps (2) and (3) B times in order to have B bootstrap estimates

of the statistic θ(F ); this leads to θ̂∗1, θ̂∗2, . . . , θ̂∗B .

To illustrate the new smoothed bootstrap methods along with Efron’s
bootstrap method, we use one example from the literature in the following
section.
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Fig. 2 The kernels assigned to the observed data points.

5 Example

This section introduces an example using data from the literature on 30 eleven-
year-old girls attending Heaton Middle School in Bradford [28]; the data are
presented in Table 1 and Figure 3. For the 30 girls, the data set includes height
in meters (m) and weight in kilogram (kg), and the body mass index (BMI),
where BMI can be computed by

BMI =
Weight (kg)

[Height (m)]2
(13)

By using this data set, we want to estimate the Pearson correlation between
height and weight for such girls, which we denote by r̂, and the standard
error of r along with the 90% bootstrap confidence interval for r based on
the proposed bootstrap methods and Efron’s bootstrap method. The sample
Pearson, Kendall and Spearman correlations between height and weight are
0.742, 0.631, 0.807, respectively.

By each bootstrap method, 1000 bootstrap samples of size n = 30 are cre-
ated. The Pearson correlation is computed based on each bootstrap sample,
and this leads to 1000 values of estimates; r̂∗1, r̂∗2, . . . , r̂∗1000. By taking the
mean of these 1000 values, the bootstrap estimate for r is derived, and its
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Table 1 The heights (m) and weights (kg) of 30 eleven-year-old girls.

Height (m) Weight (kg) BMI Height (m) Weight (kg) BMI
1.350 26.000 14.270 1.330 31.001 17.530
1.460 33.000 15.480 1.491 34.000 15.310
1.530 55.000 23.500 1.411 32.001 16.100
1.540 50.000 21.080 1.640 47.000 17.470
1.390 32.000 16.560 1.462 37.000 17.360
1.310 25.000 14.570 1.492 46.000 20.720
1.490 44.000 19.820 1.470 36.003 16.660
1.370 31.000 16.520 1.520 47.001 20.340
1.430 36.000 17.600 1.400 33.001 16.840
1.461 35.000 16.420 1.431 42.000 20.540
1.410 28.000 14.080 1.480 32.002 14.610
1.360 28.001 15.140 1.493 32.003 14.410
1.541 36.001 15.180 1.412 29.000 14.590
1.510 48.000 21.050 1.371 34.001 18.110
1.550 36.002 14.980 1.351 30.000 16.460
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Fig. 3 Heights (m) and corresponding weights (kg) values of 30 eleven-year-old girls.

standard error can be estimated by Equation (1). For the 90% bootstrap con-
fidence interval, the lower and upper bounds are the 50th and 950th ordered
values of the 1000 resulting values, respectively. All bootstrap estimates are
presented in Table 2.

Table 2 presents the bootstrap estimates for r, SE(r) and the 90% con-
fidence interval for r based on the smoothed bootstrap methods and Efron’s
bootstrap method. For the Pearson correlation r, all bootstrap methods show
that there is a positive correlation between height and weight. The largest esti-
mate is based on the SBSP method; the lowest estimate is based on the SBNP
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Table 2 The estimated results for r, SE(r) and the 90% confidence interval for r based on
each bootstrap method.

Method r̂ SE(r̂) 90% confidence interval

SBSP 0.791 0.069 (0.670, 0.884)
SBNP 0.652 0.120 (0.437, 0.830)
Efron 0.742 0.061 (0.639, 0.832)
SEB 0.720 0.063 (0.632, 0.834)

Table 3 The estimated results for θ, SE(θ) and the 90% confidence interval for θ based
on each bootstrap method.

Method θ̂ SE(θ̂) 90% confidence interval

SBSP 17.100 0.479 (16.350, 17.870)
SBNP 17.230 0.591 (16.310, 18.250)
Efron 17.110 0.455 (16.410, 17.900)
SEB 17.080 0.446 (16.360, 17.830)

method. The smoothed bootstrap method based on the non-parametric pre-
dictive method, SBNP, provides the largest estimate for the standard error of
r and wider 90% confidence interval. This could be because the method has
more variation in sampling. In contrast, Efron’s method and the SEB method
have smaller estimates for SE(r) and narrower confidence intervals due to their
processes of sampling. In general, all bootstrap methods provide clear evidence
of positive correlation between the variables as the sample size and the number
of bootstrap samples are large and there is roughly linear relationship between
the variables, as shown in Figure 3.

Another interest of using the data set is to estimate the mean θ of the body
mass index for all girls in such a population, and this is denoted by θ̂. It is
aimed to quantify the uncertainty in this estimate by considering the standard
error of θ̂ along with the 90% bootstrap confidence interval for θ based on the
proposed bootstrap methods and on Efron’s bootstrap method. The sample
mean of the body mass index is 17.110.

Based on each bootstrap method, 1000 bootstrap samples of size n = 30
are created, and the mean of the body mass index is computed based on each
bootstrap sample. This leads to 1000 estimates; θ̂∗1, θ̂∗2, . . . , θ̂∗1000. The mean
of these 1000 estimates is the bootstrap estimate for θ, its standard error is
estimated by Equation (1). For the 90% bootstrap confidence interval, the
lower and upper bounds are the 50th and 950th ordered values of the 1000
estimates, respectively. All bootstrap estimates are presented in Table 3.

Table 3 presents the bootstrap estimates θ̂, their standard errors SE(θ)
and the 90% confidence intervals for θ based on the smoothed bootstrap meth-
ods and Efron’s bootstrap method. For the mean θ of the body mass index,
all bootstrap methods provide nearly identical estimates. The largest esti-
mate is based on the SBNP method; the lowest estimate is based on the SEB
method. The smoothed bootstrap method based on the non-parametric pre-
dictive method, SBNP, provides the largest estimate for the standard error of
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Table 4 The estimated results for θ, SE(θ) and the 90% confidence interval for θ based
on Efron’s bootstrap method and Banks’ bootstrap method for univariate data.

Method θ̂ SE(θ̂) 90% confidence interval

EfronU 17.107 0.467 (16.338, 17.894)
Banks 17.148 0.470 (16.393, 17.927)

θ and wider 90% confidence interval. This could be because the method has
more variation in sampling. In contrast, Efron’s method and the SEB method
have smaller estimates for SE(θ) and narrower confidence intervals due to their
processes of sampling.

It is worth to compare the proposed bootstrap methods for bivariate data
with the alternative bootstrap methods for univariate data when the function
of interest is univariate and the data is bivariate as the case of BMI Example.
Table 4 presents the bootstrap estimates θ̂, their standard errors SE(θ) and the
90% confidence intervals for θ based on Efron’s bootstrap method and Banks’
bootstrap method for univariate data. The results are nearly identical to those
of the SBSP, SBNP, Efron and SEB methods, which are presented in Table 3.

6 Comparison of the bootstrap methods

In the literature, many statistical studies consider as primary requirement for
confidence regions that the difference between the nominal and estimated cov-
erage probabilities is small [3], and many simulations are considered with high
confidence levels, e.g. 0.90, 0.95 and 0.99. However, Banks [3] considered the
whole coverage probability scale to investigate the performance of bootstrap
methods. Banks first divides the whole real line by the quantiles of the statistic
of interest into a certain number of regions, then he investigates the distribu-
tion of coverage probabilities over those regions. In this paper, we create 10
confidence regions with nominal coverage probability 0.10 by

CR(i) =
(
q(αi+1

2 ), q(αi
2 )

)
∪
(
q(1−αi

2 ), q(1−αi+1
2 )

)
(14)

where i = 1, 2, . . . , 10, αi+1 = αi − 0.10, α1 = 1 and q(z) is the zth quantile of
the statistic of interest.

The null hypothesis is that the coverage probabilities are equal for the 10
confidence regions; each confidence region has confidence level 0.10, and the
test is as follows

H0 : The coverage probabilities are equally distributed over the 10 regions.

H1 : Not all coverage probabilities are equal.
(15)

To perform this hypothesis test, Banks [3] used the chi-square goodness of
fit test. Banks used this method to compare his smoothed bootstrap method
to other bootstrap methods, namely smoothed Rubin’s bootstrap [3], Efron’s
method [13] and Rubin’s Bayesian bootstrap [32], and the best bootstrap
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Table 5 The copula families with the marginal distributions used to generate bivariate
data sets.

Scenario Copula X Y τ
1 Normal U(0,1) U(0,1) -0.75, -0.50, -0.25, 0, 0.25, 0.50, 0.75
2 Gumbel U(0,1) U(0,1) 0, 0.25, 0.50, 0.75
3 Clayton N(1, 1) N(5, 3) 0.75

method is the one with the smallest chi-squared value, χ2. In other words,
the best method is the one with the lowest discrepancy between the nominal
and estimated coverage probabilities for a specific statistic. In this paper, we
use this technique to compare the proposed bootstrap methods, presented in
Section 4, and Efron’s bootstrap method for bivariate data.

For the chi-squared goodness of fit test, the significance level is set equal
to 0.05, the 95th percentile of the chi-squared distribution with 9 degrees of
freedom is equal to 16.92. For a chi-squared test statistic value less than 16.92,
the null hypothesis is not rejected. For a chi-squared test statistic value greater
than 16.92, the null hypothesis is rejected, and in this case it is important
to consider whether this is mostly due to over-coverage or under-coverage in
the first regions, CR(1), CR(2) and CR(3), which are located in the centre. For
simplicity, we use the over (under) lines to indicate the over-(under-)coverage
proportions in the first confidence regions. This helps to understand why a
large chi-squared test statistic value is obtained.

To generate bivariate data sets and compare the proposed bootstrap meth-
ods with Efron’s method, three copula families are considered with different
Kendal correlation τ , which has a one-to-one relationship with the copula
parameter β, and different sample sizes n. For the first scenario, the Nor-
mal copula model is used. The marginal distributions of X and Y are both
Uniform(0, 1). This scenario is considered because the Normal copula is sym-
metric and more appropriate [27]. For the second scenario, the Gumbel copula
model is used. This copula is asymmetric and has strong right-tail depen-
dence and relatively weak left-tail dependence [38]. The marginal distributions
of X and Y are both Uniform(0, 1). For the third scenario, the Clayton
copula is used. This copula is asymmetric and models greater dependence
in the negative tail than in the positive tail [28]. The marginal distribu-
tion of X is Normal(µ = 1, σ = 1) and the marginal distribution of Y is
Normal(µ = 5, σ = 3). All these scenarios are specified in Table 5. For the first
two scenarios, the standard Uniform is used for the marginals to investigate
how the bootstrap methods perform in case of finite support, but for the third
scenario, we use Normal distributions with different means and different stan-
dard deviations to show how the bootstrap methods perform in case of infinite
support.

In the simulations, we use sample sizes n = 10, 50, 100, and the statistics
of interest are the Pearson (r), Kendall (τ) and Spearman (rS) correlations,
which are widely used in the literature to measure the dependence between the
variables and to show the direction of the relationship between the variables,
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whether is positive or negative. These statistics are as follows [7]

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2

τ =
4

n(n− 1)
P − 1

rS =1−
6
∑n

i=1 d
2
i

n(n2 − 1)

(16)

where n is number of observations, xi and yi are the observations of the vari-

ables X and Y , respectively, and x =
∑n

i=1 xi

n and y =
∑n

i=1 yi

n . P is the
summation of concordant pairs in the sample. di is the difference between the
xi and yi ranks.

We also investigate the estimated coverage proportions for the averages of
T1 = X + Y and T2 = XY 2, which are referred to by T1, and T2, respectively.
These statistics are considered to investigate the performance of bootstrap
methods for some simple functions of X and Y .

For the smoothed bootstrap method based on the semi-parametric predic-
tive method, the pseudo MLE method is used to estimate the copula parameter
β when τ ≥ 0.4 [19]; otherwise the inversion of Kendall’s tau is used. For the
smoothed bootstrap method based on the non-parametric predictive method,
the Normal kernel is applied with the bandwidths calculated by Equation (11).
To apply this method, we used the package np in R software [21].

6.1 First scenario

For the case of finite support, the first scenario listed in Table 5 is used to
generate N = 1000 bivariate data sets, and based on those created data sets,
the smoothed bootstrap methods are compared with Efron’s method. Each
bootstrap method is applied B = 1000 times for each created data set, and the
statistic of interest is computed based on each bootstrap sample. This leads to
1000 resulting values, and based on these values, the 10 confidence regions can
be derived by Equation (14). We then calculate the proportions of confidence
regions which include the true statistic of interest. This procedure is repeated
for all N = 1000 created data sets in order to observe the estimated coverage
proportions for the true statistic of interest in the 10 confidence regions. Based
on the proportions, the corresponding chi-squared value can be computed for
each bootstrap method. Tables 6 to 10 present the chi-squared values obtained
from the estimated coverage proportions for r, τ , rS , T1 and T2, respectively,
based on each bootstrap method.

Table 6 presents the chi-squared values for the Pearson correlation r based
on each bootstrap method. For larger chi-squared values, we use over- and
under-lines to illustrate the over- and under-coverage proportions in the first
three confidence regions. When n = 10 and τ = −0.25, 0, 0.25, the SBSP, SBNP
and SEB methods provide large chi-squared values due to under-coverage, but
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Table 6 The chi-squared values for the Pearson correlation r.

n = 10 50 100

τ β r SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

-0.75 -0.9239 -0.92 29.98 54.34 91.22 79.36 12.32 7.32 14.96 13.06 16.82 12.08 9.82 4.16

-0.50 -0.7071 -0.69 15.04 11.06 70.16 14.58 9.28 15.70 7.66 6.18 7.32 7.34 6.62 10.32

-0.25 -0.3827 -0.37 27.92 24.16 48.90 30.98 7.46 12.02 9.48 4.40 20.20 4.82 10.24 3.46

0 0 0 24.52 35.54 56.84 34.62 8.18 6.50 14.48 6.86 11.72 11.44 11.92 7.82

0.25 0.3827 0.37 43.18 20.44 37.86 24.90 8.96 8.04 9.94 5.96 17.56 10.62 26.24 15.98

0.50 0.7071 0.69 8.00 4.82 80.84 24.94 7.28 9.64 13.54 5.26 21.22 11.04 4.78 11.14

0.75 0.9239 0.92 126.20 65.24 116.46 64.38 17.32 7.72 25.62 14.86 24.88 11.92 5.76 11.64
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Fig. 4 The number of times that H0 is not rejected, and the number of times that H0 is
rejected due to over-coverage and due to under-coverage for r based on each bootstrap.

these methods lead to over-coverage when τ = −0.75 and 0.75. At this sample
size for all levels of dependence, Efron’s method always provides larger chi-
squared values due to under-coverage. As the sample size increases to 50 and
100, all these bootstrap methods perform mostly well. Figure 4 indicates the
simulation results as the number of simulations for which the null hypothesis
H0 is not rejected and the number of simulations for which the null hypothesis
H0 is rejected due to over- and due to under-coverage, regardless of the sample
size. This figure suggests that the SBNP method is the best method, followed
by the SEB method. These two smoothed bootstrap methods do not reject H0

in 16 and 15 cases, respectively, out of 21 simulations.
In Table 7, the chi-squared values for Kendall’s correlation τ are presented.

This statistic is computed based on the concordance of data, and the smoothed
bootstrap methods influence the rank of observed data points by the probabil-
ities ĥij for blocks and by sampling uniformly from the chosen blocks during
the bootstrap procedures. This influence can be seen for high dependence lev-
els τ , in particular for the SEB method. As the sample size increases to 50 and
100, the SBSP and SBNP methods mostly perform well. The SBSP method
provides small chi-squared values because the Normal copula is assumed in the
semi-parametric predictive method and the same parametric copula is used to
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Table 7 The chi-squared values for the Kendall correlation τ .

n = 10 50 100

τ β SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

-0.75 -0.9239 261.68 65.06 70.50 63.92 5.96 14.08 19.08 69.00 6.60 13.50 16.26 86.06

-0.50 -0.7071 53.06 52.00 18.70 104.02 8.14 7.56 3.60 9.20 3.10 10.26 10.08 6.66

-0.25 -0.3827 8.78 21.00 12.70 32.22 7.66 5.08 5.76 3.98 14.90 17.18 18.30 11.60

0 0 17.98 14.54 33.54 21.74 8.34 3.78 12.28 6.14 8.58 15.82 9.62 14.90

0.25 0.3827 18.60 16.38 6.86 28.68 11.12 8.86 9.58 9.92 19.92 13.98 16.72 13.18

0.50 0.7071 5.44 71.66 24.74 103.40 16.94 6.94 8.40 8.98 11.28 8.32 10.44 10.12

0.75 0.9239 259.48 92.50 149.00 73.92 23.72 24.94 11.38 20.02 19.76 10.20 12.18 46.66
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Fig. 5 The number of times that H0 is not rejected, and the number of times that H0 is
rejected due to over-coverage and due to under-coverage for τ based on each bootstrap.

create the data sets. Figure 5 shows that the SBNP method and Efron’s boot-
strap method are the methods which most often do not reject H0; they both
do not reject H0 14 times and rejecting H0 7 times due to over-coverage in the
first three confidence regions.

Table 8 presents the chi-squared values for Spearman’s correlation rS . This
correlation is computed based on the difference between the ranks of the cor-
responding x and y observations, and the ranks may be influenced by the
smoothed bootstrap methods due to their variation in sampling. For high
dependence levels, e.g. τ = −0.75, 0.75, the SEB method provides the largest
chi-squared values compared to the other bootstrap methods, but with low
dependence levels, it provides good results. The SBSP and SBNP methods
along with Efron’s method perform mostly well, but Efron’s method is better,
in particular for large data sets. To illustrate the performances of the boot-
strap methods, Figure 6 presents the simulation results. This figure shows that
the method, which most often does not reject H0, is Efron’s method due to the
resampling process, which helps to not change the ranks of the corresponding
x and y observations. This is contrary to the smoothed bootstrap methods,
which have more variation in sampling. Efron’s method is followed by the
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Table 8 The chi-squared values for the Spearman correlation rS .

n = 10 50 100

τ β rS SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

-0.75 -0.9239 -0.92 125.18 140.32 137.38 410.24 4.46 22.26 10.02 142.30 14.38 8.38 7.86 94.86

-0.50 -0.7071 -0.69 39.38 34.02 38.24 69.18 7.12 7.72 6.70 9.40 11.66 8.38 9.18 9.80

-0.25 -0.3827 -0.37 10.82 10.52 5.80 27.80 6.84 6.88 8.12 6.34 15.06 8.18 10.66 7.00

0 0 0 17.58 15.46 14.72 18.64 11.74 3.12 7.34 11.62 7.48 6.98 6.98 15.96

0.25 0.3827 0.37 20.04 8.64 6.26 19.84 5.50 15.04 15.92 20.32 13.70 12.38 13.36 12.00

0.50 0.7071 0.69 35.92 51.54 39.00 70.34 13.40 4.18 9.34 14.08 16.90 12.48 3.58 9.70

0.75 0.9239 0.92 89.14 116.40 147.30 445.88 30.48 11.70 3.60 82.30 33.88 12.52 4.58 63.20
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Fig. 6 The number of times that H0 is not rejected, and the number of times that H0 is
rejected due to over-coverage and due to under-coverage for rS based on each bootstrap.

SBNP method. Out of 21 different cases, Efron’s method does not reject H0

17 times and the SBNP method does not reject H0 16 times.
In Tables 9 and 10, the chi-squared values for the averages of T1 and T2 are

presented, respectively. When n = 10 for all dependence level situations, the
smoothed bootstrap methods are better than Efron’s method in distributing
the coverage proportions for both statistics T1 and T2 over the 10 confidence
regions. At this sample size, all chi-squared values corresponding to Efron’s
method are large due to under-coverage in the first three confidence regions.
Having under-coverage in the first three confidence regions could be due to
the resampling process. As the sample size increases to 50 and 100 with no
regard to the dependence level, Efron’s method mostly provides good results
for both statistics T1 and T2. This leads to not rejecting H0 in most cases,
but the smoothed bootstrap methods perform better at these sample sizes.
In Figures 7 and 8, the simulation results are presented to show the number
of times that H0 is not rejected and the number of times that H0 is rejected
due to over- and due to under-coverage in the first three confidence regions.
These figures show that the SBSP and SBNP methods are the best in terms
of providing small chi-squared values for T1; they both lead to not reject H0

17 times for the 21 cases. For T2, the SBSP and SBNP methods perform well
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Table 9 The chi-squared values for T1.

n = 10 50 100

τ β T1 SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

-0.75 -0.9239 1 85.86 131.72 47.60 8.16 9.08 9.68 11.30 4.76 12.40 15.44 13.92 7.64

-0.50 -0.7071 1 24.44 23.84 47.12 17.10 8.54 5.88 10.14 5.26 10.80 12.48 18.02 11.46

-0.25 -0.3827 1 13.90 18.16 39.96 28.14 7.32 7.04 12.88 7.54 7.94 16.00 28.02 20.72

0 0 1 15.76 11.24 40.04 28.26 10.92 4.08 10.82 11.20 12.46 17.32 19.04 16.56

0.25 0.3827 1 8.90 8.56 41.94 33.04 20.10 7.10 17.98 15.20 14.22 4.60 10.44 17.68

0.50 0.7071 1 18.10 10.76 37.50 29.56 10.12 5.38 6.90 9.72 7.42 12.28 9.80 10.42

0.75 0.9239 1 9.72 9.74 36.48 31.62 13.28 6.60 7.08 6.58 13.38 9.12 13.48 13.00

SBSP SBNP Efron SEB

0
5

10
15

20

Not rejecting H0 Over Under

17

3

1

17

3

1

10

0

11

13

0

8

Fig. 7 The number of times that H0 is not rejected, and the number of times that H0 is
rejected due to over-coverage and due to under-coverage for T1 based on each bootstrap.

in most cases, but the SBSP method is better, as it does not reject H0 in 17
cases while the SBNP method does not reject H0 in 15 cases.

In each case of dependence level τ and sample size n, we compare the
bootstrap methods by counting how often a method provides the lowest chi-
squared value, with no consideration whether the value leads to rejecting the
null hypothesis H0 or not. For each statistic of interest, we count the number
of times that each method provides the lowest chi-squared values among all
values. For example when n = 10 and τ = −0.75 in Table 6, the chi-squared
values corresponding to the SBSP, SBNP and SEB methods are 29.98, 54.34
and 79.36, respectively; and all these values are large due to over-coverage
in the first three confidence regions. The chi-squared value corresponding to
Efron’s method is 91.22, which is large due to under-coverage. In this situation,
we count one for the SBSP method because its chi-squared value is the lowest
value among all. The summaries based on Tables 6 to 10 are presented in Table
11. Each score in this table is indicated with three numbers, which are the
numbers of chi-squared values that lead to not reject H0 and reject H0 due to
over-coverage and due to under-coverage, respectively.

In Table 11, the SBNP and SEB methods have the highest score for the
Pearson’s correlation r, which is 8, but the SEB method performs better than
the SBNP method because the former does not reject H0 7 times while the
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Table 10 The chi-squared values for T2.

n = 10 50 100

τ β T2 SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

-0.75 -0.9239 0.090 49.10 49.72 46.28 5.42 26.02 8.08 17.86 14.64 7.70 8.66 9.60 3.52

-0.50 -0.7071 0.109 13.28 8.52 98.94 44.70 7.12 11.88 10.44 9.04 6.12 8.56 7.70 3.66

-0.25 -0.3827 0.136 18.46 17.26 91.22 75.34 12.46 8.64 10.64 19.38 4.26 15.18 16.08 6.14

0 0 0.167 10.04 17.02 110.96 87.78 1.80 4.94 7.56 12.14 4.54 15.62 21.80 13.76

0.25 0.3827 0.197 8.12 19.06 87.32 73.42 12.22 10.30 5.14 14.94 11.62 21.78 17.76 15.14

0.50 0.7071 0.224 19.04 11.40 71.12 61.26 14.68 5.94 8.80 11.34 2.90 17.94 4.40 16.56

0.75 0.9239 0.243 15.30 15.74 42.60 36.12 16.54 9.76 8.98 18.94 6.04 9.50 5.92 12.28
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Fig. 8 The number of times that H0 is not rejected, and the number of times that H0 is
rejected due to over-coverage and due to under-coverage for T2 based on each bootstrap.

Table 11 The summary of scores for the bootstrap methods for the five statistics of
interest along with the number of chi-squared values of each score that lead to not reject
H0 and reject H0 due to over-coverage and under-coverage, (# not rejecting H0, #
rejecting H0 due to over-coverage, # rejecting H0 due to under-coverage).

Function SBSP SBNP Efron SEB
r 2 (0,1,1) 8 (6,0,2) 3 (3,0,0) 8 (7,1,0)
τ 6 (6,0,0) 6 (6,0,0) 4 (3,1,0) 5 (3,2,0)
rS 5 (2,3,0) 5 (4,1,0) 9 (9,0,0) 3 (3,0,0)

T1 6 (6,0,0) 9 (9,0,0) 0 (0,0,0) 6 (5,0,1)

T2 9 (9,0,0) 6 (5,0,1) 3 (3,0,0) 3 (3,0,0)

SBNP method does not reject H0 6 times. For the Kendall’s correlation τ ,
the SBSP and SBNP methods are the best with score 6; this could be due
to the Normal copula, which is used for generating and for analysis when
applying the SBSP method. The SBNP method scores 6 as well. For the same
statistic of interest, the SEB method is the second best with score 5. For the
Spearman’s correlation rS , Efron’s method is the best with score 9 and all
chi-squared values do not support the rejection of H0. This result is rational
because Efron’s bootstrap method, which is sampling with replacement, does
not affect the ranks of the corresponding x and y observations, contrary to
the smoothed bootstrap methods, which have more variation in sampling. The
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Table 12 The chi-squared values for the Pearson correlation r.

n = 10 50 100

τ β r SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 0 28.50 9.84 31.42 17.36 6.00 7.98 13.40 9.08 7.80 8.80 7.10 5.68

0.25 1.3333 0.36 23.72 19.10 33.02 18.96 16.86 14.52 13.08 7.88 14.12 6.28 9.86 5.32

0.50 2 0.68 12.26 8.12 68.14 25.66 25.24 10.28 21.92 7.58 19.40 6.96 7.64 7.86

0.75 4 0.92 16.58 41.54 116.02 60.10 33.00 16.82 12.90 35.94 22.66 15.32 9.60 59.52
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Fig. 9 The number of times that H0 is not rejected, and the number of times that H0 is
rejected due to over-coverage and due to under-coverage for r based on each bootstrap.

second best is the SBNP method with score 5, and 4 chi-squared values out of
5 lead to not reject H0. For the average of T1, the SBNP method is the best,
followed by the SBSP method. For the average of T2, the SBSP method is
the best with score 9, and the SBNP method is the second best with score 6,
and 5 chi-squared values out of 6 are not rejecting H0. The SBSP and SBNP
methods are the best for the averages of T1 and T2 and this could be because
the SBSP and SBNP methods allow more variations in sampling to create the
bootstrap samples than Efron’s method and the SEB method.

6.2 Second scenario

From the second scenario presented in Table 5, multiple bivariate data sets are
created. For the smoothed bootstrap method based on the semi-parametric
predictive method, the Normal copula is assumed in order to compute the
probabilities ĥij by Equation (6). In this section, we want to investigate how
the SBSP method performs when the copula model used for analysis is different
to the model used to generate data sets.

The smoothed bootstrap methods are compared to Efron’s bootstrap
method through simulations with consideration to the second scenario pre-
sented in Table 5. The chi-squared values are presented in Tables 12 to 16 for
r, τ, rS and the statistics T1 and T2, and Figures 9 to 13 visualize the results,
respectively. For the Pearson correlation r, the best method not rejecting H0
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Table 13 The chi-squared values the Kendall correlation τ .

n = 10 50 100

τ β SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 14.40 30.58 41.98 26.98 6.84 4.78 10.32 8.10 12.84 12.28 5.66 11.46

0.25 1.3333 31.68 43.54 30.44 62.58 18.74 13.46 12.88 12.88 17.52 4.14 3.18 3.40

0.50 2 26.34 52.60 36.94 98.36 29.18 8.06 9.74 8.92 17.02 11.22 3.14 4.98

0.75 4 303.20 58.60 85.00 49.04 28.76 15.72 13.16 33.10 18.90 10.16 9.86 49.56
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Fig. 10 The number of times that H0 is not rejected, and the number of times that H0 is
rejected due to over-coverage and due to under-coverage for τ based on each bootstrap.

is the smoothed bootstrap method based on the non-parametric predictive
method. The SBNP method does not reject H0 10 times out of 12 cases as
shown in Figure 9. For the Kendall correlation τ , the SBNP method and
Efron’s method provide the best results to not reject H0. From Figure 10,
the methods lead to not reject H0 8 times and they reject H0 4 times due to
over-coverage occurring in the first three confidence regions. For the Spear-
man correlation rS , the best method is Efron’s method. As shown in Figure
11, Efron’s method does not reject H0 9 times and it rejects H0 3 times due
to over-coverage. For the statistics T1 and T2, the SBSP method is the best
to not reject H0 as illustrated in Figures 12 and 13. This bootstrap method
leads to not reject H0 10 times for both statistics T1 and T2. Efron’s method
and the SEB method always lead to under-coverage for T1 and T2 when the
sample size is 10. For large data sets, both these bootstrap methods provide
mostly good results.

Table 17 presents the summary of scores for each bootstrap method pro-
viding the lowest chi-squared values on each statistic of interest. For the
Pearson’s correlation r, the best method is the SEB method with score 5. For
the Kendall’s correlation τ , Efron’s method is the best with score 7, and in 6
cases, the method leads to not reject H0. For the Spearman’s correlation rS
and T1, the best method is the SBNP method, which scores 5 for these statis-
tics, and all values in these cases indicate that the SBNP method distribute
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Table 14 The chi-squared values for the Spearman correlation rS .

n = 10 50 100

τ β rS SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 0.00 27.70 13.38 15.38 21.02 10.30 13.10 11.70 7.78 9.20 15.48 16.20 6.86

0.25 1.3333 0.36 23.76 23.48 20.86 36.52 19.74 5.74 11.26 9.58 13.42 7.56 12.16 15.94

0.50 2 0.68 42.74 44.46 29.50 69.06 18.92 5.18 7.04 6.82 16.28 5.70 5.72 7.94

0.75 4 0.92 123.14 112.48 105.14 398.76 18.00 25.68 10.70 266.32 12.02 22.94 15.02 248.46
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Fig. 11 The number of times that H0 is not rejected, and the number of times that H0 is
rejected due to over-coverage and due to under-coverage for rS based on each bootstrap.

the coverage proportions equally over the 10 confidence regions; this bootstrap
method does not support rejection H0. The SBSP method is the second best
for T1, and it is the best method for T2.

Through simulations, we observed some important issues that should be
pointed out. First, as the sample size increases with high dependence levels,
the SEB method mostly provides large chi-squared values for r, τ and rS due
to under-coverage in the first three confidence regions. From this observation,
it may be beneficial to use small bandwidths for this bootstrap method when
the dependence level τ is greater than 0.50 or less than −0.50, τ > 0.50 or
τ < −0.50. To illustrate this, the simulations based on the second scenario
are repeated with different bandwidth sizes. Equation (11) is considered for
small bandwidths, but for large bandwidths n−1 is replaced by n− 1

4 . Note that
increasing the bandwidth size leads to more variation in sampling, which may
lead to bad results in the situation of high dependence between the variables
X and Y . Table 18 presents the simulation results, and it shows that the SEB
method with small bandwidths mostly provides better results.

Secondly, the Itau estimation method is better than the PMLE estimation
method for estimating the copula parameter β when applying the semi-
parametric predictive method, in particular when the dependence level τ ≤ 0.4.
This estimation technique leads to better results for the SBSP method for some
statistics of interest. Thirdly, we assume the Normal copula to apply the semi-
parametric predictive method due to its ability to model negative and positive
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Table 15 The chi-squared values for the statistic T1.

n = 10 50 100

τ β T1 SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 1 13.46 8.68 48.98 42.68 12.86 10.42 5.44 2.58 5.16 12.96 9.34 10.50

0.25 1.3333 1 13.46 11.88 33.98 33.18 13.28 17.16 14.62 14.88 19.56 7.90 16.96 13.88

0.50 2 1 7.94 13.38 35.64 28.92 6.26 3.72 6.54 6.56 12.64 8.50 14.64 17.16

0.75 4 1 20.86 22.52 24.82 27.12 7.60 8.52 8.70 12.14 13.56 21.94 17.02 12.22
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Fig. 12 The number of times that H0 is not rejected, and the number of times that H0 is
rejected due to over-coverage and due to under-coverage for T1 based on each bootstrap.

correlations. Fourthly, the smoothed bootstrap methods based on the semi-
parametric and non-parametric predictive methods may provide poor results
for the correlations r, τ and rS when the data distribution is asymmetric, con-
trary to the first and second scenarios, and this will be investigated through
simulations in the next section.

6.3 Third scenario

From the third scenario listed in Table 5, N = 1000 data sets are cre-
ated. In this scenario, the Clayton copula is used with dependence level
τ = 0.75, and the marginal distributions are X ∼ Normal(µ = 1, σ = 1) and
Y ∼ Normal(µ = 5, σ = 3). This data distribution is asymmetric. For each
generated data set, each bootstrap method is applied B = 1000 times and the
same comparison technique as in Sections 6.1 and 6.2 is used again. Table 19
presents the simulation results, it shows that the SBSP and SBNP methods
provide poor results for the Pearson’s, Kendall’s and Spearman’s correlations.
For the same statistics of interest but with large data sets, the SBSP method
continues to perform poorly, but the SBNP method improves. This could be
because we use the Normal copula, which is symmetric, with the SBSP method
while the data distribution is asymmetric so that the simulation results con-
tinue to be bad even with large data sets. The simulation results based on the
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Table 16 The chi-squared values for the statistic T2.

n = 10 50 100

τ β T2 SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 0.167 8.46 18.20 110.82 104.00 9.36 9.54 7.40 4.96 8.54 6.80 9.30 10.00

0.25 1.3333 0.199 5.24 26.44 109.44 99.06 12.04 12.00 12.14 13.18 34.80 14.78 16.64 17.72

0.50 2 0.225 11.70 24.08 83.70 68.78 5.76 6.12 8.30 11.80 23.40 17.14 20.18 21.70

0.75 4 0.243 15.02 18.26 78.00 54.00 5.66 10.48 10.90 6.86 10.18 12.76 12.34 9.56
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Fig. 13 The number of times that H0 is not rejected, and the number of times that H0 is
rejected due to over-coverage and due to under-coverage for T2 based on each bootstrap.

Table 17 The summary of scores for the bootstrap methods for the five statistics of
interest along with the number of chi-squared values of each score that lead to not reject
H0 and reject H0 due to over-coverage and under-coverage, (# not rejecting H0, #
rejecting H0 due to over-coverage, # rejecting H0 due to under-coverage).

Function SBSP SBNP Efron SEB

r 2 (2,0,0) 3 (3,0,0) 2 (2,0,0) 5 (4,0,1)
τ 2 (1,0,1) 2 (2,0,0) 7 (6,1,0) 2 (1,1,0)
rS 1 (1,0,0) 5 (5,0,0) 4 (1,3,0) 2 (2,0,0)

T1 5 (4,1,0) 5 (5,0,0) 0 (0,0,0) 2 (2,0,0)

T2 6 (6,0,0) 4 (3,0,1) 0 (0,0,0) 2 (2,0,0)

Table 18 The chi-squared values obtained from the coverage proportions for r, τ and rS
using the SEB method with two bandwidth sizes, where the copula parameter β = 4.

n = 10 50 100

Bandwidth small (n−1) large (n− 1
4 ) small (n−1) large (n− 1

4 ) small (n−1) large (n− 1
4 )

r = 0.92 85.10 60.10 19.84 35.94 11.30 59.52

τ = 0.75 91.18 49.04 12.52 33.10 9.20 49.56

rS = 0.92 15.22 398.76 25.76 266.32 18.20 248.46

SBNP method are improved as the sample size increases because the proba-
bilities hij over the (n+1)2 blocks become close to the model probabilities for
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Table 19 The chi-squared values obtained from the coverage proportions for the true
statistics of interest with copula parameter β = 6.

n = 10 50 100

Function SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

r = 0.89 37.54 4341.90 249.22 15.70 425.88 154.50 33.40 13.48 1488.24 34.22 19.36 12.44

τ = 0.75 210.52 5701.30 34.54 64.18 70.46 297.40 8.54 6.34 42.84 11.58 9.80 18.66

rS = 0.91 185.64 7369.40 87.42 19.40 37.02 142.04 7.04 11.44 31.12 7.42 8.94 10.34

T1 = 6.00 27.14 47.86 50.04 44.28 12.56 5.54 6.80 5.60 7.68 10.62 12.62 13.94

T2 = 58.63 89.92 236.22 183.74 174.48 18.52 17.40 12.68 10.28 10.20 3.40 7.60 20.28

the blocks. For T1 and T2, the SBSP and SBNP bootstrap methods provide
large chi-squared values when n = 10 due to under-coverage in the first three
confidence regions. As the sample size increases, their results improve. In this
scenario, all these bootstrap methods provide good results for large data sets.

7 Concluding remarks

This paper introduced three smoothed bootstrap methods for bivariate data
based on the semi-parametric and non-parametric predictive methods and on
uniform kernels. These bootstrap methods are compared to Efron’s bootstrap
method through simulations in terms of the coverage proportions for the Pear-
son, Kendall and Spearman correlations along with the averages of T1 and T2,
where T1 = X + Y and T2 = XY 2. In the simulations, we consider different
dependence levels τ and sample sizes n = 10, 50 and 100.

From the simulations, we observed some important features in the results
that should be mentioned. First, for the case of a symmetric data distribution,
the SBNP method mostly provides better results for the Pearson correlation r
than the other bootstrap methods. When we consider the Kendall correlation
τ and the Spearman correlation rS , it is better to use Efron’s method due to
its resampling process. This process does not influence the rank of observa-
tions, which is used to compute these statistics of interest. For the statistics T1

and T2, the SBSP and SBNP methods mostly provide the lowest discrepancies
between the nominal and actual coverage proportions, in particular for small
data sets. Secondly, for the case of an asymmetric data distribution, it may be
beneficial to use either the SEB method or Efron’s method. They mostly pro-
vide better results because they have less variation in sampling than the SBSP
and SBNP methods. Thirdly, Efron’s method and the SEB method with small
bandwidth size perform well for r, τ and rS in case of high dependence between
the variables, contrary to the SBSP and SBNP method, which decrease the
correlation between the variables by their processes of sampling. Fourthly, the
proposed smoothed bootstrap methods mostly provide better outcomes for all
statistics when the dependence level is low or medium because the smoothed
methods allow more variation in sampling, which lead to better estimates, in
particular for small data sets. Lastly, it seems that with a large enough sam-
ple, Efron’s method leads to bootstrap samples that reflect linear relations
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between X and Y well and remain close to the real linear relation, while the
smoothed methods, due to more variation in sampling, perform less well.

Due to the processes of sampling related to the smoothed bootstrap meth-
ods, ties occur with probability zero in the bootstrap samples, contrary to
the bootstrap samples created by Efron’s method. This helps to compute the
statistic of interest easily; with Efron’s bootstrap samples, there is a need to
break the ties in some real applications, so more assumptions may be needed.
For more details, we refer to [39], which describes the issue of ties in a storm
characteristics example.

In running R codes, the SBSP method takes approximately four times as
long as Efron’s method. This is mainly due to fitting the Normal copula on
each created data set to calculate the probabilities hij , sampling uniformly
from the limited squares and getting observations from the fitted normal tails
for the unlimited squares. However, the SBNP and SEB methods require
approximately equal computation time as Efron’s method.

This paper has introduced new smoothed bootstrap methods for bivari-
ate data, and presented an initial investigation of their performance. Future
research is needed to consider the performance in more detail and to compare
the methods with more alternative bootstrap methods, e.g. those presented by
Efron and Gong [15]. Extending the proposed bootstrap methods to non-iid
data is also and important topic for future research [34]. The proposed meth-
ods can be generalized to multivariate data beyond 2 dimensions by using the
NPI method with multi-dimensional copulas, this is left as a topic for future
research.
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