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Abstract

This paper demonstrates the application of smoothed bootstrap methods and
Efron’s methods for hypothesis testing on real-valued data, right-censored data and
bivariate data. The tests include quartile hypothesis tests, two sample medians and
Pearson and Kendall correlation tests. Simulation studies indicate that the smoothed
bootstrap methods outperform Efron’s methods in most scenarios, particularly for
small datasets. The smoothed bootstrap methods provide smaller discrepancies be-
tween the actual and nominal error rates, which makes them more reliable for testing
hypotheses.
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1 Introduction

The bootstrap method, as introduced by Efron (1979), is a nonparametric statistical

method proposed to specify the variability of sample estimates. The method has been

widely used in the literature for a variety of statistical problems (Efron and Tibshirani,

1993) as it is easy to apply and overall provides good results. In case of little informa-

tion about a suitable distribution, the bootstrap method could be of great practical use

(Davison and Hinkley, 1997).

For univariate real-valued data, Efron (1979) introduced the bootstrap method, which

is used in many real-world applications; see Efron and Tibshirani (1993), Davison and

Hinkley (1997) and Berrar (2019) for more details. For an original data set of size n,

the method involves creating multiple resamples, called bootstrap samples, of size n and

then computing the function of interest based on each bootstrap sample. The empirical

distribution of the results can be used as a proxy for the distribution of the function of

interest. In the case of finite support, Banks (1988) presented a smoothed bootstrap method

by linear interpolation between consecutive observations. Banks’ bootstrap method starts

with ordering the n observations of the original sample, where it is assumed that there are

no ties, and taking the n + 1 intervals of the partition of the support created by the n

ordered observations. Each interval is assigned probability 1
n+1

. To generate one Banks’

bootstrap sample, n intervals are resampled, and then one observation is drawn uniformly

from each chosen interval. With Banks’ bootstrap method, it is allowed to sample from the

whole support, and ties occur with probability 0 in the bootstrap samples. This is contrary

to Efron’s method, where the process is restricted to resampling from the original data set

(Efron, 1979). In the case of underlying distributions with infinite support, Coolen and

BinHimd (2020) generalised Banks’ bootstrap method by assuming distribution tail(s) for
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the first and last interval.

Efron (1981) presented the bootstrap method for right-censored data, which is widely

used in survival analysis; see (Efron and Tibshirani, 1986; Banks, 1988). This bootstrap

version is very similar to the method presented for univariate real-valued data, where

multiple bootstrap samples of size n are created by resampling from the original sample,

and the function of interest is computed based on each bootstrap sample. The empirical

distribution of those resulting values can be used as a good proxy for the distribution of the

function of interest. Al Luhayb et al. (2023a) generalized Banks’ bootstrap method based

on the right-censoring A(n) assumption (Coolen and Yan, 2004). The generalised bootstrap

method produced better results; see Al Luhayb (2021) and Al Luhayb et al. (2023a) for

more details.

Efron and Tibshirani (1986) introduced the bootstrap method for bivariate data, where

again, multiple bootstrap samples are generated by resampling from the original data set,

and the function of interest is computed based on each bootstrap sample. The empirical

distribution of the resulting values can be a good proxy for the distribution of the func-

tion of interest. However, Efron’s bootstrap method often produces poor results when

working with small data sets. To address this issue, Al Luhayb et al. (2023b) proposed

three new smoothed bootstrap methods. These methods rely on applying Nonparametric

Predictive Inference on the marginals and modelling the dependence using parametric and

non-parametric copulas. The new bootstrap methods have been shown to produce more ac-

curate results. For further details, we refer the reader to Al Luhayb (2021) and Al Luhayb

et al. (2023b).

Classical statistical methods are widely used for testing statistical hypotheses, although

their underlying assumptions are not always met, especially with complex data sets. To
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avoid these issues, Efron’s bootstrap method has been used to test statistical hypotheses

(Efron and Tibshirani, 1986; Rasmussen, 1987; Strube, 1988), which is easy to implement,

and it provides good approximation results. However, it may not be suitable for small

data sets and may include ties in the bootstrap samples. To overcome these limitations,

various smoothed bootstrap methods have been proposed by Banks (1988), Al Luhayb

et al. (2023a) and Al Luhayb et al. (2023b) f for real-valued data, right-censored data, and

bivariate data, respectively. This paper investigates the use of these bootstrap methods for

hypothesis testing and compares their results with those of Efron’s methods.

This paper is organised as follows: Section 2 provides an overview of several bootstrap

methods for real-valued univariate data, right-censored univariate data, and real-valued

bivariate data. To illustrate their application, an example with data from the literature

is presented in Section 3 using Efron’s and Banks’ bootstrap methods for hypothesis test-

ing. Section 4 compares the smoothed bootstrap methods and Efron’s bootstrap methods

through simulations in various hypothesis tests, such as quartile hypothesis tests, two-

sample medians, Pearson and Kendall correlation tests. Firstly, the smoothed bootstrap

methods and Efron’s bootstrap methods for real-valued univariate data and right-censored

univariate data are used to compute the Type I error rates for quartile tests. Secondly,

the achieved significance level is used to compute the Type I error rate for two-sample

median tests. Lastly, for real-valued bivariate data, the smoothed bootstrap methods and

Efron’s bootstrap method are compared in computing the Type I error rates for Pearson

and Kendall correlation tests. The final section provides some concluding remarks.
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2 Bootstrap methods for different data types

This section presents multiple bootstrap methods for real-valued data, right-censored data

and bivariate data.

2.1 Bootstrap methods for real-valued univariate data

In this section, we will discuss two bootstrap methods for data that include only real-valued

observations, namely Efron’s bootstrap method and Banks’ bootstrap method (Efron, 1979;

Banks, 1988). These methods are used to measure the variability of sample estimates

for a given function of interest θ(F ), where F is a continuous distribution defined on

the interval [a, b]. Suppose we have n independent and identically distributed random

quantities X1, X2, . . . , Xn from the distribution F and the corresponding observations are

x1, x2, . . . , xn.

Efron’s bootstrap method (Efron, 1979) is a nonparametric method proposed to mea-

sure the variability of sample estimates. It uses the empirical distribution function of the

original sample, where each observation has the same probability of being selected. To

create B resamples of size n, we randomly select observations with replacements from the

original sample. We then calculate the function of interest θ̂ for each bootstrap sample to

obtain θ̂1, θ̂2, . . . , θ̂B. The empirical distribution of these results approximates the sampling

distribution of θ(F ). Efron’s bootstrap method is commonly used for hypothesis testing

and has been shown to provide reliable results (Efron and Tibshirani, 1993).

Banks’ bootstrap method (Banks, 1988) is a smoothed bootstrap method for real-valued

univariate data. The original data points are ordered as x(1), x(2), . . . , x(n), and the sample

space [a, b] is divided into n+1 intervals by the observations, where the end points x(0) and

x(n+1) are equal to a and b, respectively. Each interval (x(i), x(i+1)) for i = 0, 1, 2, . . . , n is
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assigned a probability of 1
n+1

. To create a bootstrap sample, we randomly select n intervals

with replacement, and then sample one observation uniformly from each selected interval.

Based on the bootstrap sample, we calculate the function of interest and repeat this process

B times to obtain θ̂1, θ̂2, . . . , θ̂B. The empirical distribution of these values approximates

the sampling distribution of θ(F ). Banks’ bootstrap method is used for hypothesis testing

in this paper and will be compared to Efron’s bootstrap method in Section 4.

2.2 Bootstrap methods for right-censored univariate data

This section presents Efron’s bootstrap method (Efron, 1981) and the smoothed boot-

strap method for right-censored data (Al Luhayb, 2021; Al Luhayb et al., 2023a). Let

T1, T2, . . . , Tn be independent and identically distributed event random variables from a

distribution F supported on R+ and let C1, C2, . . . , Cn be independent and identically dis-

tributed right-censored random variables from a distribution G supported on R+. Further-

more, let (X1, D1), (X2, D2), . . . , (Xn, Dn) be the right-censored random variables, where

each pair can be derived by

Xi =


Ti if Ti ≤ Ci (uncensored)

Ci if Ti > Ci (censored)

(1)

Di =


1 if Xi = Ti (uncensored)

0 if Xi = Ci (censored)

(2)

where i = 1, 2, . . . , n. Let (x1, d1), (x2, d2), . . . , (xn, dn) be the observations of the corre-

sponding random quantities (X1, D1), (X2, D2), . . . , (Xn, Dn) and θ(F ) is the function of

interest, where this function can be estimated by θ(F̂ ).

Efron (1981) proposed a nonparametric bootstrap method for data with right-censored

observations. This method is similar to the one he proposed for real-valued data. In
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this method, the empirical distribution function of the original sample is used, so that

each observation has an equal probability of 1
n
, regardless of whether it is an event or a

censored observation. To apply this method, B bootstrap samples of size n are generated by

randomly selecting observations from the original dataset with replacement. The function

of interest is then calculated based on each bootstrap sample. This process results in values

θ̂1, θ̂2, . . . , θ̂B, where the empirical distribution of these values can be a good estimate for

the sampling distribution of θ(F ). This bootstrap method is useful for testing the equality

of average lifetimes over two populations (Vaman and Tattar, 2022), and it has been shown

to provide good results.

Another method for right-censored data is the smoothed bootstrap method, introduced

by Al Luhayb (2021) and Al Luhayb et al. (2023a). This method generalises Banks’ boot-

strap method for right-censored data, and is based on the generalisation of the A(n) as-

sumption for data that contains right-censored observations, proposed by Coolen and Yan

(2004). To implement this method, the data support is divided into n+ 1 intervals by the

original data, and the right-censored A(n) assumption is used to assign specific probabilities

to these intervals. For each bootstrap sample, n intervals are resampled with the assign-

ment probabilities, and one observation is sampled from each interval. Performing these

steps B times creates B bootstrap samples. Then, the function of interest is computed for

each bootstrap sample, resulting in the values θ̂1, θ̂2, . . . , θ̂B. The empirical distribution of

these values is used to estimate the sampling distribution of θ(F ). In this paper, we use the

smoothed bootstrap method for hypothesis testing and compare its performance to Efron’s

bootstrap method, with the comparison results presented in Section 4.
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2.3 Bootstrap methods for bivariate data

In this section, we will discuss Efron’s bootstrap method (Efron and Tibshirani, 1986)

and three smoothed bootstrap methods for bivariate data (Al Luhayb, 2021; Al Luhayb

et al., 2023b). Let (Xi, Yi) ∈ R2, for i = 1, 2, . . . , n denote independent and identically

distributed random variables with a distribution of H. The observations corresponding to

(Xi, Yi) are (xi, yi). We are interested in θ(H), which is estimated by θ(Ĥ). To implement

the bootstrap, Efron and Tibshirani (1986) used the empirical distribution. The bootstrap

method involves creating multiple bootstrap samples, say B, of size n by resampling with

equal probability from the observed data. Based on each bootstrap sample, the function of

interest is calculated, resulting in B values. The empirical distribution of these B values is

used as a proxy for the distribution of the function of interest. This is the same approach

as for univariate data. Several references use this bootstrap method for hypothesis testing.

For further details, see e.g. (Dolker et al., 1982; MacKinnon, 2009; Hesterberg, 2011).

In their recent work, Al Luhayb (2021) and Al Luhayb et al. (2023b) proposed three dif-

ferent smoothed bootstrap methods for estimating the distribution of a function of interest.

The first two methods, referred to by SBSP and SBNP, are based on the semi-parametric

predictive method and non-parametric predictive method, respectively (Muhammad et al.,

2016; Muhammad, 2016). These methods divide the sample space into (n + 1)2 squares

(or blocks hereafter), each assigned with a certain probability. The third method, SEB, is

based on uniform kernels, where each data point is surrounded by a block of size bX × bY ,

and the observation is located at the centre of its corresponding block, with bX and bY

being the chosen bandwidths for the kernel. To create a bootstrap sample, n blocks are

resampled with the assignment probabilities, and one observation is sampled from each

chosen block. This process is repeated multiple times, typically B = 1000 times, and based
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5550 4380 2370 3220 8050 4560 2100

6840 5640 3500 1940 7060 7500 5370

13100 4920 6500 4790 6050 4560 3210

6450 5870 2900 5490 3490 9030 3100

4600 3410 3690 6420 10300 7240 9130

Table 1: Yearly maximum flow rates (gallons per second) at a gauging station in North

Carolina.

Efron’s method Banks’ method

90% confidence interval (4560, 6050) (4532, 6167)

Table 2: The 90% confidence intervals for the median based on Efron’s bootstrap method

and Banks’ bootstrap method.

on each bootstrap sample, the function of interest is calculated. This results in B values,

and the empirical distribution of these values is used to estimate the distribution of the

function of interest.

3 Example

In this section, we will explore an example using data from the literature on the maximum

flow rate at a specific station in North Carolina (Boos, 2003). The data is presented in

Table 1, and it shows the yearly maximum flow rates in gallons per second. Our goal is to

investigate whether the median of the data is equal to 5400 gallons per second using a 90%

confidence interval, using Efron’s bootstrap method and Banks’ bootstrap method.

To conduct the test, we first generate 1000 bootstrap data sets from the original data
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using each of the two bootstrap methods, resulting in 1000 bootstrap samples for each

method. Then, we calculate the median for each bootstrap sample, and from the resulting

values, we can define the 90% bootstrap confidence interval for the median by taking the

50th and 950th ordered values.

If the value 5400 is included in the confidence interval, we fail to reject the null hypothe-

sis. Otherwise, we reject the null hypothesis. Table 2 presents the 90% confidence intervals

for the median based on both Efron’s and Banks’ bootstrap methods. As the value 5400

falls within both confidence intervals, therefore we fail to reject the null hypothesis.

4 Comparison of the bootstrap methods

In this section, a variety of tests are conducted for different data types utilising the boot-

strap methods presented in Section 2.

4.1 Hypothesis tests for quartiles

In this section, we calculate the Type I error rates of quartile hypothesis tests based on

bootstrap methods presented in Section 2.2. These methods are used when the data con-

tains right-censored observations. To determine how well the bootstrap methods perform,

we simulate datasets that include right-censored observations from two different scenar-

ios. For the first scenario, we use the Beta distribution with parameters shape1 = 1.2

and shape2 = 3.2, and the Uniform distribution with parameters a = 0 and b = 1.82 for

event time observations and right-censored observations, respectively. The second scenario

is defined as T ∼ Log-Normal(µ = 0, σ = 1) and C ∼ Weibull(shape = 3, scale = 3.7) (see

Appendix). In both scenarios, the censoring proportion p in the generated datasets is 15%,

and this is determined by setting the two parameters of the uniform distribution. For more
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information on how to fix the censoring proportion, we refer the reader to Wan (2017) and

Al Luhayb (2021).

To compare Efron’s bootstrap method with the smoothed bootstrap method, we gen-

erate N = 1000 datasets from each scenario. For each dataset, we apply each method

B = 1000 times, resulting in 1000 bootstrap samples based on each method. We then com-

pute the quartile of interest at each bootstrap sample and use the resulting values to define

the 100(1− 2α)% bootstrap confidence interval for the quartile. We count one if the value

of the quartile specified in the null hypothesis is not included in the confidence interval;

otherwise, we count zero. We repeat this procedure for all N = 1000 generated datasets,

then count the number of times the null hypothesis was rejected over the 1000 trials. This

ratio will be the Type I error rate of the quartile’s hypothesis test with significance level

2α.

It’s important to note that Efron’s bootstrap samples often include some censored obser-

vations, so we use the Kaplan-Meier (KM) estimator to find their corresponding quartiles.

Suppose we are interested in the median; we should find a time t such that Ŝ(t) = 0.50 in

each bootstrap sample. Unfortunately, in some samples, we cannot find that time t because

there is no time such that Ŝ−1(0.50) = t. In this case, we have considered three options

or solutions. The first option is to neglect all not applicable medians, so the 100(1− 2α)%

bootstrap confidence interval for the median is based on fewer than 1000 bootstrap samples.

This option is referred to as E(1). The second option is to assume the median to be the

maximum event time of that bootstrap sample. This is Efron’s suggestion, which is used for

each bootstrap sample whose median is not found by the Kaplan-Meier estimator (Efron,

1967). This option is referred to as E(2). Finally, we fit an Exponential distribution to

the interval with a rate parameter of λ̂∗ = − ln(Ŝ(tmax))/tmax, where tmax is the maximum
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event time of the bootstrap sample and Ŝ(.) is the Kaplan-Meier estimator. This allows

us to find the corresponding median, Xmed, with Xmed = − ln(0.50)/λ̂∗. This suggestion is

presented in Brown et al. (1974), and we refer to it as E(3). In the last two cases, we can

ensure that the confidence interval is based on 1000 bootstrap samples’ medians.

In the tables, the NA represents the number of Efron’s bootstrap samples where quar-

tiles cannot be found, while ABS represents the number of cases where a bootstrap sample

containing only right-censored observations is replaced by another sample that includes at

least one event time. These two numbers are out of 1,000,000.

We consider three different strategies for the smoothed bootstrap method when sampling

observations from the n+1 intervals partitioning the sample space. The first strategy is to

sample uniformly from all intervals, denoted by SB. The second strategy is to assume an

exponential tail for each interval and sample from the tails to create the bootstrap samples,

denoted by SBexp. The third strategy is to sample uniformly from all intervals except the

last intervals, for which we sample from the exponential tails. We refer to this strategy as

SBLexp. By investigating how the sampling strategies affect the results, we can gain insight

into the impact of different sampling methods on the smoothed bootstrap method.

Tables 3 and 4 show the results of the Type I error rates for the quartiles’ hypothesis

tests with significance levels 0.10 and 0.05 for simulated data sets in the first scenario.

When the sample size is 10, the smoothed bootstrap with its three assumptions, SB, SBexp

and SBLexp, provides lower discrepancies between actual and nominal error rates for all

quartiles’ tests compared to Efron’s bootstrap with its three assumptions, E(1), E(2) and

E(3). The superiority of the smoothed bootstrap methods is due not only to the event

observations obtained for the smoothed bootstrap samples but also to the fact that the

KM estimator used in Efron’s bootstrap samples is often not able to find the quartiles,

12



H0 : Q1 = 0.117 Q2 = 0.236 Q3 = 0.396

n measures SB SBexp SBLexp E(1) E(2) E(3) SB SBexp SBLexp E(1) E(2) E(3) SB SBexp SBLexp E(1) E(2) E(3)

Type I 0.103 0.103 0.105 0.107 0.107 0.107 0.090 0.096 0.097 0.151 0.151 0.149 0.068 0.110 0.111 0.200 0.202 0.172

10 NA — — — 228 0 0 — — — 3736 0 0 — — — 32821 0 0

ABS — — — 12 12 12 — — — 12 12 12 — — — 12 12 12

Type I 0.098 0.098 0.101 0.108 0.108 0.108 0.126 0.126 0.114 0.117 0.117 0.117 0.121 0.121 0.126 0.108 0.107 0.107

50 NA — — — 0 0 0 — — — 0 0 0 — — — 56 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Type I 0.100 0.100 0.098 0.100 0.100 0.100 0.120 0.120 0.117 0.104 0.104 0.104 0.133 0.133 0.134 0.114 0.114 0.114

100 NA — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Type I 0.104 0.104 0.104 0.100 0.100 0.100 0.126 0.126 0.126 0.110 0.110 0.110 0.121 0.121 0.121 0.094 0.094 0.094

500 NA — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Table 3: Type I error rates with significance level 2α = 0.10, T ∼ Beta(shape1 =

1.2, shape2 = 3.2), C ∼ Unif(a = 0, b = 1.82) and p = 0.15.

H0 : Q1 = 0.117 Q2 = 0.236 Q3 = 0.396

n measures SB SBexp SBLexp E(1) E(2) E(3) SB SBexp SBLexp E(1) E(2) E(3) SB SBexp SBLexp E(1) E(2) E(3)

Type I 0.051 0.049 0.050 0.088 0.088 0.088 0.046 0.048 0.050 0.070 0.070 0.068 0.020 0.072 0.065 0.183 0.181 0.146

10 NA — — — 228 0 0 — — — 3736 0 0 — — — 32821 0 0

ABS — — — 12 12 12 — — — 12 12 12 — — — 12 12 12

Type I 0.054 0.054 0.045 0.059 0.059 0.059 0.066 0.066 0.070 0.069 0.069 0.069 0.067 0.067 0.067 0.059 0.059 0.059

50 NA — — — 0 0 0 — — — 0 0 0 — — — 56 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Type I 0.047 0.047 0.052 0.045 0.045 0.045 0.057 0.057 0.061 0.057 0.057 0.057 0.078 0.078 0.083 0.061 0.061 0.061

100 NA — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Type I 0.058 0.058 0.058 0.054 0.054 0.054 0.062 0.062 0.062 0.054 0.054 0.054 0.072 0.072 0.072 0.049 0.049 0.049

500 NA — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

ABS — — — 0 0 0 — — — 0 0 0 — — — 0 0 0

Table 4: Type I error rates with significance level 2α = 0.05, T ∼ Beta(shape1 =

1.2, shape2 = 3.2), C ∼ Unif(a = 0, b = 1.82) and p = 0.15.
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H0 : Q1 = 0.509 Q2 = 1 Q3 = 1.963

n measures SBexp SBLexp E(1) E(2) E(3) SBexp SBLexp E(1) E(2) E(3) SBexp SBLexp E(1) E(2) E(3)

Type I 0.092 0.096 0.103 0.103 0.103 0.098 0.093 0.128 0.119 0.126 0.104 0.108 0.287 0.304 0.172

10 NA — — 1813 0 0 — — 23589 0 0 — — 167582 0 0

ABS — — 61 61 61 — — 61 61 61 — — 61 61 61

Type I 0.089 0.092 0.121 0.121 0.121 0.095 0.092 0.106 0.106 0.106 0.118 0.115 0.118 0.119 0.119

50 NA — — 0 0 0 — — 2 0 0 — — 18178 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Type I 0.084 0.090 0.100 0.100 0.100 0.097 0.102 0.101 0.101 0.101 0.119 0.117 0.116 0.117 0.117

100 NA — — 0 0 0 — — 0 0 0 — — 1421 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Type I 0.103 0.106 0.098 0.098 0.098 0.106 0.103 0.104 0.104 0.104 0.120 0.120 0.112 0.112 0.112

500 NA — — 0 0 0 — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Table 5: Type I error rates with significance level 2α = 0.10, T ∼ Log-Normal(µ = 0, σ =

1), C ∼ Weibull(shape = 3, scale = 3.7) and p = 0.15.

H0 : Q1 = 0.509 Q2 = 1 Q3 = 1.963

n measures SBexp SBLexp E(1) E(2) E(3) SBexp SBLexp E(1) E(2) E(3) SBexp SBLexp E(1) E(2) E(3)

Type I 0.040 0.045 0.084 0.084 0.084 0.047 0.050 0.070 0.069 0.070 0.065 0.069 0.250 0.268 0.138

10 NA — — 1813 0 0 — — 23589 0 0 — — 167582 0 0

ABS — — 61 61 61 — — 61 61 61 — — 61 61 61

Type I 0.047 0.049 0.066 0.066 0.066 0.054 0.054 0.056 0.056 0.056 0.066 0.059 0.062 0.062 0.062

50 NA — — 0 0 0 — — 2 0 0 — — 18178 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Type I 0.042 0.046 0.047 0.047 0.047 0.050 0.047 0.049 0.049 0.049 0.061 0.065 0.065 0.065 0.065

100 NA — — 0 0 0 — — 0 0 0 — — 1421 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Type I 0.054 0.057 0.054 0.054 0.054 0.047 0.043 0.050 0.050 0.050 0.070 0.066 0.062 0.062 0.062

500 NA — — 0 0 0 — — 0 0 0 — — 0 0 0

ABS — — 0 0 0 — — 0 0 0 — — 0 0 0

Table 6: Type I error rates with significance level 2α = 0.05, T ∼ Log-Normal(µ = 0, σ =

1), C ∼ Weibull(shape = 3, scale = 3.7) and p = 0.15.
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particularly the second and third ones. In 1,000,000 bootstrap samples, we cannot find the

first, second and third quartiles in 228, 3736 and 32821 bootstrap samples, respectively.

As the sample size increases to 50, 100 and 500, both methods provide good results, but

Efron’s method is better, and the number of NA and ABS decreases toward zero. These

decreases lead to equal results when E(1), E(2) and E(3) are used. Also, at these large sample

sizes, SB, SBexp and SBLexp provide approximately equal outcomes.

In the second scenario, we should note that the data space is (0,∞), which is different

from the first scenario where the support is (0, 1), so the last intervals for the smoothed

method are not bounded. In this case, we can only use smoothed bootstrap assumptions

SBexp and SBLexp, not SB. Tables 5 and 6 present the results of Type I error rates for the

quartiles’ hypothesis tests with significance levels of 0.10 and 0.05, respectively. The SBexp

and SBLexp methods again outperform Efron’s method in defining the Type I error rates

when the sample size is small. As the sample size gets large, both methods perform well,

as observed in Tables 3 and 4.

In a special case where data includes only failures, with no censored observations, we

will use Banks’ bootstrap method and Efron’s bootstrap method, which are presented in

Section 2.1, to compute the Type I error rates for the quartiles’ hypothesis tests. In the

simulations, we use Beta(shape1 = 1.2, shape2 = 3.2) to create data sets and repeat the

same comparison procedure as in the previous simulations. Tables 7 and 8 present the Type

I error rates for the quartiles’ hypothesis tests based on Banks’ and Efron’s methods with

significance levels of 0.10 and 0.05, respectively. Banks’ bootstrap method performs better,

particularly when n = 10 and 2α = 0.05. As the sample size gets large, both methods

perform well.
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H0 : Q1 = 0.117 Q2 = 0.236 Q3 = 0.396

n Banks Efron Banks Efron Banks Efron

10 0.102 0.099 0.080 0.136 0.081 0.096

50 0.089 0.113 0.099 0.112 0.099 0.111

100 0.099 0.103 0.113 0.109 0.095 0.103

500 0.097 0.103 0.101 0.102 0.087 0.091

Table 7: Type I error rates with significance level 2α = 0.10, Beta(shape1 = 1.2, shape2 =

3.2) and p = 0.

H0 : Q1 = 0.117 Q2 = 0.236 Q3 = 0.396

n Banks Efron Banks Efron Banks Efron

10 0.052 0.089 0.046 0.064 0.014 0.086

50 0.046 0.059 0.058 0.060 0.055 0.069

100 0.043 0.042 0.054 0.060 0.054 0.058

500 0.052 0.058 0.057 0.056 0.040 0.042

Table 8: Type I error rates with significance level 2α = 0.05, Beta(shape1 = 1.2, shape2 =

3.2) and p = 0.

4.2 The two-sample problem

When conducting a hypothesis test H0 : θ1 = θ2, where θ1 and θ2 represent the function

of interest in the first and second populations respectively, the achieved significance level

(ASL) is used to draw a conclusion. ASL is defined as the probability of observing at least

the same value as θ̂ = θ̂1 − θ̂2, when the null hypothesis is true,

ASL = ProbH0{θ̂∗ ≥ θ̂} (3)
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The smaller the value of ASL, the stronger the evidence against H0. The value θ̂ is

fixed at its observed value, and the quantity θ̂∗ has the null hypothesis distribution, which

is the distribution of θ̂ if H0 is true (Efron and Tibshirani, 1993).

Efron and Tibshirani (1993) used the achieved significance level to test whether the two

populations have equal mean or not. Suppose we have two samples z = {z1, z2, . . . , zn}

and y = {y1, y2, . . . , ym} from possibly different probability distributions, and we wish to

test the null hypothesis H0 : θ1 = θ2. Efron’s bootstrap method is used to approximate the

ASL value, then H0 is rejected when ÂSL < 2α. The algorithm to test the null hypothesis

based on the bootstrap methods is as follows

(i) Combine z and y samples together, so we get a sample x of size n + m. Thus,

x = {z1, z2, . . . , zn, y1, y2, . . . , ym}

(ii) Draw B bootstrap samples of size n+m with replacement from x, and call the first

n observations z∗b and the remaining m observations y∗b for b = 1, 2, . . . , B.

(iii) For each bootstrap sample, we compute the means of z∗b and y∗b, then find A∗b =

z∗b − y∗b, b = 1, 2, . . . , B.

(iv) The achieved significance level ASL can be approximated by

ÂSL =

∑B
b=1{A∗b ≥ Aobs}

B
(4)

where Aobs = z− y, and z and y are the sample means of the two original samples.

We will employ the proposed strategy in this section to examine whether the two samples

have the same median (Q1
2 = Q2

2) or not. To conduct these tests, we will use the bootstrap

methods presented in Section 2.2 and make comparisons through simulations. Specifically,

we will calculate the Type I error rate for the following hypothesis test:
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H0 : Q
1
2 = Q2

2 VS. H1 : Q
1
2 ̸= Q2

2 (5)

In order to compare different bootstrap methods through simulation, we first generate

two datasets of size n using the second scenario proposed in Section 4.1. We compute the

medians of these datasets, Q̂1
2 and Q̂2

2, and calculate Aobs = Q̂1
2 − Q̂2

2. Next, we combine

the two datasets so that they form a new dataset of size 2n. Then, for each bootstrap

method, we draw 1000 samples of size 2n, and call the first n observations z∗b and the

remaining n observations y∗b for b = 1, 2, . . . , B. We compute A∗b = Q̂2(z
∗b)− Q̂2(y

∗b) for

each bootstrap sample, resulting in 1000 A∗ values. Finally, we calculate the ASL value

and reject H0 if ÂSL < 2α. We repeat this process B = 1000 times and count the number

of times we reject the null hypothesis. We take the ratio of rejected hypotheses out of 1000

trials and consider the method with the ratio closest to 2α as the best method. The final

results of the simulations are presented in Tables 9 and 10 for two different significance

levels.

As the sample space of the underlying distribution is [0,∞), we only consider SBexp

and SBLexp for the smoothed bootstrap method. For Efron’s method, we consider E(2)

and E(3) as they are guaranteed to find the median of each set in each bootstrap sample.

Tables 9 and 10 present the Type I error rates of the hypothesis test in Equation (5) with

significance levels of 0.10 and 0.05, respectively. The SBexp and SBLexp methods generally

provide lower actual Type I error rates compared to E(2) and E(3) at different sample sizes.

However, E(2) and E(3) provide smaller discrepancies between the actual and nominal Type

I error levels, especially when the sample size is small. When n = 500, all methods provide

almost identical results.

In previous simulations, we created both samples in each run from a single scenario, but
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n SBexp SBLexp E(2) E(3)

10 0.078 0.075 0.091 0.089

50 0.079 0.079 0.090 0.090

100 0.100 0.101 0.107 0.107

500 0.105 0.101 0.104 0.104

Table 9: Type I error rates with significance level 2α = 0.10, and all samples created by

T ∼ Log-Normal(µ = 0, σ = 1), C ∼ Weibull(shape = 3, scale = 3.7),where p = 0.15.

n SBexp SBLexp E(2) E(3)

10 0.025 0.025 0.031 0.031

50 0.039 0.041 0.039 0.039

100 0.047 0.046 0.049 0.049

500 0.043 0.042 0.043 0.043

Table 10: Type I error rates with significance level 2α = 0.05, and all samples created by

T ∼ Log-Normal(µ = 0, σ = 1), C ∼ Weibull(shape = 3, scale = 3.7),where p = 0.15.

n SBexp SBLexp E(2) E(3)

10 0.082 0.079 0.083 0.083

50 0.103 0.105 0.095 0.095

100 0.101 0.097 0.093 0.093

500 0.089 0.092 0.084 0.084

Table 11: Type I error rates with significance level 2α = 0.10, the first samples from

T ∼ Log-Normal(µ = 0, σ = 1), C ∼ Weibull(shape = 3, scale = 3.7),where p = 0.15 and

the second samples from T ∼ Weibull(shape = 1, scale = 1.443), C ∼ Exponential(λ =

0.12),where p = 0.15.
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n SBexp SBLexp E(2) E(3)

10 0.030 0.027 0.038 0.038

50 0.046 0.047 0.046 0.046

100 0.041 0.043 0.034 0.034

500 0.045 0.047 0.043 0.043

Table 12: Type I error rates with significance level 2α = 0.05, the first samples from

T ∼ Log-Normal(µ = 0, σ = 1), C ∼ Weibull(shape = 3, scale = 3.7),where p = 0.15 and

the second samples from T ∼ Weibull(shape = 1, scale = 1.443), C ∼ Exponential(λ =

0.12),where p = 0.15.

now we want to create samples from two different scenarios. In each run, the first sample

is created from T ∼ Log-Normal(µ = 0, σ = 1) and C ∼ Weibull(shape = 3, scale = 3.7),

while the second sample is created from T ∼ Weibull(shape = 1, scale = 1.443) and

C ∼ Exponential(λ = 0.12), where p = 0.15 in both scenarios (see Appendix). We aim

to investigate how the bootstrap methods perform when the two samples have different

distributions but the same median (which is equal to 1). Tables 11 and 12 show the Type

I error rates with significance levels of 0.10 and 0.05, respectively. All methods perform

well at different sample sizes, and the results are close to the nominal size 2α, particularly

when the sample size is large.

4.3 Pearson correlation test

In Section 2.3, we present smoothed bootstrap methods and compare them to Efron’s

method. We compute the Type I error rate to determine the superiority of each method,

where a method is considered superior if its corresponding Type I error rate is closer to the

significance level of 2α. In this section, we simulate data sets from two different distribu-
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tions to compare the methods. For the first scenario, we generate data sets from Gumbel

copula, where the marginals X and Y both follow the standard uniform distribution. The

second scenario is Clayton copula where X follows the normal distribution with mean 1

and standard deviation 1, and Y follows the normal distribution with mean 5 and standard

deviation 3. For both scenarios, we consider three dependence levels of ρ and three sample

sizes with two significance levels. We also include the dependence parameters of copulas

and their concordance measure Kendall’s τ .

To compute the Type I error rate for the null hypothesis of ρ = ρ⋆ based on a bootstrap

method, we create N = 1000 data sets with sample size n and dependence level ρ = ρ⋆

from one of the scenarios presented above. For each generated data set, we apply each

bootstrap method B = 1000 times and compute the Pearson correlation of each bootstrap

sample. We order the 1000 Pearson correlation bootstrapped values from lowest to highest

and obtain the 100(1 − 2α)% bootstrap confidence interval. If the null hypothesis value

is not included in the confidence interval, we reject H0 and count 1; otherwise, we do not

reject H0 and count 0. The number of times that the null hypothesis was rejected over the

1000 trials will be the Type I error rate.

Table 13 presents the Type I error rates based on the bootstrap methods, where the

significance level is 0.10. For a small sample size of n = 10, the SBSP and SBNP methods

provide error rates closer to the nominal rate of 0.10 compared to Efron’s and the smoothed

Efron’s methods. However, the SBNP method is the best when ρ = 0.4 and 0.8. When

n increases to 50 and 100, all methods decrease the discrepancies between the actual and

nominal error rates, but the SBNP method is the superior one in most cases.

With a significance level of 0.05, the actual Type I error rates based on the bootstrap

methods are listed in Table 14. The SBSP and SBNP methods again provide lower dis-
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n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 ρ=0 0.114 0.120 0.139 0.142 0.105 0.113 0.106 0.105 0.106 0.102 0.107 0.106

0.275 1.3793 ρ=0.4 0.137 0.129 0.147 0.149 0.136 0.122 0.128 0.127 0.129 0.105 0.109 0.106

0.610 2.5641 ρ=0.8 0.133 0.075 0.189 0.184 0.129 0.123 0.121 0.126 0.126 0.103 0.111 0.107

Table 13: Type I error rates with significance level 0.10, Gumbel copula, X ∼ Unif(0, 1)

and Y ∼ Unif(0, 1).

n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 ρ=0 0.064 0.072 0.085 0.081 0.046 0.051 0.053 0.058 0.056 0.052 0.055 0.057

0.275 1.3793 ρ=0.4 0.075 0.070 0.100 0.098 0.067 0.079 0.080 0.075 0.066 0.061 0.061 0.058

0.610 2.5641 ρ=0.8 0.079 0.034 0.131 0.127 0.074 0.070 0.078 0.076 0.080 0.066 0.071 0.071

Table 14: Type I error rates with significance level 0.05, Gumbel copula, X ∼ Unif(0, 1)

and Y ∼ Unif(0, 1).

crepancies between the nominal and actual Type I error rates compared to Efron’s and

the smoothed Efron’s methods, especially when n = 10. When the sample size increases

to 50 and 100, all methods perform better, but the SBNP method is the best one in most

settings.

In the second scenario, we simulate N = 1000 data sets with dependence level ρ = ρ⋆,

and we compute Type I error rates using the bootstrap methods as shown in Tables 15 and

16. For n = 10, the SBSP method provides the closest results to the nominal error rates

at most levels of ρ. As n increases to 50 and 100, its performance worsens for H0 : ρ = 0.8

because the underlying distribution is not symmetric. At these large sample sizes, the

SBNP, Efron and SEB methods perform better than the SBSP method, particularly the

SBNP method. The SBNP method provides the lowest discrepancies between the nominal
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n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 0 ρ=0 0.119 0.026 0.144 0.147 0.119 0.097 0.117 0.115 0.116 0.097 0.102 0.102

0.259 0.6990 ρ=0.4 0.142 0.039 0.167 0.165 0.150 0.102 0.122 0.125 0.135 0.114 0.116 0.119

0.630 3.4054 ρ=0.8 0.144 0.175 0.189 0.196 0.218 0.110 0.141 0.132 0.277 0.104 0.111 0.118

Table 15: Type I error rates with significance level 0.10, Clayton copula, X ∼ Normal(µ =

1, σ = 1) and Y ∼ Normal(µ = 5, σ = 3).

n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 0 ρ=0 0.065 0.009 0.086 0.086 0.053 0.048 0.060 0.064 0.063 0.056 0.054 0.058

0.259 0.6990 ρ=0.4 0.088 0.012 0.108 0.105 0.076 0.048 0.066 0.068 0.083 0.066 0.063 0.070

0.630 3.4054 ρ=0.8 0.080 0.039 0.130 0.132 0.147 0.051 0.079 0.079 0.200 0.054 0.062 0.063

Table 16: Type I error rates with significance level 0.05, Clayton copula, X ∼ Normal(µ =

1, σ = 1) and Y ∼ Normal(µ = 5, σ = 3).
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n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 τ = 0 0.103 0.076 0.073 0.076 0.103 0.094 0.087 0.092 0.105 0.096 0.102 0.099

0.4 1.667 τ = 0.4 0.120 0.059 0.078 0.065 0.133 0.107 0.110 0.100 0.128 0.100 0.100 0.098

0.8 5 τ = 0.8 0.047 0.062 0.094 0.046 0.132 0.076 0.076 0.077 0.130 0.077 0.081 0.070

Table 17: Type I error rates of Kendall correlation test with significance level 0.10, Gumbel

copula, X ∼ Unif(0, 1) and Y ∼ Unif(0, 1).

n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 1 τ = 0 0.057 0.035 0.037 0.040 0.048 0.041 0.041 0.045 0.055 0.047 0.049 0.052

0.4 1.667 τ = 0.4 0.063 0.032 0.038 0.035 0.071 0.053 0.055 0.055 0.079 0.047 0.052 0.049

0.8 5 τ = 0.8 0.021 0.025 0.021 0.025 0.072 0.039 0.032 0.037 0.068 0.043 0.038 0.042

Table 18: Type I error rates of Kendall correlation test with significance level 0.05, Gumbel

copula, X ∼ Unif(0, 1) and Y ∼ Unif(0, 1).

and actual error rates in most cases, in both significance levels of 0.10 and 0.05; however,

when n = 10 and ρ = 0, 0.4, the SBNP method provides very small error rates.

4.4 Kendall correlation test

In Section 4.3, we computed the Type I error rate for the Pearson correlation test using

different sample sizes and dependence levels. In this section, we aim to repeat the same

comparisons, but this time, we will use the Kendall correlation test instead. We will use

the same scenarios, generating datasets with n = 10, 50 and 100, and dependence levels of

τ = 0, 0.4 and 0.8, with significance levels of 0.10 and 0.05.

To generate data sets and apply the bootstrap methods, we will use the Gumbel copula,

where both marginals follow Uniform(0,1). From Tables 17 and 18, we can see that the
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n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 0 0 0.103 0.020 0.073 0.076 0.103 0.087 0.087 0.092 0.105 0.095 0.102 0.099

0.4 1.333 0.4 0.125 0.037 0.089 0.074 0.140 0.094 0.101 0.099 0.121 0.090 0.098 0.089

0.8 8 0.8 0.049 0.918 0.110 0.046 0.165 0.456 0.078 0.080 0.160 0.169 0.088 0.094

Table 19: Type I error rates of Kendall correlation test with significance level 0.10, Clayton

copula, X ∼ Normal(µ = 1, σ = 1) and Y ∼ Normal(µ = 5, σ = 3).

n = 10 50 100

τ θ H0 : SBSP SBNP Efron SEB SBSP SBNP Efron SEB SBSP SBNP Efron SEB

0 0 0 0.057 0.006 0.037 0.040 0.048 0.033 0.041 0.045 0.055 0.055 0.049 0.052

0.4 1.333 0.4 0.065 0.013 0.041 0.032 0.076 0.039 0.050 0.046 0.067 0.045 0.054 0.048

0.8 8 0.8 0.020 0.749 0.027 0.019 0.096 0.307 0.044 0.028 0.107 0.103 0.043 0.040

Table 20: Type I error rates of Kendall correlation test with significance level 0.05, Clayton

copula, X ∼ Normal(µ = 1, σ = 1) and Y ∼ Normal(µ = 5, σ = 3).

SBSP method performs well when τ = 0 across all different sample sizes. However, it

performs poorly as the sample size increases for τ = 0.4 and 0.8. This is in contrast to the

results based on SBNP, Efron’s, and smoothed Efron’s methods. These methods provide

lower error rates than the nominal levels when the sample size is small at all different

dependence levels. As n increases to 50 and 100, the error rates become closer to the

nominal level 2α.

Tables 19 and 20 present the Type I error rates for the Kendal correlation test at

different dependence levels with significance levels of 0.10 and 0.05, respectively. When

τ = 0 and n = 10, the error rate based on the SBNP method is significantly lower than the

nominal level 2α, while the results of other methods are close to the nominal levels. As the

sample size increases to 50 and 100, all methods provide good results. If there is a strong
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relation between the variables, it is recommended to use either Efron’s bootstrap method

or the SEB method. These methods are both able to produce good results because they

have much less effect than the SBSP and SBNP methods on the observation’s rank, which

is the basis for computing the Kendall correlation.

5 Concluding remarks

In this paper, we explored how the proposed smoothed bootstrap methods can be used

to compute Type I error rates for different hypothesis tests and compare their results to

Efron’s bootstrap methods through simulations. The smoothed bootstrap methods are

applied to real-valued data, right-censored data and bivariate data. For real-valued data

and right-censored data, we test the null hypothesis that quartiles are equal to those of the

underlying distributions. We also test whether two sample medians are equal, regardless of

whether the two samples are from the same underlying distribution or not. For bivariate

data, we compute the Type I error rates for Pearson and Kendall correlation tests.

We found that the smoothed bootstrap methods perform better when the sample size is

small for real-valued and right-censored data, providing lower discrepancies between actual

and nominal error rates. As the sample size gets larger, all bootstrap methods provide

good results, but Efron’s methods mostly perform better for the third quartile. For the

two-sample median test, we use the achieved significance level (ASL) to test whether the

two samples have equal medians or not. All bootstrap methods performed well, and the

Type I error rates are close to the nominal levels.

For the Pearson correlation test, the SBSP and SBNP methods lead to lower discrep-

ancies between actual and nominal Type I error rates compared to Efron’s and smoothed

Efron’s methods when the sample size is small. For large sample sizes, all methods pro-
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vide good results. However, the SBNP method performs better in most dependence levels.

In situations where the data distribution is asymmetric, the SBSP method does not per-

form well, particularly when τ is not close to zero, which results from the Normal copula

assumption.

For the Kendall correlation test, it is recommended to use either Efron’s bootstrap

method or the SEB method, particularly when the underlying distribution is asymmetric

and has a strong Kendall correlation. Their influences on the observations rank are much

less than those of the SBSP and SBNP methods. When tau = 0 and the sample size is

small, all bootstrap methods perform well, and as n gets large, their performances improve

and the Type I error rates become closer to the nominal level 2α.

In conclusion, we used the bootstrap methods for real-valued data, right-censored data

and bivariate data to compute Type I error rates for different hypothesis tests. Future

research could focus on applying these bootstrap methods to compute power or Type II

error rates for some hypothesis tests.
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Appendix

The probability density functions for the distributions used in each scenario to generate

right-censored data.

Scenario 1:

Distribution for event times:

f(t) = tα−1(1−t)β−1

β(α,β)
; t ∈ [0, 1] where α = 1.2 and β = 3.2.

Distribution for censored times:

g(c) = 1
b−a

; c ∈ [a, b] where a = 0 and b = 1.82.

Scenario 2:

Distribution for event times:

f(t) =
1

t
√
2π

exp(− (ln(t))2

2
); t ∈ (0,∞).

Distribution for censored times:

g(c) = α
β
( c
β
)α−1 exp(−( c

β
)α); c ∈ [0,∞) where α = 3 and β = 3.7.

Scenario 3:

Distribution for event times:

f(t) = α
β
( t
β
)α−1 exp(−( t

β
)α); t ∈ [0,∞) where α = 1 and β = 1.443.

Distribution for censored times:

g(c) = λ exp(−λc); c ∈ [0,∞) where λ = 0.12.
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