
September 20, 2019 Journal of Applied Statistics WCC˙13092013˙website˙version

Journal of Applied Statistics
Vol. 00, No. 00, February 2014, 1–22

RESEARCH ARTICLE

A New Weighted Rank Coefficient of Concordance

Tahani Coolen-Maturi∗

Durham University Business School, Durham University, Durham, DH1 3LB, UK

(v4.4 released October 2008)

There are many situations where n objects are ranked by b > 2 independent sources or
observers and in which the interest is focused on agreement on the top rankings. Kendall’s
coefficient of concordance [9] assigns equal weights to all rankings. In this paper, a new coeffi-
cient of concordance is introduced which is more sensitive to agreement on the top rankings.
The limiting distribution of the new concordance coefficient under the null hypothesis of no
association among the rankings is presented, and a summary of the exact and approximate
quantiles for this coefficient is provided. A simulation study is carried out to compare the
performance of Kendall’s, the top-down and the new concordance coefficients in detecting the
agreement on the top rankings. Finally, examples are given for illustration purposes, including
a real data set from financial market indices.

Keywords: Coefficient of concordance; measures of agreement; measures of association;
rankings; top-down coefficient of concordance; weights.

1. Introduction

There are many situations where n objects are ranked by two or more independent
sources or observers and the interest is in measuring the agreement among these sets
of rankings. Measures of agreement or association have large interest in practice,
for example to evaluate the agreement between several experts, methods or models
[1, 5, 12], to evaluate reproducibility [11], to search for species associations in
community ecology [10], or to evaluate the agreement between the observed stock
index future market prices and its theoretical prices in finance [15].

However, in many cases the interest is focused more on agreement on the top
rankings than on the bottom rankings, as in sensitivity analysis where the aim is
to determine the most influential variables [6]. Statistics such as Spearman’s coef-
ficient (for two sets of rankings) or Kendall’s coefficient of concordance [8, 9] (for
b > 2 sets of rankings) are not appropriate for such a scenario since they assign
equal weights to all rankings. Iman and Conover [6] proposed the top-down coef-
ficient of concordance (for b ≥ 2 sets of rankings) based on Savage scores which
is more sensitive to the agreement on the top rankings. Teles [18] carried out a
simulation study to compare the performance of Kendall’s and top-down concor-
dance coefficients. In their study the top-down concordance coefficient was shown
to perform better in detecting the agreement among the top or lower rankings com-
pared to Kendall’s coefficient. Maturi and Abdelfattah [13] presented a weighted
rank correlation coefficient for two rankings. This paper presents a generalization
of Maturi and Abdelfattah’s weighted rank correlation coefficient for b > 2 which is
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Table 1. Data structure

Objects

Observers 1 2 . . . i . . . n Total

1 R11 R12 . . . R1i . . . R1n R1· = n(n+ 1)/2
2 R21 R22 . . . R2i . . . R2n R2· = n(n+ 1)/2
...

...
...

...
...

...
...

...
j Rj1 Rj2 . . . Rji . . . Rjn Rj· = n(n+ 1)/2
..
.

...
...

...
...

...
...

...
b Rb1 Rb2 . . . Rbi . . . Rbn Rb· = n(n+ 1)/2

Total R·1 R·2 . . . R·i . . . R·n R·· = bn(n+ 1)/2

also more sensitive to the agreement on the top rankings and has the flexibility of
choosing the weights that reflect the focus on the top rankings. We first introduce
notation and provide a brief overview of some coefficients of concordance.

Suppose there are n objects which are all ranked by b > 2 independent sources or
observers. This data structure can be visualized as a two-way layout table with b
rows representing the observers and n columns representing the objects, see Table
1. Let Rji denote the rank given by the jth observer to the ith object, the set
of ranks in any row is a permutation of the numbers 1, 2, . . . , n which sum up to
n(n+ 1)/2. Let R·i =

∑b
j=1Rji, i = 1, . . . , n, be the sum of the ranks assigned to

the ith object taken over all b sets of rankings. The ranks in column i reflect the
agreement between observers for object i. So if all ranks in column i are identical
then this means that there is an agreement between all observers on object i, if this
is the case for all objects then we can say that there is perfect agreement between
all observers.

One may wish to test the null hypothesis of no agreement between the b rankings
against the alternative of the existence of such agreement. To this end, there are
several measures of association, called Concordance Coefficients, for such data.
Perhaps the most obvious procedure is to average all values of Spearman’s rank
correlation coefficient, rs, or Kendall’s correlation coefficient, tk, for the

(
b
2

)
possible

pairs, but this is evidently very tedious when b is large [8]. Below we briefly discuss
two concordance coefficients that measure the overall agreement between the b > 2
rankings.

Kendall’s coefficient of concordance,K, was introduced independently by Kendall
and Smith [9] and Wallis [19], and is given by

K =
12

b2n(n2 − 1)

n∑
i=1

(
R.i −

b(n+ 1)

2

)2

(1)

Kendall and Smith [9] showed that there is a relationship between K and the
average value of the Spearman’s rank correlation coefficient for the

(
b
2

)
possible

pairs, rs, where

rs =
bK − 1

b− 1

The values of K range between 0 and 1, where 1 indicates that there is perfect
agreement and 0 indicates that there is no agreement. Under the null hypothesis,
the statistic b(n − 1)K has asymptotically (as b → ∞) a chi-squared distribution
with n−1 degrees of freedom [8]. Raghavachari [17] generalized Kendall’s coefficient
of concordance K to interval scaled data which is equal to K for rank order data.
He also introduced a second measure of concordance which is based on the average
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value of Kendall’s correlation coefficient tk between the
(
b
2

)
possible pairs.

Iman and Conover [6] proposed the top-down coefficient of concordance, T , which
is more sensitive to the agreement on the top rankings,

T =
1

b2(n− S1)

(
n∑
i=1

S2
.i − nb2

)
(2)

where S1 =
∑n

l=1
1
l and S·i is the sum of the Savage scores assigned to the ith

object taken over all b sets of rankings. Savage scores are given by

Sji =
n∑
l=i

1

l
and S.i =

b∑
j=1

Sji

Similar to Kendall’s coefficient of concordance K, the statistic b(n − 1)T has
asymptotically (as b→∞ ) a chi-squared distribution with n−1 degrees of freedom
[6].

In this paper, we introduce a new rank coefficient of concordance which is also
more sensitive to the agreement on the top rankings and offers flexibility of choosing
the weights that reflect the emphasis or focus on the top rankings. The new rank
coefficient of concordance can be considered as a generalization of the weighted
rank correlation coefficient for two rankings (b = 2) introduced by Maturi and Ab-
delfattah [13], which is reviewed in Section 2. The new coefficient of concordance
is introduced in Section 3, and the limiting distribution of the new concordance
coefficient under the null hypothesis of no association among the rankings is pre-
sented in Section 4. A summary of the exact and approximate quantiles for this
coefficient is also provided in this section. A simulation study has been performed
in order to investigate the performance of this new concordance coefficient com-
pared to the two alternative concordance coefficients, the results are presented in
Section 5. In order to illustrate the important features of the new rank coefficient of
concordance, three examples are given in Section 6, including a real data set from
financial market indices. Finally some concluding remarks are given in Section 7,
and the proofs of the main results of the paper are presented in the appendix.

2. A weighted rank correlation coefficient for two rankings

Maturi and Abdelfattah [13] introduced a weighted rank correlation coefficient,
Rw, to test the null hypothesis that two variables or two rankings are independent
(so b = 2). This weighted rank correlation Rw is more sensitive to agreement on the
top ranks, it is based on the weighted scores (wR1i , wR2i) where (R1i, R2i) are the
paired rankings of object i = 1, 2, . . . , n, and the weight w is any number in (0,1).
Throughout this paper, we assume that there are no ties among rankings. Figure
1 shows the weighted ranks for n = 5, 10, 25, 50 and for w = 0.1(0.1)0.9, where wr

is the weight for the rank r, r = 1, . . . , n (i.e. w1, . . . , wn). We can see the speed of
decrease of the values wr for decreasing weights from w = 0.9 to w = 0.1. In fact
this choice of weights is attractive as the proportional difference between weights
of consecutive ranks is constant, (wr − wr+1)/wr = 1 − w. Essentially, this is the
same as using the exponential utility (or loss) function in decision theory, which
models constant absolute risk aversion and has many applications in finance and
other areas of decision support [2, 16]. It has the important practical advantage
of being relatively easy to assess based on information from analysts, as it only
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Table 2. Data structure with the weighted scores

Objects

Observers 1 2 . . . i . . . n Total

1 wR11 wR12 . . . wR1i . . . wR1n
√
a1

2 wR21 wR22 . . . wR2i . . . wR2n
√
a1

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

j wRj1 wRj2 . . . wRji . . . wRjn
√
a1

...
...

...
...

...
...

...
...

b wRb1 wRb2 . . . wRbi . . . wRbn
√
a1

Total w·1 w·2 . . . w·i . . . w·n b
√
a1

requires one parameter (w) to be chosen for which one can explicitly focus on the
relevance of any two neighbouring ranks.

The weighted rank coefficient Rw is given by [13]

Rw =

(
n

n∑
i=1

wR1i+R2i − a1

)
/(na2 − a1) (3)

where a1 = w2(1 − wn)2/(1 − w)2 and a2 = w2(1 − w2n)/(1 − w2). Rw in (3) can
also be written as

Rw =
n∑
i=1

(
wR1i − n−1√a1

[a2 − (a1/n)]1/2

)(
wR2i − n−1√a1

[a2 − (a1/n)]1/2

)
(4)

The statistic Rw has a maximum value of 1, yet its minimum possible value is not
−1. In fact, the minimum value of Rw is −1 only for n = 2 and increases away from
−1 towards approximately from −2× 10−6 to −3× 10−4, depending on the value
of w. This is very similar behavior to the top-down correlation coefficient for b = 2
introduced by Iman and Conover [6]. Maturi and Abdelfattah [13] showed that Rw
is a locally most powerful rank test. For n → ∞ and under the null hypothesis
of independence, they showed that the statistic (n − 1)1/2Rw has asymptotically
a standard normal distribution. Thus the critical region of size α for testing the
null hypothesis of independence (against the alternative of positive correlation) is,
for large n, given approximately by Rw > z1−α/

√
n− 1 where z1−α is the 1 − α

quantile of the standard normal distribution. A summary of quantiles of the exact
null distribution for n = 3(1)9 is provided by Maturi and Abdelfattah [13].

3. A new weighted rank concordance coefficient

We will use the weighted scores proposed by Maturi and Abdelfattah [13] to derive
the new coefficient of concordance, and by using the notation introduced above,
the weighted scores are wRji where Rji is the rank given by the jth observer to
the ith object and 0 < w < 1. The choice of w reflects the desire to emphasize the
top rankings. The data structure with these weighted scores is presented in Table
2. Of course the sum of each row is constant and equal to

√
a1 =

∑n
i=1w

Rji =
w(1 − wn)/(1 − w), and the total average of all weighted scores in Table 2 is

w̄ = (1/bn)
∑n

i=1

∑b
j=1w

Rji =
√
a1/n.

The new coefficient of concordance is based on the sum of squares of deviations of
the column totals in Table 2 around their mean value (1/n)

∑n
i=1w·i = (b/n)

√
a1,
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Figure 1. Weighted ranks for n = 5, 10, 25, 50 and w = 0.1(0.1)0.9

so

D =

n∑
i=1

(
w·i −

b
√
a1

n

)2

=

n∑
i=1

w2
·i −

b2a1

n
(5)

In the ideal case when all observers agree on all the rankings, the sum of the
weighted scores assigned to the ith object taken over all b groups of rankings is
w·i = bwi, i = 1, . . . , n. Again by taking the sum of squares of deviations of these
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values w·i around their mean, the maximum value that D can have is

maxD =

n∑
i=1

(
bwi −

b
√
a1

n

)2

= b2
n∑
i=1

w2i − b2a1

n
= b2a2 −

b2a1

n
(6)

where a2 =
∑n

i=1w
2i = w2(1 − w2n)/(1 − w2). Then from (5) and (6), the new

weighted rank concordance coefficient Cw is given by

Cw =
D

maxD
=

(1/b2)
∑n

i=1w
2
·i − (a1/n)

a2 − (a1/n)
(7)

Cw can take values between 0 and 1, where the value 1 is achieved when we have
perfect agreement of all rankings, i.e. all observers agree on the ranking of the n
subjects. Cw can take the value 0 only if n = b and if each ranking occurs only once
in any row or column, so each row or column is a permutation of 1, 2, . . . , n, hence
the data form a Latin Square. In this situation we have the same number of objects
and observers and no object receives the same rank from more than one observer,
so each object receives a permutation of 1, 2, . . . , b = n. This is logical since there
is no agreement between observers on any object. In this case, w·i =

√
a1 and

therefore, from (7), Cw = 0 for all 0 < w < 1.
There is a relationship between Cw and the average value of the weighted rank

correlation coefficients Ravw , calculated using (4), between the
(
b
2

)
possible pairs,

which is given by

Ravw =
bCw − 1

b− 1
(8)

The proof of this relationship is given in the appendix. One could argue that it
is possible to use all pairwise rank coefficients and perform tests of no agreement,
instead of the overall concordance measure Cw. However, such tests may lead to
increased type I error, as explained in detail by Gibbons & Chakraborti [3, p. 452].

4. The exact and limiting distributions of Cw

In order to use Cw to test the null hypothesis of no agreement between the rankings,
one needs to find the distribution of this concordance coefficient under the null
hypothesis. In Table 3, the exact quantiles for the weighted rank coefficient of
concordance Cw are given for n = 3, b = 3, 4, 5, 6 and for n = 4, b = 3, 4. The exact
distribution is calculated over all possible permutations (n!)b, for larger values
of n and b this becomes computationally difficult. Approximate quantiles for the
weighted rank coefficient of concordance Cw, for n = 4, b = 5, 6 and for n = 5, 6, 7,
b = 3, 4, 5, 6, are summarized in Tables 4 and 5. These approximate quantiles are
obtained by simulating 100,000 permutations.

For large values of b and n, the asymptotic distribution of Cw under the null
hypothesis is given in the following theorem, the proof is given in the appendix.

Theorem 4.1 As b → ∞, and under the assumption of random assignment of
ranks by all observers, so agreement, the statistic b(n − 1)Cw is asymptotically
chi-squared distributed with (n− 1) degrees of freedom.

In the case of ties, the average scores can be used with the ordinary F statistic
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Table 3. Exact quantiles for the weighted rank coefficient of concordance, Cw.

n = 3, b = 3 n = 3, b = 4

w 90% 92.5% 95% 97.5% 99% 90% 92.5% 95% 97.5% 99%

0.1 0.9940 0.9940 0.9940 1 1 0.4713 0.4713 0.4932 0.9932 0.9949
0.2 0.9785 0.9785 0.9785 1 1 0.4980 0.4980 0.5464 0.9758 0.9819
0.3 0.9568 0.9568 0.9568 1 1 0.5184 0.5184 0.5953 0.9514 0.9636
0.4 0.9316 0.9316 0.9316 1 1 0.5337 0.5337 0.6394 0.9231 0.9423
0.5 0.9048 0.9048 0.9048 1 1 0.5446 0.5446 0.6786 0.8929 0.9196
0.6 0.8776 0.8776 0.8776 1 1 0.5523 0.5523 0.7130 0.8622 0.8967
0.7 0.8508 0.8508 0.8508 1 1 0.5574 0.5574 0.7432 0.8322 0.8741
0.8 0.8251 0.8251 0.8251 1 1 0.5605 0.5605 0.7695 0.8033 0.8525
0.9 0.8007 0.8007 0.8007 1 1 0.5620 0.5620 0.7758 0.7924 0.8319

n = 3, b = 5 n = 3, b = 6

w 90% 92.5% 95% 97.5% 99% 90% 92.5% 95% 97.5% 99%

0.1 0.4941 0.5200 0.5395 0.5524 0.9935 0.3476 0.3634 0.5503 0.5886 0.6036
0.2 0.4658 0.5200 0.5510 0.5781 0.9768 0.3575 0.3871 0.5188 0.5887 0.6156
0.3 0.4708 0.5200 0.5563 0.5977 0.9534 0.3639 0.4053 0.4970 0.5851 0.6211
0.4 0.4523 0.5262 0.5569 0.6123 0.9262 0.3675 0.4188 0.4872 0.5833 0.6218
0.5 0.4514 0.5200 0.5543 0.6229 0.8971 0.3690 0.4405 0.4643 0.5833 0.6190
0.6 0.4710 0.5127 0.5494 0.6302 0.8678 0.3690 0.4354 0.4643 0.5731 0.6599
0.7 0.4871 0.5047 0.5430 0.6351 0.8389 0.3680 0.4182 0.4844 0.5620 0.6899
0.8 0.4964 0.5003 0.5357 0.6380 0.8111 0.3661 0.3975 0.5014 0.5628 0.6926
0.9 0.4881 0.5111 0.5280 0.6396 0.7848 0.3638 0.3785 0.5157 0.5741 0.6940

n = 4, b = 3 n = 4, b = 4

w 90% 92.5% 95% 97.5% 99% 90% 92.5% 95% 97.5% 99%

0.1 0.4557 0.4868 0.9915 0.9943 0.9949 0.4967 0.5141 0.5287 0.5463 0.9921
0.2 0.5004 0.5632 0.9679 0.9784 0.9826 0.4888 0.5222 0.5477 0.5844 0.9708
0.3 0.5397 0.6322 0.9330 0.9544 0.9672 0.4914 0.5264 0.5613 0.6136 0.9394
0.4 0.5723 0.6906 0.8909 0.9247 0.9517 0.4978 0.5339 0.5663 0.6512 0.9017
0.5 0.5981 0.7372 0.8454 0.8918 0.9382 0.5000 0.5348 0.5783 0.6696 0.8565
0.6 0.6172 0.7721 0.7996 0.8577 0.9274 0.5048 0.5348 0.5885 0.6806 0.8145
0.7 0.6406 0.7555 0.7965 0.8359 0.9196 0.5000 0.5281 0.5988 0.6854 0.7908
0.8 0.6743 0.7232 0.7915 0.8257 0.9146 0.5006 0.5409 0.5997 0.6876 0.7741
0.9 0.6775 0.6859 0.7612 0.8199 0.9119 0.5000 0.5397 0.5920 0.6688 0.7540

for the two-way layout, as this statistic automatically corrects for ties as shown by
Iman and Davenport [7] for the Friedman test. The F distribution with n− 1 and
(b−1)(n−1) degrees of freedom is used as approximation to the exact distribution
of Cw, where

F =
(b− 1)Cw

1− Cw
∼ F(n−1),(b−1)(n−1) (9)

and Cw can be written as

Cw =
F

(b− 1) + F
(10)

The proof of (9) is given in the appendix.

5. Simulation study

A simulation study has been carried out to compare the performance of Kendall’s,
the top-down and the new concordance coefficients in detecting the agreement
between the top rankings. Three simulation scenarios are considered: (i) The first
scenario is conducted to study type I error of the three concordance coefficients,
while the second and the third scenarios are conducted to compare the power of
the three concordance coefficients, namely (ii) a non-directional rank agreement
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Table 4. Approximate quantiles for the weighted rank coefficient of concordance, Cw.

n = 4, b = 5 n = 4, b = 6

w 90% 92.5% 95% 97.5% 99% 90% 92.5% 95% 97.5% 99%

0.1 0.3690 0.3917 0.5509 0.5764 0.6039 0.3397 0.3596 0.3939 0.4275 0.6168
0.2 0.3748 0.4253 0.5267 0.5813 0.6242 0.3400 0.3624 0.3938 0.4548 0.5992
0.3 0.3825 0.4481 0.5041 0.5773 0.6345 0.3344 0.3616 0.3981 0.4714 0.5802
0.4 0.3991 0.4417 0.4841 0.5753 0.6358 0.3319 0.3587 0.4014 0.4847 0.5615
0.5 0.3990 0.4379 0.4797 0.5715 0.6383 0.3333 0.3604 0.4068 0.4802 0.5614
0.6 0.3993 0.4337 0.4827 0.5682 0.6475 0.3342 0.3661 0.4129 0.4733 0.5659
0.7 0.4009 0.4340 0.4840 0.5611 0.6494 0.3375 0.3709 0.4112 0.4740 0.5623
0.8 0.4044 0.4328 0.4896 0.5583 0.6482 0.3402 0.3728 0.4132 0.4807 0.5603
0.9 0.4085 0.4365 0.4907 0.5637 0.6571 0.3424 0.3714 0.4100 0.4785 0.5588

n = 5, b = 3 n = 5, b = 4

w 90% 92.5% 95% 97.5% 99% 90% 92.5% 95% 97.5% 99%

0.1 0.4759 0.4966 0.4997 0.9941 0.9947 0.5105 0.5198 0.5354 0.5648 0.5828
0.2 0.5121 0.5399 0.5531 0.9709 0.9798 0.4907 0.5029 0.5313 0.5862 0.6256
0.3 0.5479 0.5717 0.6034 0.9428 0.9566 0.4686 0.4940 0.5373 0.5990 0.6664
0.4 0.5750 0.5971 0.6454 0.9006 0.9270 0.4562 0.4853 0.5460 0.6069 0.6983
0.5 0.5833 0.6177 0.6834 0.8536 0.8925 0.4540 0.4850 0.5422 0.6069 0.7169
0.6 0.5904 0.6390 0.7246 0.8143 0.8558 0.4550 0.4939 0.5424 0.6076 0.7264
0.7 0.5975 0.6567 0.7051 0.7869 0.8430 0.4626 0.4984 0.5429 0.6151 0.7136
0.8 0.6117 0.6492 0.6953 0.7757 0.8362 0.4646 0.4966 0.5401 0.6146 0.6898
0.9 0.6073 0.6451 0.6868 0.7552 0.8324 0.4652 0.4978 0.5446 0.6078 0.6835

n = 5, b = 5 n = 5, b = 6

w 90% 92.5% 95% 97.5% 99% 90% 92.5% 95% 97.5% 99%

0.1 0.3434 0.3868 0.4144 0.5833 0.6066 0.2810 0.3617 0.3819 0.4183 0.4704
0.2 0.3534 0.3804 0.4217 0.5577 0.6053 0.3122 0.3460 0.3815 0.4219 0.4889
0.3 0.3565 0.3859 0.4309 0.5315 0.6130 0.3108 0.3368 0.3739 0.4253 0.5042
0.4 0.3644 0.3966 0.4484 0.5172 0.6100 0.3092 0.3356 0.3697 0.4239 0.5144
0.5 0.3699 0.4016 0.4430 0.5043 0.5968 0.3119 0.3369 0.3701 0.4276 0.5042
0.6 0.3727 0.4022 0.4401 0.5032 0.5880 0.3124 0.3382 0.3725 0.4313 0.5024
0.7 0.3733 0.4017 0.4392 0.5037 0.5756 0.3134 0.3385 0.3721 0.4287 0.4913
0.8 0.3761 0.4037 0.4419 0.5054 0.5766 0.3149 0.3392 0.3739 0.4274 0.4932
0.9 0.3767 0.4059 0.4427 0.5021 0.5780 0.3155 0.3408 0.3748 0.4270 0.4903

scenario and (iii) a directional rank agreement scenario. We followed Legendre
[10] and Teles [18] in generating these simulation scenarios. The simulation study
results are based on 10,000 replications, where for all scenarios we consider n =
10, 20, 30, 50, 100 and b = 3, 4, 5, 6. Thereafter, the b sets of simulated observations
are converted into ranks. In more detail:

(i) in order to estimate type I error, b independent random samples of size n are
generated from the standard normal distribution. Type I error is estimated as the
percentage of rejections of the null hypothesis (of no agreement) when the data
are in agreement with this hypothesis. For a statistical test to be valid, its type
I error should not exceed the nominal significance level α. We compare the type
I errors of Kendall’s, the top-down and the new concordance coefficients, for ease
of presentation we selected w = 0.4, 0.6, 0.7, 0.9. Figure 2 shows that type I errors
of all tests do not exceed the nominal significant level α = 0.05. While for small
n all tests have similar type I errors, they differ as n increases. Overall Kendall’s
concordance coefficient has the lowest type I errors, however, the proposed weighted
concordance coefficient (C0.9) has small type I errors for small samples. For larger
b, the differences between type I errors become even smaller. We also notice overall
that C0.9 has lower type I errors than C0.4 which is logical as the values of the data
decrease with smaller weight, see Figure 1.

(ii) The non-directional rank agreement scenario is conducted as follows: For the
first set of observations, a standard normal distribution sample is generated. For
the remaining b − 1 sets of observations, normal distributions samples with mean
zero and standard deviations σ = 0.5, 1, 2, 3 are simulated and then added to the
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Table 5. Approximate quantiles for the weighted rank coefficient of concordance, Cw.

n = 6, b = 3 n = 6, b = 4

w 90% 92.5% 95% 97.5% 99% 90% 92.5% 95% 97.5% 99%

0.1 0.4972 0.4977 0.5222 0.9919 0.9945 0.4638 0.5300 0.5422 0.5714 0.5884
0.2 0.5219 0.5264 0.5689 0.9677 0.9776 0.4740 0.5083 0.5263 0.5680 0.6176
0.3 0.5380 0.5518 0.6025 0.9282 0.9489 0.4615 0.4887 0.5111 0.5800 0.6358
0.4 0.5476 0.5741 0.6278 0.8755 0.9116 0.4426 0.4704 0.5062 0.5840 0.6473
0.5 0.5546 0.5925 0.6431 0.8139 0.8670 0.4344 0.4632 0.5034 0.5814 0.6612
0.6 0.5634 0.5999 0.6548 0.7656 0.8298 0.4341 0.4639 0.5060 0.5735 0.6526
0.7 0.5694 0.6057 0.6611 0.7326 0.8052 0.4355 0.4660 0.5076 0.5722 0.6518
0.8 0.5763 0.6102 0.6550 0.7141 0.7862 0.4379 0.4684 0.5074 0.5682 0.6348
0.9 0.5745 0.6066 0.6496 0.7124 0.7831 0.4404 0.4691 0.5069 0.5634 0.6285

n = 6, b = 5 n = 6, b = 6

w 90% 92.5% 95% 97.5% 99% 90% 92.5% 95% 97.5% 99%

0.1 0.3379 0.3490 0.4009 0.4467 0.6058 0.2752 0.2876 0.3821 0.4106 0.4552
0.2 0.3446 0.3643 0.3959 0.4597 0.5877 0.2825 0.3062 0.3638 0.4123 0.4575
0.3 0.3464 0.3673 0.4018 0.4817 0.5735 0.2901 0.3175 0.3525 0.4063 0.4625
0.4 0.3470 0.3705 0.4075 0.4848 0.5542 0.2941 0.3178 0.3489 0.4012 0.4661
0.5 0.3494 0.3741 0.4131 0.4734 0.5410 0.2953 0.3175 0.3483 0.4000 0.4667
0.6 0.3521 0.3781 0.4133 0.4697 0.5417 0.2957 0.3179 0.3478 0.3967 0.4583
0.7 0.3549 0.3794 0.4132 0.4677 0.5347 0.2974 0.3190 0.3486 0.3970 0.4541
0.8 0.3564 0.3817 0.4139 0.4665 0.5294 0.2993 0.3215 0.3520 0.3992 0.4539
0.9 0.3558 0.3809 0.4133 0.4661 0.5281 0.2990 0.3211 0.3508 0.3966 0.4526

n = 7, b = 3 n = 7, b = 4

w 90% 92.5% 95% 97.5% 99% 90% 92.5% 95% 97.5% 99%

0.1 0.4914 0.5127 0.5154 0.5417 0.9925 0.4008 0.4534 0.5460 0.5595 0.5892
0.2 0.5023 0.5366 0.5463 0.5914 0.9715 0.4159 0.4968 0.5278 0.5541 0.6104
0.3 0.5187 0.5542 0.5760 0.6498 0.9401 0.4112 0.4774 0.5090 0.5472 0.6221
0.4 0.5349 0.5665 0.5989 0.6886 0.9025 0.4233 0.4546 0.4896 0.5427 0.6289
0.5 0.5400 0.5731 0.6185 0.7167 0.8486 0.4192 0.4455 0.4811 0.5422 0.6257
0.6 0.5426 0.5764 0.6243 0.7250 0.8023 0.4193 0.4454 0.4810 0.5436 0.6171
0.7 0.5479 0.5814 0.6287 0.6973 0.7615 0.4203 0.4477 0.4844 0.5428 0.6114
0.8 0.5521 0.5825 0.6202 0.6802 0.7456 0.4207 0.4469 0.4816 0.5361 0.5991
0.9 0.5482 0.5785 0.6163 0.6735 0.7374 0.4229 0.4486 0.4827 0.5350 0.5944

n = 7, b = 5 n = 7, b = 6

w 90% 92.5% 95% 97.5% 99% 90% 92.5% 95% 97.5% 99%

0.1 0.3420 0.3528 0.3691 0.4375 0.6107 0.2810 0.2907 0.3061 0.4075 0.4343
0.2 0.3359 0.3584 0.3847 0.4316 0.5863 0.2775 0.2943 0.3221 0.3956 0.4416
0.3 0.3375 0.3597 0.3859 0.4406 0.5621 0.2780 0.2975 0.3332 0.3853 0.4403
0.4 0.3360 0.3585 0.3885 0.4484 0.5334 0.2817 0.3032 0.3332 0.3795 0.4374
0.5 0.3369 0.3599 0.3908 0.4508 0.5151 0.2826 0.3026 0.3293 0.3757 0.4314
0.6 0.3376 0.3603 0.3916 0.4445 0.5049 0.2835 0.3035 0.3301 0.3738 0.4287
0.7 0.3394 0.3619 0.3928 0.4419 0.5051 0.2848 0.3045 0.3309 0.3739 0.4279
0.8 0.3412 0.3632 0.3930 0.4421 0.4980 0.2853 0.3043 0.3296 0.3710 0.4221
0.9 0.3430 0.3651 0.3943 0.4387 0.4940 0.2870 0.3059 0.3302 0.3718 0.4214

first set of observations to create some agreement them, where larger values of σ
correspond to lower degrees of agreement.

(iii) The directional rank agreement scenario is carried out as follows: For the
first set of observations, a standard normal distribution sample is generated. This
sample is sorted ascendingly and divided into two halves, the first half correspond-
ing to the lower ranks and the second to the higher ranks. For the first half of the
remaining b−1 sets of observations, normal distributions samples (of size n/2) with
mean zero and standard deviations σ = 0.5, 1, 2, 3 are simulated and then added
to the first (sorted) set of observations to create some agreement. The second half
of the remaining b−1 sets of observations consist of standard normally distributed
samples

The performance (power) of the three concordance coefficients are assessed, at
significance level α = 0.05, by the percentage of rejections of the null hypoth-
esis when the null hypothesis is false. Based on 10,000 replications, the simula-
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Figure 2. Type I error comparison

tion results for the non-directional rank agreement scenario are summarised in
Tables 6-9 and for the directional rank agreement scenario in Tables 10-13. As
expected, Kendall’s concordance coefficient performs better in the non-directional
agreement scenario while the top-down and the new weighted concordance coeffi-
cients achieved better power in the directional agreement scenario, similar results
were obtained by Teles [18] comparing Kendall’s and the top-down concordance
coefficients. The performance of the C0.9, under the non-directional agreement sce-
nario, is very close to Kendall’s and the top-down concordance coefficients except
when σ is large. For the directional agreement scenario, the performance of the
new weighted concordance coefficient exceeds Kendall’s concordance coefficient es-
pecially for large values of w, while it performs better or similar to the top-down
concordance coefficient.

6. Examples

In this section, three examples are provided to illustrate the new proposed weighted
rank concordance coefficient, where the third example considers real data on finan-
cial markets indices.

Example 6.1 Let us consider the scenario when three financial experts are asked
to rank four investment projects in terms of their profitability. Their rankings
are summarized in Table 14. Case A in this table shows that all experts agree
that project 1 is the best investment project while the experts’ opinions vary with
regard to the other projects. In order to illustrate the important feature of the
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Table 6. Power comparisons of K, T and Cw for the non-directional scenario, b = 3.

σ n K T C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9

0.5 10 0.9857 0.9638 0.4448 0.6171 0.7263 0.8017 0.8671 0.9207 0.9523 0.9750 0.9853
20 1 0.9995 0.8211 0.8215 0.8462 0.8969 0.9441 0.9782 0.9945 0.9992 1
30 1 1 0.8326 0.8250 0.8741 0.9253 0.9644 0.9865 0.9983 0.9999 1
50 1 1 0.7855 0.8226 0.8874 0.9378 0.9761 0.9938 0.9997 1 1
100 1 1 0.7447 0.8374 0.9007 0.9560 0.9860 0.9964 0.9998 1 1

1 10 0.7791 0.6967 0.2133 0.2901 0.3880 0.4659 0.5324 0.6021 0.6683 0.7258 0.7704
20 0.9818 0.9483 0.5225 0.5210 0.5289 0.5932 0.6597 0.7482 0.8506 0.9285 0.9722
30 0.9990 0.9945 0.5715 0.5784 0.6049 0.6557 0.7232 0.8017 0.8935 0.9664 0.9951
50 1 1 0.5232 0.5252 0.5885 0.6603 0.7491 0.8542 0.9308 0.9853 0.9993
100 1 1 0.4415 0.5044 0.5622 0.6799 0.7797 0.8732 0.9512 0.9925 0.9998

2 10 0.3004 0.2738 0.0735 0.0977 0.1401 0.1844 0.2175 0.2514 0.2679 0.2963 0.3154
20 0.6086 0.5255 0.2299 0.2226 0.2286 0.2425 0.2778 0.3279 0.4008 0.4960 0.5799
30 0.8092 0.7034 0.3173 0.3284 0.3384 0.3333 0.3280 0.3705 0.4486 0.5731 0.7321
50 0.9610 0.9034 0.2578 0.2721 0.2942 0.3150 0.3606 0.4276 0.5110 0.6576 0.8563
100 0.9995 0.9979 0.1947 0.2069 0.2278 0.2888 0.3612 0.4385 0.5489 0.7022 0.9262

3 10 0.1546 0.1508 0.0441 0.0506 0.0775 0.1050 0.1237 0.1363 0.1493 0.1588 0.1524
20 0.3168 0.2828 0.1412 0.1329 0.1407 0.1468 0.1607 0.1805 0.2139 0.2640 0.3049
30 0.4836 0.4037 0.2341 0.2373 0.2430 0.2083 0.1917 0.2034 0.2443 0.3157 0.4117
50 0.7058 0.6046 0.1772 0.1795 0.1898 0.2120 0.2319 0.2467 0.2942 0.3697 0.5413
100 0.9535 0.8889 0.1140 0.1236 0.1299 0.1599 0.2062 0.2589 0.3084 0.4092 0.6334

Table 7. Power comparisons of K, T and Cw for the non-directional scenario, b = 4.

σ n K T C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9

0.5 10 0.9978 0.9925 0.7712 0.7922 0.8614 0.9202 0.9529 0.9814 0.9911 0.9956 0.9980
20 1 1 0.7654 0.8905 0.9369 0.9662 0.9852 0.9958 0.9991 1 1
30 1 1 0.9011 0.9235 0.9521 0.9786 0.9927 0.9979 0.9999 1 1
50 1 1 0.9196 0.9307 0.9651 0.9827 0.9970 0.9997 1 1 1
100 1 1 0.8859 0.9294 0.9704 0.9892 0.9981 0.9998 1 1 1

1 10 0.9126 0.8544 0.4720 0.4988 0.5564 0.6415 0.7118 0.7784 0.8371 0.8814 0.9116
20 0.9975 0.9905 0.4054 0.5673 0.6625 0.7367 0.8106 0.8913 0.9475 0.9831 0.9954
30 1 0.9997 0.5759 0.6614 0.6995 0.7778 0.8511 0.9208 0.9661 0.9938 1
50 1 1 0.7020 0.7029 0.7408 0.8120 0.8788 0.9382 0.9841 0.9986 1
100 1 1 0.6079 0.6456 0.7296 0.8123 0.8948 0.9546 0.9885 0.9992 1

2 10 0.4837 0.4152 0.2190 0.2295 0.2508 0.2883 0.3229 0.3621 0.3979 0.4496 0.4791
20 0.7893 0.7047 0.1426 0.2161 0.2692 0.3218 0.3767 0.4653 0.5641 0.6599 0.7386
30 0.9256 0.8597 0.2329 0.2867 0.3182 0.3518 0.4193 0.503 0.6141 0.7499 0.8816
50 0.9920 0.9760 0.3964 0.3940 0.4144 0.4067 0.4548 0.5345 0.6513 0.8065 0.9513
100 1 0.9998 0.3048 0.3078 0.3430 0.3887 0.4694 0.5685 0.6866 0.8455 0.9774

3 10 0.2581 0.2294 0.1259 0.1441 0.1551 0.1696 0.1849 0.1978 0.2149 0.2408 0.2579
20 0.4698 0.4062 0.0779 0.1247 0.1513 0.1800 0.2163 0.2499 0.2942 0.3754 0.4440
30 0.6324 0.5550 0.1256 0.1615 0.1820 0.2037 0.2247 0.2827 0.3406 0.4444 0.5599
50 0.8485 0.7629 0.2787 0.2810 0.2881 0.2394 0.2643 0.3064 0.3729 0.4813 0.7071
100 0.9893 0.9615 0.1855 0.1884 0.2122 0.2326 0.2713 0.3213 0.3993 0.5283 0.7787

new weighted rank concordance coefficient that the emphasis is on top rankings,
we also consider Case B in Table 14 where all experts agree that project 4 is the
worst project to invest in, but their rankings vary over the first three projects.

For both cases, Kendall’s coefficient of concordance is K = 0.6 and the p-value
is 0.175. So we do not reject the null hypothesis of no agreement between the
rankings for both cases at significance level 10%. However, the top-down coefficient
of concordance is T = 0.816 for Case A with p-value = 0.062 and T = 0.391 for Case
B with p-value = 0.373. So for Case A, we reject the null hypothesis at significance
level 10%, while for Case B we do not reject the null hypothesis of no agreement
between the rankings at significance level 10%. In Table 15, the weighted rank
coefficient of concordance Cw is presented for several values of w = 0.1(0.1)0.9
along with the corresponding p-values for both cases. So for Case B, we do not
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Table 8. Power comparisons of K, T and Cw for the non-directional scenario, b = 5.

σ n K T C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9

0.5 10 0.9994 0.9988 0.8481 0.9041 0.9383 0.9664 0.9837 0.9935 0.9974 0.9991 0.9995
20 1 1 0.8898 0.9398 0.9721 0.9887 0.9959 0.9997 1 1 1
30 1 1 0.9051 0.9615 0.9832 0.9923 0.9988 0.9999 1 1 1
50 1 1 0.9644 0.9742 0.9883 0.9958 0.9993 0.9999 1 1 1
100 1 1 0.9523 0.9757 0.9908 0.9974 0.9997 1 1 1 1

1 10 0.9603 0.9280 0.5875 0.6279 0.6764 0.7487 0.8148 0.8800 0.9154 0.9401 0.9553
20 0.9992 0.9974 0.6120 0.6665 0.7563 0.8310 0.8989 0.9497 0.9818 0.9955 0.9994
30 1 1 0.5685 0.7142 0.7917 0.8644 0.9212 0.9657 0.9932 0.9994 0.9999
50 1 1 0.7449 0.7845 0.8234 0.8849 0.9424 0.9779 0.9959 0.9996 1
100 1 1 0.7605 0.7650 0.8340 0.9033 0.9529 0.9855 0.9975 0.9998 1

2 10 0.5954 0.5252 0.2657 0.2849 0.2986 0.3508 0.4043 0.4511 0.5108 0.5627 0.5889
20 0.8803 0.8019 0.2800 0.2887 0.3260 0.4098 0.4839 0.5651 0.6653 0.7676 0.8496
30 0.9655 0.9346 0.2028 0.2931 0.3683 0.4282 0.5141 0.5884 0.7159 0.8478 0.9388
50 0.9982 0.9917 0.3278 0.3811 0.4026 0.4515 0.5365 0.6348 0.7551 0.8888 0.9822
100 1 1 0.4123 0.4095 0.4302 0.4998 0.5589 0.6583 0.7853 0.9204 0.9958

3 10 0.3388 0.2875 0.1648 0.1746 0.1780 0.1897 0.2245 0.2563 0.2828 0.3042 0.3322
20 0.5875 0.5079 0.1751 0.1567 0.1859 0.2248 0.2702 0.3321 0.3858 0.4603 0.5444
30 0.7504 0.6723 0.1099 0.1517 0.2007 0.2487 0.2871 0.3343 0.4176 0.5353 0.6816
50 0.9218 0.8573 0.1771 0.2248 0.2293 0.2554 0.3034 0.3526 0.4479 0.5849 0.7976
100 0.9969 0.9866 0.2661 0.2657 0.2753 0.3161 0.3167 0.3722 0.4645 0.6315 0.8712

Table 9. Power comparisons of K, T and Cw for the non-directional scenario, b = 6.

σ n K T C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9

0.5 10 0.9998 0.9994 0.9023 0.9393 0.9651 0.9853 0.9939 0.9971 0.9991 0.9996 0.9998
20 1 1 0.9506 0.9679 0.9873 0.9960 0.9985 1 1 1 1
30 1 1 0.9541 0.9812 0.9927 0.9982 0.9994 1 1 1 1
50 1 1 0.9738 0.9887 0.9957 0.9984 0.9998 1 1 1 1
100 1 1 0.9829 0.9906 0.9974 0.9996 0.9999 1 1 1 1

1 10 0.9787 0.9577 0.6241 0.6837 0.7535 0.8338 0.8892 0.9231 0.9531 0.9707 0.9766
20 0.9999 0.9996 0.6944 0.7698 0.8341 0.8932 0.9459 0.9754 0.9917 0.9992 0.9998
30 1 1 0.7179 0.7824 0.8655 0.9152 0.9578 0.9876 0.9979 0.9998 1
50 1 1 0.7274 0.8325 0.8844 0.9289 0.9722 0.9920 0.9994 0.9999 1
100 1 1 0.8417 0.8493 0.8960 0.9429 0.9761 0.9938 0.9994 1 1

2 10 0.6772 0.6203 0.2803 0.3087 0.3550 0.4052 0.4709 0.5301 0.5876 0.6378 0.6753
20 0.9274 0.8787 0.3234 0.3784 0.4193 0.4772 0.5610 0.6529 0.7433 0.8434 0.9086
30 0.9853 0.9644 0.3410 0.3560 0.4259 0.5025 0.5881 0.6908 0.7955 0.9039 0.9708
50 0.9998 0.9974 0.2616 0.3664 0.4500 0.5262 0.6149 0.7193 0.8342 0.9407 0.9942
100 1 1 0.5129 0.5087 0.5004 0.5478 0.6224 0.7364 0.8503 0.9585 0.9987

3 10 0.3967 0.3495 0.1614 0.1752 0.1913 0.2386 0.2601 0.2932 0.3388 0.3702 0.3963
20 0.6675 0.5828 0.1912 0.2171 0.2313 0.2652 0.3064 0.3802 0.4450 0.5399 0.6301
30 0.8238 0.7407 0.2095 0.1966 0.2309 0.2781 0.3231 0.3947 0.4842 0.6207 0.7556
50 0.9572 0.9117 0.1291 0.1876 0.2426 0.2860 0.3368 0.4085 0.5186 0.6711 0.8651
100 0.9990 0.9953 0.3453 0.3486 0.2935 0.3111 0.3564 0.4341 0.5327 0.7043 0.9254

reject the null hypothesis of no agreement between the rankings for any value of w
while for Case A we reject the null hypothesis at significance level 10% for w ≤ 0.8.

This example shows that Kendall’s coefficient of concordance K does not reflect
the agreement on the top ranking as it gave the same answer to both cases.
However, the top-down coefficient of concordance T and the new weighted rank
coefficient of concordance Cw are more sensitive to the agreement on the top
rankings. The new weighted rank coefficient of concordance Cw gives the option
of choosing the weights w to reflect the desired level of focus on the top rankings.

Example 6.2 Consider a computer model with seven input variables ranked by each
of six different measures, as shown in Table 16. This data set was used by Iman
and Conover [6] to introduce the top-down concordance coefficient T .
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Table 10. Power comparisons of K, T and Cw for the directional scenario, b = 3.

σ n K T C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9

0.5 10 0.4757 0.5668 0.2886 0.3621 0.4335 0.4968 0.5284 0.5621 0.5854 0.5711 0.5328
20 0.8125 0.8574 0.6215 0.6195 0.6448 0.6844 0.7390 0.7881 0.8318 0.8641 0.8653
30 0.9395 0.9569 0.6878 0.6919 0.7140 0.7682 0.8115 0.8693 0.9079 0.9490 0.9650
50 0.9967 0.9964 0.6718 0.6975 0.7618 0.8191 0.8721 0.9222 0.9617 0.9879 0.9965
100 1 1 0.6476 0.7326 0.7895 0.8697 0.9230 0.9674 0.9865 0.9981 1

1 10 0.3155 0.4356 0.1822 0.2248 0.3004 0.3475 0.3945 0.4247 0.4408 0.4098 0.3711
20 0.6038 0.7389 0.4521 0.4617 0.4820 0.5049 0.5633 0.616 0.6773 0.7288 0.7180
30 0.7970 0.8857 0.5491 0.5564 0.5736 0.6024 0.6628 0.7063 0.7952 0.8619 0.8884
50 0.9507 0.9833 0.5048 0.5115 0.5654 0.6302 0.7169 0.7989 0.8734 0.9377 0.9795
100 0.9991 1 0.4367 0.4832 0.5377 0.6566 0.7547 0.8490 0.9255 0.9806 0.9989

2 10 0.1489 0.2824 0.0979 0.1239 0.1898 0.2364 0.2713 0.2883 0.2946 0.2595 0.2026
20 0.2988 0.5303 0.2903 0.2884 0.3021 0.3283 0.3894 0.4422 0.5194 0.5628 0.4870
30 0.4306 0.7135 0.3729 0.3778 0.3892 0.4131 0.4267 0.5057 0.6131 0.7288 0.7255
50 0.6392 0.9015 0.2936 0.2953 0.3330 0.3746 0.4419 0.5381 0.6668 0.8276 0.9272
100 0.9032 0.9957 0.2049 0.2237 0.2536 0.3186 0.4122 0.5268 0.6705 0.8486 0.9891

3 10 0.0961 0.2178 0.0751 0.0974 0.1533 0.1930 0.2206 0.2505 0.2329 0.1986 0.1448
20 0.1790 0.4125 0.2331 0.2305 0.2384 0.2747 0.3076 0.3682 0.4303 0.4678 0.3762
30 0.2567 0.5683 0.3055 0.3014 0.3131 0.3230 0.3405 0.405 0.5265 0.6412 0.6129
50 0.3859 0.7962 0.2280 0.2281 0.2538 0.2704 0.3355 0.4155 0.5350 0.7421 0.8776
100 0.6418 0.9783 0.1446 0.1557 0.1618 0.2151 0.2858 0.3706 0.4912 0.7146 0.9706

Table 11. Power comparisons of K, T and Cw for the directional scenario, b = 4.

σ n K T C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9

0.5 10 0.6999 0.7264 0.5310 0.5541 0.5890 0.6280 0.6801 0.7002 0.7297 0.7472 0.7267
20 0.9364 0.9364 0.5393 0.6793 0.7343 0.7842 0.8341 0.8740 0.9095 0.9404 0.9520
30 0.9895 0.9847 0.7217 0.7599 0.7964 0.8468 0.8964 0.9285 0.9632 0.9823 0.9909
50 0.9996 0.9994 0.8165 0.8244 0.8589 0.9019 0.9426 0.9656 0.9852 0.9968 0.9994
100 1 1 0.7916 0.8329 0.8992 0.9394 0.9696 0.9843 0.9972 0.9995 1

1 10 0.4920 0.5875 0.4042 0.4192 0.4582 0.5083 0.5352 0.5659 0.5911 0.5796 0.5626
20 0.7913 0.8642 0.3539 0.4902 0.5641 0.6373 0.7002 0.7607 0.8195 0.8538 0.8549
30 0.9193 0.9600 0.5268 0.6113 0.6477 0.7036 0.7700 0.8324 0.8929 0.9433 0.9576
50 0.9899 0.9956 0.6834 0.6875 0.7255 0.7770 0.8316 0.8995 0.9493 0.9815 0.9956
100 0.9999 1 0.5985 0.6320 0.7168 0.7956 0.8733 0.9365 0.9770 0.9971 1

2 10 0.2512 0.3998 0.2746 0.3038 0.3306 0.3735 0.3965 0.4136 0.4210 0.3920 0.3382
20 0.4412 0.6868 0.1953 0.3065 0.3893 0.4583 0.5414 0.6233 0.6944 0.7288 0.6383
30 0.5935 0.8495 0.2981 0.3772 0.4244 0.4912 0.5682 0.6893 0.8056 0.8669 0.8637
50 0.7938 0.9704 0.4584 0.4570 0.4780 0.5157 0.5828 0.7038 0.8329 0.9489 0.9818
100 0.9707 0.9996 0.3345 0.3415 0.3901 0.4554 0.5506 0.6782 0.8304 0.9614 0.9997

3 10 0.1612 0.3140 0.2356 0.2523 0.2770 0.3166 0.3365 0.3513 0.3403 0.2969 0.2361
20 0.2699 0.5648 0.1435 0.2267 0.2976 0.3696 0.4639 0.5589 0.6279 0.6358 0.5151
30 0.3719 0.7375 0.2130 0.2857 0.3203 0.3808 0.4653 0.5915 0.7305 0.8259 0.7675
50 0.5211 0.9114 0.3640 0.3728 0.3708 0.3856 0.4486 0.5678 0.7517 0.9164 0.9670
100 0.7840 0.9971 0.2411 0.2491 0.2767 0.3116 0.3954 0.5033 0.6691 0.8965 0.9985

The top-down concordance coefficient for these data is T = 0.672 and b(n−1)T =
24.18, comparing this with the chi-squared distribution with 6 degrees of freedom,
χ2

6,.95 = 12.59 (or p-value = 0.0005) indicates a strong agreement among the six
measures. Kendall’s coefficient of concordance is K = 0.375 and b(n− 1)K = 13.5
with p-value = 0.0357, this shows moderate agreement among the six measures.
One can also use the F approximation,

FT =
(b− 1)T

1− T
= 10.24 and FK =

(b− 1)K

1−K
= 3

and compare this with F distribution with 6 and 30 degrees of freedom, the p-value
is less than 10−6 for FT and equal to 0.0204 for FK .

Before calculating the new weighted rank coefficient of concordance Cw, let us
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Table 12. Power comparisons of K, T and Cw for the directional scenario, b = 5.

σ n K T C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9

0.5 10 0.8095 0.8022 0.6126 0.6505 0.6788 0.7198 0.7544 0.784 0.8098 0.8185 0.8296
20 0.9760 0.9644 0.6847 0.7335 0.7934 0.8408 0.8877 0.9196 0.9464 0.9684 0.9773
30 0.9964 0.9942 0.6981 0.7995 0.8481 0.8937 0.9294 0.9583 0.9807 0.9898 0.9961
50 1 0.9997 0.8524 0.8704 0.9028 0.9354 0.9652 0.9829 0.9904 0.9987 0.9995
100 1 1 0.8829 0.8998 0.9342 0.9668 0.9857 0.9948 0.9990 0.9999 1

1 10 0.6289 0.6800 0.4866 0.5111 0.5394 0.5872 0.6314 0.6685 0.6792 0.6873 0.6690
20 0.8809 0.9161 0.5479 0.5743 0.6657 0.7229 0.7836 0.8395 0.8953 0.9139 0.9162
30 0.9664 0.9834 0.5090 0.6436 0.7267 0.7978 0.8508 0.9018 0.9443 0.9695 0.9779
50 0.9976 0.9994 0.7072 0.7518 0.7911 0.8484 0.9009 0.9453 0.9805 0.9930 0.9989
100 1 1 0.7369 0.7550 0.8125 0.8808 0.9329 0.9716 0.9939 0.9993 1

2 10 0.3414 0.4929 0.3520 0.3799 0.4152 0.4624 0.4933 0.5127 0.5176 0.4797 0.4102
20 0.5500 0.7844 0.3725 0.3916 0.4814 0.5776 0.6638 0.7537 0.8094 0.8138 0.7502
30 0.7106 0.9170 0.2804 0.4056 0.4982 0.5931 0.6927 0.8026 0.8979 0.9345 0.9289
50 0.8734 0.9906 0.4242 0.4804 0.5168 0.5977 0.6983 0.8207 0.9296 0.9856 0.9949
100 0.9889 1 0.4468 0.4451 0.4976 0.5757 0.6676 0.7875 0.9217 0.9929 1

3 10 0.2086 0.3987 0.3078 0.3294 0.3590 0.4090 0.4347 0.4504 0.4186 0.3689 0.2898
20 0.3450 0.6690 0.3019 0.3221 0.3872 0.4788 0.5948 0.6963 0.7597 0.7496 0.6125
30 0.4445 0.8352 0.1904 0.2985 0.3919 0.4918 0.6167 0.7414 0.8632 0.9215 0.8563
50 0.6127 0.9634 0.3015 0.3528 0.3870 0.4470 0.5638 0.7133 0.8925 0.9807 0.9917
100 0.8655 0.9993 0.3325 0.3371 0.3523 0.4211 0.4860 0.6255 0.8054 0.9732 0.9999

Table 13. Power comparisons of K, T and Cw for the directional scenario, b = 6.

σ n K T C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9

0.5 10 0.8733 0.8486 0.6207 0.6741 0.7234 0.7687 0.8044 0.8270 0.8529 0.8622 0.8773
20 0.9902 0.9788 0.7556 0.7958 0.8432 0.8880 0.9151 0.9414 0.9661 0.9793 0.9884
30 0.9989 0.9969 0.7828 0.8367 0.8861 0.9249 0.9514 0.9756 0.9870 0.9954 0.9992
50 1 1 0.8427 0.9032 0.9306 0.9590 0.9808 0.9906 0.9965 0.9997 0.9999
100 1 1 0.9260 0.9421 0.9623 0.9808 0.9925 0.9974 0.9997 1 1

1 10 0.7040 0.7473 0.5125 0.5470 0.5954 0.6512 0.6902 0.7258 0.7345 0.7487 0.7372
20 0.9257 0.9422 0.6343 0.6805 0.7439 0.7968 0.8507 0.8871 0.9295 0.9424 0.9454
30 0.9799 0.9890 0.6570 0.7256 0.7896 0.8511 0.9031 0.9361 0.9691 0.9836 0.9902
50 0.9992 0.9996 0.6789 0.7913 0.8432 0.8970 0.9418 0.9716 0.9911 0.9977 0.9994
100 1 1 0.8272 0.8422 0.8759 0.9355 0.9645 0.9897 0.9977 0.9995 1

2 10 0.3980 0.5674 0.3923 0.4450 0.4912 0.5379 0.5820 0.6016 0.5928 0.5548 0.4806
20 0.6320 0.8496 0.4231 0.5102 0.5830 0.6849 0.7630 0.8332 0.8766 0.8826 0.8186
30 0.7762 0.9538 0.4525 0.4825 0.5972 0.6991 0.7971 0.8937 0.9507 0.9700 0.9531
50 0.9211 0.9966 0.3565 0.4924 0.5949 0.6839 0.7932 0.9036 0.9755 0.9967 0.9987
100 0.9963 1 0.5609 0.5590 0.5747 0.6576 0.7580 0.8739 0.9659 0.9992 1

3 10 0.2405 0.4594 0.3602 0.4012 0.4451 0.4929 0.5333 0.5286 0.4991 0.4242 0.3400
20 0.3862 0.7506 0.3278 0.4217 0.5110 0.6081 0.7243 0.8129 0.8592 0.8318 0.6860
30 0.5158 0.9004 0.3584 0.3837 0.4698 0.5855 0.7325 0.8636 0.9461 0.9635 0.9150
50 0.6982 0.9867 0.2257 0.3482 0.4456 0.5377 0.6710 0.8339 0.9594 0.9965 0.9966
100 0.9070 0.9998 0.4353 0.4328 0.4236 0.4709 0.5729 0.7352 0.9008 0.996 1

Table 14. Rankings of four investment projects by three financial experts

Case A Case B
Investment Projects Investment Projects

Experts P1 P2 P3 P4 Experts P1 P2 P3 P4

A 1 2 3 4 A 1 2 3 4
B 1 4 2 3 B 3 1 2 4
C 1 3 4 2 C 2 3 1 4

first show the effect of the weights on the data. Table 17 represents the data after
the transformation for w = 0.8 and w = 0.3. For example, the entry in the second
row and the second column in Table 17 is obtained as 0.87 = 0.2097, where 7 is the
corresponding value from Table 16. Finally, Table 18 presents the weighted rank
coefficient of concordance Cw for different values of w along with the chi-square
values b(n− 1)Cw, the values FCw

= (b− 1)Cw/(1− Cw) and their corresponding
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Table 15. The weighted rank coefficient of concordance Cw for both cases in Table 14

C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9

Case A Statistic 0.991 0.968 0.932 0.887 0.838 0.786 0.736 0.687 0.642
p-value 0.062 0.049 0.059 0.062 0.059 0.068 0.080 0.094 0.122

Case B Statistic 0.146 0.189 0.239 0.294 0.351 0.407 0.461 0.511 0.558
p-value 0.635 0.635 0.639 0.514 0.391 0.318 0.255 0.207 0.182

Table 16. Seven input variables ranked by six

different measures

Input variables

Measure A B C D E F G

SRC 1 2 3 4 5 6 7
SRRC 1 7 2 3 4 5 6
PD 1 6 7 2 3 4 5
CV 1 5 6 7 2 3 4
PCC 1 4 5 6 7 2 3
PRCC 1 3 4 5 6 7 2

Table 17. Seven input variables ranked by six different measures

Input variables

Measure A B C D E F G

w = 0.8

SRC 0.8 0.6400 0.5120 0.4096 0.3277 0.2621 0.2097
SRRC 0.8 0.2097 0.6400 0.5120 0.4096 0.3277 0.2621
PD 0.8 0.2621 0.2097 0.6400 0.5120 0.4096 0.3277
CV 0.8 0.3277 0.2621 0.2097 0.6400 0.5120 0.4096
PCC 0.8 0.4096 0.3277 0.2621 0.2097 0.6400 0.5120
PRCC 0.8 0.5120 0.4096 0.3277 0.2621 0.2097 0.6400

w = 0.3

SRC 0.3 0.0900 0.0270 0.0081 0.0024 0.0007 0.0002
SRRC 0.3 0.0002 0.0900 0.0270 0.0081 0.0024 0.0007
PD 0.3 0.0007 0.0002 0.0900 0.0270 0.0081 0.0024
CV 0.3 0.0024 0.0007 0.0002 0.0900 0.0270 0.0081
PCC 0.3 0.0081 0.0024 0.0007 0.0002 0.0900 0.0270
PRCC 0.3 0.0270 0.0081 0.0024 0.0007 0.0002 0.0900

Table 18. The weighted rank coefficient of concordance Cw for Example 6.2

C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9

Statistic 0.990 0.962 0.915 0.853 0.777 0.693 0.605 0.521 0.443
χ2-value 35.65 34.63 32.95 30.70 27.98 24.94 21.80 18.74 15.94
p-value 3.2e-06 5.1e-06 1.1e-05 2.9e-05 0.0001 0.0003 0.0013 0.0046 0.0141
F -value 513.27 125.95 54.08 28.97 17.44 11.28 7.67 5.43 3.97
p-value 0.0e+00 0.0e+00 9.4e-15 3.3e-11 1.4e-08 1.4e-06 4.7e-05 0.0007 0.0048

p-values. From this table, we can see that there is a strong agreement among the six
measures, where the strength of evidence varies depending on the chosen value of w.

Example 6.3 In this example a set of monthly data of four market indices is used
to illustrate the new weighted rank coefficient of concordance Cw, these indices are
the Standard and Poor (S&P), the Financial Times (FT), the Nikkei (Nik), and
the DAX index. Meintanis and Iliopoulos [14] used this data set to test the inde-
pendence of the four indices as well as of all combinations of three or two of them.
The sampling period was September 2001-December 2005, yielding a sample size of
n = 50 filtered returns (filtered by Meintanis and Iliopoulos [14] using ARMA(1,1)
process). Meintanis and Iliopoulos [14] found that these four indices and all com-



September 20, 2019 Journal of Applied Statistics WCC˙13092013˙website˙version

16 Tahani Coolen-Maturi

Table 19. Summary of the finance market indices

Min. Q1 Median Mean Q3 Max.

S&P -0.0970 -0.0215 -0.0015 0.0002 0.0261 0.0724
FT -0.0788 -0.0166 0.0045 0.0000 0.0159 0.0580

Nikkei -0.0981 -0.0303 -0.0063 -0.0002 0.0264 0.1513
DAX -0.0842 -0.0387 -0.0029 0.0003 0.0245 0.1385

Figure 3. The original data of the four market indices

Figure 4. The rank data of the four market indices

binations of three of them are highly dependent, where the most dependent triple
was found to be (S&P, DAX, FT) and the least dependent (S&P, FT, Nik). More-
over, all pairs of indices are also highly dependent, except for (FT, Nik), as the
most dependent pair was (S&P, DAX) and the least dependent pair was (FT, Nik)
followed by (S&P, Nik). Table 19 gives six summaries of these indices, namely their
minimum, first quartile, median, mean, third quartile and maximum.

Figures 3, 4 and 5 show the original data of the four indices (after ARMA(1,1)
filtering), the ranks of these data and the weighted ranks data with w = 0.9,
respectively. Since these indices are all calculated differently it make sense in order
to compare them to use the ranks instead of the data itself. Notice that higher
values (ranks) in Figure 4 are transformed to lower values (weighted ranks) in
Figure 5 and visa versa, e.g. rank 1 is transformed to 0.9 when using the weight
w = 0.9.

Table 20 gives the values of K, χ2
K = b(n− 1)K, T and χ2

T = b(n− 1)T and the
corresponding p-values, and the values of Cw at different values of w = 0.1(1)0.9
along with χ2

Cw
= b(n − 1)Cw and the corresponding p-values. We consider three

cases. In Case I we give the smallest observation the rank 1 to the largest ob-
servation the rank 50. In Case II we do the reverse, namely we give the largest
observation the rank 1 to the smallest observation the rank 50. Finally in Case III
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Figure 5. The weighted rank data with w = 0.9 of the four market indices

Table 20. Concordance coefficients of the four market indices

Case I Case II Case III

value χ2 value p-value value χ2 value p-value value χ2 value p-value

K 0.675 132.28 1.39e-09 0.675 132.28 1.39e-09 0.428 83.95 0.0014
T 0.705 138.19 1.97e-10 0.636 124.62 1.62e-08 0.336 65.82 0.0546
C0.1 0.400 78.44 4.78e-03 0.412 80.67 2.93e-03 0.189 37.01 0.8960
C0.2 0.442 86.64 7.35e-04 0.461 90.44 2.90e-04 0.202 39.60 0.8290
C0.3 0.486 95.34 8.22e-05 0.509 99.76 2.53e-05 0.215 42.13 0.7460
C0.4 0.532 104.25 7.28e-06 0.551 107.92 2.55e-06 0.227 44.45 0.6580
C0.5 0.577 113.01 5.74e-07 0.582 114.05 4.20e-07 0.239 46.78 0.5640
C0.6 0.618 121.18 4.77e-08 0.598 117.22 1.61e-07 0.254 49.73 0.4440
C0.7 0.653 127.94 5.63e-09 0.597 116.92 1.77e-07 0.276 54.11 0.2860
C0.8 0.675 132.25 1.40e-09 0.584 114.48 3.70e-07 0.307 60.22 0.1310
C0.9 0.688 134.87 5.94e-10 0.598 117.12 1.66e-07 0.348 68.28 0.0356

Table 21. Concordance coefficients of all 3 combinations of the market indices

(S&P, FT, Nik) (S&P, FT, DAX) (S&P, Nik, DAX) (FT, Nik, DAX)

K 0.645∗∗ 0.836∗∗ 0.715∗∗ 0.649∗∗

T 0.685∗∗ 0.854∗∗ 0.717∗∗ 0.695∗∗

C0.1 0.364 0.571∗∗ 0.344 0.587∗∗

C0.2 0.413 0.603∗∗ 0.378 0.621∗∗

C0.3 0.466∗ 0.640∗∗ 0.421 0.647∗∗

C0.4 0.521∗∗ 0.679∗∗ 0.470∗ 0.665∗∗

C0.5 0.575∗∗ 0.720∗∗ 0.525∗∗ 0.675∗∗

C0.6 0.623∗∗ 0.761∗∗ 0.579∗∗ 0.679∗∗

C0.7 0.658∗∗ 0.801∗∗ 0.630∗∗ 0.677∗∗

C0.8 0.669∗∗ 0.831∗∗ 0.672∗∗ 0.671∗∗

C0.9 0.664∗∗ 0.845∗∗ 0.711∗∗ 0.670∗∗

‘∗’ significant at 5% and ‘∗∗’ significant at 1%

we rank the absolute difference of the observations from the median for the corre-
sponding index, so the smallest absolute difference takes the rank 1 to the largest
absolute difference which takes the rank 50. From Table 20 we see that for Cases
I and II all concordance coefficients lead to rejection of the null hypothesis at sig-
nificance level 1%, so there is an agreement between the four market indices, both
when the ranks of the largest positive or negative values are considered. For Case
III we do not reject the null hypothesis of no agreement for all concordance coef-
ficients, except for K and C0.9 where we reject the null hypothesis at significance
level 1% and 5%, repectively.

Table 21 presents the same statistics for all combinations of three market indices.
These show significant agreement using all concordance coefficients T , K and Cw
except for the triple (S&P, FT, Nik) with w = 0.1, 0.2 and for the triple (S&P, Nik,
DX) with w = 0.1, 0.2, 0.3. Figures 6 and 7 show the original data (after filtering),
the ranks of these data and the weighted ranks data with w = 0.9, for the most
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Figure 6. The original data of the triple (S&P, FT, DAX), the ranks, and the weighted ranks with w = 0.9

Figure 7. The original data of the triple (S&P, FT, Nik), the ranks, and the weighted ranks with w = 0.9

Figure 8. Scatter plot of all possible pairs of the market indices for the original data

Table 22. Rank correlation coefficients for all pairs of the market indices

(S&P, FT) (S&P, Nik) (S&P, DAX) (FT, Nik) (FT, DAX) (Nik, DAX)

rs 0.742∗∗ 0.414∗∗ 0.824∗∗ 0.245∗ 0.696∗∗ 0.478∗∗

rT 0.751∗∗ 0.459∗∗ 0.801∗∗ 0.372∗∗ 0.792∗∗ 0.465∗∗

R0.1 0.087 -0.023 -0.005 0.077 0.990∗∗ 0.076
R0.2 0.207 -0.015 0.049 0.169 0.960∗∗ 0.167
R0.3 0.331∗ 0.013 0.134 0.253∗ 0.916∗∗ 0.245∗

R0.4 0.450∗∗ 0.067 0.245∗ 0.326∗ 0.863∗∗ 0.304∗

R0.5 0.553∗∗ 0.148 0.373∗∗ 0.385∗∗ 0.814∗∗ 0.339∗∗

R0.6 0.634∗∗ 0.248∗ 0.510∗∗ 0.423∗∗ 0.783∗∗ 0.348∗∗

R0.7 0.681∗∗ 0.350∗∗ 0.645∗∗ 0.428∗∗ 0.780∗∗ 0.338∗∗

R0.8 0.695∗∗ 0.428∗∗ 0.756∗∗ 0.389∗∗ 0.790∗∗ 0.341∗∗

R0.9 0.714∗∗ 0.453∗∗ 0.821∗∗ 0.322∗ 0.769∗∗ 0.426∗∗

‘∗’ significance at 5% and ‘∗∗’ significance at 1%

and least dependent triples according to Meintanis and Iliopoulos [14], i.e. (S&P,
FT, DAX) and (S&P, FT, Nik), respectively. We can see from the third plot in
Figures 6 and 7, how the transformation, using the weighted ranks, leads to focus
on the top ranks.

Now let us consider the 6 possible pairwise comparisons of these market indices,
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Figure 9. Scatter plot of all possible pairs of the market indices for the ranked data

Figure 10. Scatter plot of all possible pairs of the market indices for the weighted ranked data, where
w = 0.9

(S&P, FT), (S&P, Nik), (S&P, DAX), (FT, Nik), (FT, DAX) and (Nik, DAX).
Figures 8, 9 and 10 show the matrix of all possible pairs of market indices for
the original data (after filtering), the ranks of these data and the weighted ranks
data with w = 0.9, respectively. We can see from these figures that the pair (S&P,
DAX) (respectively, (FT,Nik)) is more (respectively, less) in rank agreement, which
coincides with the results obtained by Meintanis and Iliopoulos [14]. Table 22
presents the Spearman’s rank correlation coefficient rs, top-down rank correlation
rT [6] and the weighted rank correlation Rw in (3) at different values of w. In order
to test the null hypothesis of independence against the alternative of a positive
correlation, the critical value z1−α/

√
n− 1 should be used [6, 8, 13], that is all the

rank correlation coefficients will be compared with 0.235 and 0.332 for significance
level 5% and 1%, respectively. Table 22 shows that for the pair (FT, DAX) we
always reject the null hypothesis of independent, so there is evidence of positive
correlation between these two indices. Spearman’s rank correlation coefficient rs
and top-down rank correlation rT always indicate positive correlation for all 6 pairs
while for Rw this varies depending on the value of w. For example, we do not reject
the null hypothesis of independence for the pairs (S&P, FT), (FT, Nik) and (Nik,
DAX) for w = 0.1 and w = 0.2. In addition we do not reject the null hypothesis
for the pair (S&P, Nik) (respectively, (S&P, DAX)) for any w ≤ 0.5 (respectively,
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w ≤ 0.3). We can also notice that the results from Spearman’s rank correlation
coefficient rs and top-down rank correlation rT are close to the results from the
weighted rank correlation R0.9. Finally, the negative correlation values for the two
pairs (S&P, Nik) and (S&P, DAX), using the weighted rank correlation Rw with
very small values of w, indicate some disagreement between these indices in the top
rankings, yet these values are very small and close to zero, so there is no statistical
evidence that there is a negative correlation between these indices.

7. Conclusion

In this paper we have presented a new weighted rank coefficient of concordance
when there are b > 2 independent sources of rankings and the focus is on agreement
of the top rankings. We also presented the limiting distribution of this weighted
rank coefficient of concordance under the null hypothesis of no agreement between
the rankings. We also carried out an extensive simulation study to compare the
performance of the proposed weighted concordance coefficient with Kendall’s and
the top-down concordance coefficients. The simulation study showed that the pro-
posed weighted concordance coefficient performs very well in the directional rank
agreement scenario especially for large values of the weight w. We illustrated the
use of the new weighted rank coefficient of concordance via examples including an
example of financial markets indices. There is no particular criterion for the choice
of the weight w, its influence depends on the number of objects and to which extend
one wants to focus on the top rankings.

Appendix

Proof [Proof of the relationship given in (8):] Let Ravw be the mean value of the
weighted rank correlation coefficients between the

(
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)
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Proof [Proof of Theorem 4.1:] The general form of the rank statistic for random
blocks, Qb, and its limiting distribution is given by the following theorem.

Theorem .1 [4, p.173]
The number of observations in each block will be fixed and denoted by n. The scores
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a(i), 1 ≤ i ≤ n, will also be fixed and arbitrary but not constant. For b → ∞, the
number of blocks b will tend to ∞, the statistic

Qb =
n− 1

b

[
n∑
i=1

(a(i)− ā)2

]−1 n∑
i=1

 b∑
j=1

a(Rji)− b ā

2

(1)

has asymptotically the χ2-distribution with n− 1 degrees of freedom.

From (5)-(7), the weighted rank concordance coefficient Cw can be written as a
function of the general form of the rank statistic for random blocks in (1), as

Cw =

[
n∑
i=1

(
bwi −

b
√
a1

n

)2
]−1 n∑

i=1

(
w·i −

b
√
a1

n

)2

=
Qb

b(n− 1)

where a(i) = wi,
∑n

i=1 a(i) =
∑n

i=1w
i = a2,

∑b
j=1 a(Rji) =

∑b
j=1w

Rji = w.i and

ā =
√
a1/n.

�

Proof [Proof of formula (9):] This is straightforward using the F statistic from the
classical analysis of variance table, where the source of variation (SST ) can be
partitioned into three components; between rows (SSR), between columns (SSC)
and errors (SSE). Then,

SST =

n∑
i=1

b∑
j=1

(
wRji −

√
a1

n

)2

=

n∑
i=1

b∑
j=1

w2Rji − b a1

n

SSC =
n∑
i=1

b∑
j=1

(
w·i
b
−
√
a1

n

)2

=
1

b

n∑
i=1

w2
·i −

b a1

n

SSE = SST − SSC =
b∑

j=1

n∑
i=1

(
wRji − w·i

b

)2
=

n∑
i=1

b∑
j=1

w2Rji − 1

b

n∑
i=1

w2
·i

There is no variation between rows here, so SSR = 0, since the row sums are all
equal. Then, the following statistic has F distribution with n−1 and (b−1)(n−1)
degrees of freedom,

F =
MSC

MSE
=

(b− 1)(n− 1)SSC

(n− 1)SSE
=

(b− 1)Cw
1− Cw

The distribution of this statistic can be used as an approximation to the exact
distribution of Cw, as shown by Iman and Davenport [7] for the Friedman test in
the case of ties. Thus Cw can be written as

Cw =
F

(b− 1) + F
=

SSC

SSC + SSE
=
SSC

SST

�
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