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Abstract

In practical applications, Bayesian classification methods have been suc-
cessfully employed. The Näıve Bayes algorithm (NB) is a quick, successful,
and well-known Bayesian classification method. The Näıve Credal Classifier
(NCC) is a version of NB that outputs imprecise predictions (sets of class
values). NCC was also adapted for considering classification error costs.
Such an adaptation is the only Bayesian method for Imprecise Classification
proposed so far that considers misclassification costs. This paper presents
a Bayesian algorithm for Imprecise Classification that weights the instances
using the misclassification costs in such a way that the importance of an in-
stance increases as the error cost of its class value is higher. We highlight that
our proposal may provide more informative and intuitive outcomes than the
existing cost-sensitive NCC. We experimentally show that our new proposed
method improves the existing cost-sensitive NCC. Moreover, we highlight
that our imprecise classifier has a processing time equivalent to the original
NB algorithm for precise classification, which has been successfully applied
to very large and real datasets. This is a crucial point in favor of our proposal
because of the huge amount of data in many application areas nowadays.
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1. Introduction

Bayesian classification methods constitute a simple and e↵ective approach
to the classification task. Actually, they have been successfully used in prac-
tical applications such as cerebral stage prediction, [1] tra�c risk manage-
ment [2], isotopologue detection [3], or android malware detection [4]. Within
Bayesian classification methods, Näıve Bayes (NB) [5] is a quick, successful,
and well-known algorithm. It starts from the näıve assumption, which as-
serts that “all predictive features are independent given the class variable”
[5]. This assumption is not always realistic. In spite of its simplicity and
unrealistic assumption, the NB method has performance comparable with
more complex algorithms, especially when there is no high correlation be-
tween the features [6, 7, 8]. Indeed, NB has been successfully employed in
practice [9, 10, 11, 12].

Classifiers usually predict, for a given instance, a unique class state. Nev-
ertheless, sometimes, it may be more suitable that classifiers output a set of
class states as the available information is not su�cient for predicting a single
one, which is known as Imprecise Classification (IC) [13]. If an instance is
imprecisely classified, then a set of class values is output, constituted by those
class states that are not defeated by another state via a dominance criterion.
The obtained set of values of the class variable is called the non-dominated
states set.

The only Bayesian method for IC proposed so far is the Näıve Credal
Classifier (NCC) [13, 14], which employs the näıve assumption and the Im-
precise Dirichlet Model (IDM) [15], a formal probability intervals model, to
provide imprecise predictions. Indeed, NCC adapts the NB algorithm for IC.
NCC has been successfully employed in practical applications [16, 17, 18].

Precise and imprecise classification methods tend to minimize the number
of misclassified instances. This is logical when all classification errors are
equally important. Nonetheless, some errors often yield higher costs than
others in practical applications. For instance, in medical diagnosis, predicting
that a patient is ill when he does not have any disease probably involves lower
cost than erroneously predicting that a patient does not have any disease
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[19, 20, 21, 22]; in credit fraud detection, the cost of a fraudulent credit card
predicted as normal might be considerably higher for banks and financial
institutions than the cost of a legal credit card predicted as fraudulent [23,
24, 25]; in software defect prediction, predicting that a non-defective module
is defective may cause lower cost than predicting that a defective module is
non-defective [26, 27, 28, 29].

Hence, classifiers that consider error costs, known as cost-sensitive classi-
fiers, have been proposed, such as cost-sensitive Neural Networks [30, 31, 21],
cost-sensitive Decision Trees [32, 33, 34], and cost-sensitive Näıve Bayes
[35, 36, 37]. An evaluation measure for precise cost-sensitive classification
has to take the misclassification costs into account, and an evaluation mea-
sure for cost-sensitive IC must consider the costs of erroneous classifications
and the informativeness of the predictions, which is related to the cardinali-
ties of the predicted sets of class states.

The NCC method was adapted for cost-sensitive scenarios [38]. This
adaptation is called the cost-sensitive Näıve Credal Classifier (CS-NCC). As
NCC, for classifying an instance, CS-NCC estimates an interval score for
each class value using the prior probability interval of such a class value,
the probability interval of each attribute value given that class value, and
the näıve assumption. Then, CS-NCC estimates risk intervals for the class
values by considering the estimated probability interval scores and the mis-
classification costs. Finally, CS-NCC applies a dominance criterion to such
risk intervals for obtaining the set of predicted class values. So far, CS-NCC
is the only Bayesian method for cost-sensitive IC.

CS-NCC employs the IDM for the estimation of the probability intervals.
“This model makes previous assumptions about the data by means of a
parameter. In classification, the optimal value of the IDM parameter may
be di↵erent for each dataset” [39]. The Non-Parametric Predictive Inference
Model (NPI-M) [40, 41] solves this drawback. This model is non-parametric
and does not make prior assumptions. ”The NPI-M performs equivalently
to the IDM with the best selection of the parameter in imprecise and precise
classification” [42, 43].

In this research, a Bayesian method for cost-sensitive Imprecise Classifica-
tion, called the Weighted Näıve Credal Classifier (Weighted-NCC), is devel-
oped. Our proposed algorithm computes instance weights utilizing the costs
of misclassifying the class values. For classifying an instance, a probability
interval score is computed for each class value using the instance weights, the
NPI-M, and the näıve assumption. Then, the non-dominated states set is
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obtained through a dominance criterion on the computed intervals. We high-
light that our proposal may lead to more intuitive and informative outputs
than the existing CS-NCC.

We check the performance of Weighted-NCC over CS-NCC via an experi-
mental study. Such a study reveals that CS-NCC precisely classifies more in-
stances than Weighted-NCC, although the misclassification costs for precise
predictions are higher with CS-NCC; for imprecise predictions, Weighted-
NCC predicts fewer class states than CS-NCC even though the misclassifica-
tion costs are higher with Weighted-NCC; concerning the whole performance,
Weighted-NCC performs equivalently or significantly better than CS-NCC.
Furthermore, it is highlighted that the processing times of CS-NCC and
Weighted-NCC are equivalent to the original NB algorithm.

This paper is arranged as follows: Section 2 describes the Imprecise Clas-
sification task, the Imprecise Dirichlet Model, the Non-Parametric Predictive
Inference Model, and the existing cost-sensitive Näıve Credal Classifier. Our
proposed Weighted Näıve Credal Classifier is presented in Section 3. In Sec-
tion 4, our experimental analysis is detailed. Section 5 concludes the paper.
For ease of reference, Table 1 shows a list of symbols and notations utilized
in this paper.

2. Background

2.1. Imprecise Classification

The Imprecise Classification task (IC) [13] aims to predict the set of
possible class values for an instance described via a set of attributes.

Formally, IC starts from an attribute set {X1
, X

2
, . . . , X

n} and a class
variable C. Suppose that Dom(X i) is the domain of the attribute X i

, 8i =
1, 2, . . . , n, and {c1, c2, . . . , cK} are the possible values of C.

The goal of IC is to learn a function h : Dom(X1) ⇥ Dom(X2) . . . ⇥
Dom(Xn) ! 2{c1,c2,...,cK} that, for a given instance described through an at-
tribute vector x, outputs the set of possible class values for such an instance,
namely h(x).

IC di↵ers from standard classification, which always outcomes a unique
class state. In many practical applications, IC makes more sense than stan-
dard classification because the available information may not be su�cient
for making precise predictions and, thus, it might be too risky to point out
a single class value.

Example 1 illustrates the importance of IC.
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Table 1: List and symbols and notations employed in this work.
Symbol Description

X Categorical variable
{x1, x2, . . . , xt} Set of possible values of X.

N Number of instances.
n(xi) Number of occurrences of xi in the sample.
s IDM parameter.

PIDM IDM credal set.
C class variable.

{c1, c2, . . . , cK} Set of class values.
X

1
, X

2
, . . . , X

n Set of attributes.�
x
i
1, x

1
2, . . . , x

i
ti

 
Set of possible values of the attribute X

i.
n(xi

ri,k
) Number of training instances such that C = ck and X

i = x
i
ri .

P(C) Local credal set on C.
P(X i | ck) Credal set on X

i conditioned on C = ck.
P(ck, X1

, . . . , X
n) Set of joint probability distributions.

P (ck), P (ck) Lower and upper probability scores on ck.
R(ck), R(ck) Lower and upper risks on ck.

Ic A-NPI-M probability intervals on C.
P(Ic) A-NPI-M credal set on C.

(p̂(c1), p̂(c2), . . . , p̂(cK)) Probability distribution that yields the A-NPI-M maximum entropy.
(n̂(c1), n̂(c2), . . . , n̂(cK)) Arrangement that leads to the A-NPI-M maximum entropy.

mij Cost of predicting ci when the real class value is cj.
Cost(j) Cost corresponding to the class value cj.

w1, w2, . . . , wj Instance weights.
Wj Sum of weights for cj.
W Total sum of weights.

n
WCC
d (x1

r1 , x
2
r2 , . . . , x

K
rK
) Non-dominated states set predicted by Weighted-NCC.

Example 1. Suppose that C represents the disease that a patient can have.
Let us assume that there are five possible diseases {c1, c2, c3, c4, c5}, the dis-
ease c1 is flu, and the disease c2 is COVID-19. It should be noted that c1 and
c2 could be determined by similar values of the attributes of the patient. How-
ever, for an old person with health problems, diagnosing c1 or c2 might lead
to important di↵erences in the death risk due to the probability of COVID
given the features of the patient.

In the previous scenario, an imprecise classifier probably outputs {c1, c2},
discarding the other diseases. A doctor, with this information, can make
stronger tests that allow having more reliable information for deciding for
one disease or the other one, or make a more hybrid treatment for the patient
to improve in every situation, whenever it is possible.

If we had a precise classifier that always chooses the first class value in
order (in this case, c1), the doctor would directly carry out the correspond-
ing treatment. This may imply a too high risk since predicting flu when
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the patient has COVID-19 probably has worse consequences than predicting
COVID-19 when the correct disease is flu.

2.2. Imprecise probability models

Here, we describe two imprecise probability models for probabilistic in-
ferences about a categorical attribute. Let X be a variable that takes values
in {x1, x2, . . . , xt}. Let us assume that it is disposed of N identically dis-
tributed and independent outcomes about X. Let n(xi) denote the number
of occurrences of xi in the sample, 8i = 1, 2, . . . , t.

2.2.1. The Imprecise Dirichlet Model
The Imprecise Dirichlet Model (IDM) [15] estimates that the probability

that X = xi belongs to the following interval:

Ii =


n(xi)

N + s
,
n(xi) + s

N + s

�
, 8i = 1, 2, . . . , t. (1)

where s > 0 is a given parameter of the model.
The probability intervals determined by Equation (1) yield the following

credal set1 on X [44]:

PIDM(X) = {p | p(xi) 2 Ii, 8i = 1, 2, . . . , t} . (2)

The parameter s is essential in the IDM. We may observe that IDM
intervals are narrower as the s value is lower. In consequence, a higher value
of s implies a higher imprecision degree estimated in the sample. Walley [15]
suggests s = 1 and s = 2, and recommends s = 1.

2.2.2. Non-Parametric Predictive Inference Model
The Non-Parametric Predictive Inference Model (NPI-M) [40, 41] employs

a probability wheel as a latent representation of the sample. On that wheel,
each outcome is represented by a radial line. The wheel is partitioned into N

slices equally sized. Lines corresponding to the same value must be placed
next to each other. “The NPI-M is based on the circular-A(N) assumption,
according to which the next observation falls into any slice with the same
probability 1

N ” [41]. The value of X represented by each slice has to be

1A credal set is a closed and convex set of probability distributions.
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decided. When two lines corresponding to the same value bound a slice, that
slice has to represent such a value. When a slice is bounded by two lines
associated with di↵erent values, such a slice can represent any of them, or
any non-observed value.

For a given C ✓ {x1, x2, . . . , xt}, “the NPI-M determines a probability
interval in which the lower (upper) probability is computed by the minimum
(maximum) fraction of slices, between all possible configurations of the wheel,
that can be assigned to the values in C” [41].

Example 2. [41] Suppose that there is an attribute called Color that takes
values in
{Y ellow(Y ), Green(G), White(W ), Blue(B), Red(R), Other(O)}.

Suppose that we have 9 outcomes about this variable with the following
frequencies:

n(G) = 3, n(B) = 3, n(Y ) = 2, n(R) = 1, n(W ) = n(O) = 0.

Let us assume that it is required to calculate the NPI-M probability interval
of {B,R}. For the lower probability, the aim is to obtain a configuration
of the wheel that assigns the minimum possible number of slices to B and
R. With the available observations, it is possible to assign to B just the
slices bounded by two lines that represent B, and it is not necessary that any
slice represents R. In this way, Figure 1 allows us to see a configuration
appropriate for the NPI-M lower probability of {B,R}. The color assigned
to each slice is drawn in the slice. In such a configuration, none slice is
assigned to R and just two slices correspond to B. It is easy to observe that
the NPI-M lower probability of {B,R} is equal to 2

9 .

B
BB

R

Y

Y G
G

G

Figure 1: Configuration suitable for the lower probability of {B,R}.

For the NPI-M upper probability, we aim to obtain a configuration in
which slices bounded by a line corresponding to B represent B and slices
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bounded by lines representing R are assigned to R. In addition, we can
separate the lines representing R and B by lines associated with another
color for assigning as many slices as possible to R and B. A configuration
that satisfies the mentioned points is shown in Figure 2. Hence, the NPI-M
upper probability of {B,R} is 6

9 .

B
BB

G

G

G R
Y

Y

Figure 2: Configuration suitable for the upper probability of {B,R}.

As proved in [45], the NPI-M probability intervals for singletons are co-
herent and produce a credal set on X. In addition, for each subset of values,
the NPI-M extreme probabilities can be computed from such intervals. [45].
However, “there can be probability distributions compatible with the inter-
vals for singletons but not with the NPI-M.” [45].

If all probability distributions consistent with the aforementioned inter-
vals are considered, then an approximate model is derived. Such a model is
called the Approximate Non-Parametric Predictive Inference Model (A-NPI-
M). It is associated with “the convex hull of the set of probability distribu-
tions compatible with the NPI-M” [45]. Thereby, the A-NPI-M considerably
simplifies the NPI-M since it evades notable constraints. In classification,
the A-NPI-M and the NPI-M obtain equivalent results [42]. Considering the
previous points, the A-NPI-M is employed here.

2.3. Cost-sensitive Näıve Credal Classifier

Let C denote the class variable and {c1, c2, . . . , cK} the class values or
states. Suppose that there are n attributes X1

, X
2
, . . . , X

n, where X
i takes

values in
�
x
i
1, x

i
2, . . . , x

i
ti

 
, 8i = 1, 2, . . . , n.

For each class value, the Näıve Credal Classifier (NCC) [13], and its adap-
tation for cost-sensitive scenarios (CS-NCC) [38], estimate the probability
intervals in the same way.
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The basis of NCC is the näıve assumption, which states that, “given the
class variable, all attributes are independent” [5]:

P
�
C = cj | X1 = x

1
r1 , X

2 = x
2
r2 , . . . , X

n = x
n
rn

�
=

P
�
C = cj, X

1 = x
1
r1 , X

2 = x
2
r2 , . . . , X

n = x
n
rn

�

P
�
X1 = x1

r1 , X
2 = x2

r2 , . . . , X
n = xn

rn

� /

P (C = cj)P
�
X

1 = x
1
r1 , X

2 = x
2
r2 , . . . , X

n = x
n
rn | C = cj

�
=

P (C = cj)
nY

i=1

P
�
X

i = x
i
ri | C = cj

�
,

8ri = 1, 2 . . . , ti, i = 1, 2, . . . , n, j = 1, 2, . . . , K.

Let us assume that there are N training instances. Let n(ck) (n
�
x
i
ri

�
)

denote the number of occurrences of ck (xi
ri) in the training set,

8k = 1, 2, . . . , K, ri = 1, . . . , ti, i = 1, 2, . . . , n.
NCC considers a credal set on C, namely P(C). Also, for each attribute

X
i and class value ck, NCC considers a credal set on X

i conditioned on
C = ck, P(X i | ck). “Such credal sets are known as local credal sets” [13].

Hence, for each class value ck, a set of joint probability distributions
P (ck, X1

, . . . , X
n) is derived by considering all combinations on the local

credal sets and the näıve assumption:

P
�
ck, X

1
, . . . , X

n
�
=

(
pc(ck)

nY

i=1

pik | pc 2 P (C) , pik 2 P
�
X

i | ck
�
)
. (3)

Thus, only the local credal sets are fundamental for building the NCC.
In the original NCC, the IDM was used to obtain the local credal sets. In
consequence, the local credal set on C is determined as follows:

P (C) =

⇢
p | n (ck)

N + s
 p(ck) 

n (ck) + s

N + s
, 8k = 1, 2, . . . , K

�
, (4)

s being the IDM parameter.
Likewise, for each attribute and class value, the IDM credal set on that

attribute conditioned on such a class value is given by:

P
�
X

i | ck
�
=

(
p |

n
�
x
i
ri,k

�

n (ck) + s
 p(xi

ri | ck) 
n
�
x
i
ri,k

�
+ s

n (ck) + s
, 8ri = 1, . . . , ti

)
,

(5)
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n
�
x
i
ri,k

�
being the number of training instances such that

�
C = ck ^X

i = x
i
ri

�
,

8i = 1, 2, . . . , n, k = 1, 2, . . . , K.
In order to classify an instance for whichX

i = x
i
ri , with ri 2 {1, 2, . . . , ti} ,

8i = 1, 2, . . . , n, NCC estimates probability intervals from the aforementioned
credal sets.

We consider, 8k = 1, 2, . . . , K and i = 1, 2, . . . , n:

p(ck) = min
p2P(C)

{p(ck)} , p(ck) = max
p2P(C)

{p(ck)} ,

p(xi
ri | ck) = min

pik2P(Xi|ck)

�
pik(x

i
ri | ck)

 
,

p(xi
ri | ck) = max

pik2P(Xi|ck)

�
pik(x

i
ri | ck)

 
.

We may note that, 8k = 1, 2, . . . , K:

min
pc2P(C),pik2P(Xi|ck)

(
pc(ck)

nY

i=1

pik(x
i
ri | ck)

)
= p(ck)

nY

i=1

p(xi
ri | ck),

max
pc2P(C),pik2P(Xi|ck)

(
pc(ck)

nY

i=1

pik(x
i
ri | ck)

)
= p(ck)

nY

i=1

p(xi
ri | ck).

Consequently, NCC estimates the following lower and upper probability
scores:2

P (ck) = p(ck)
nY

i=1

p(xi
ri | ck), P (ck) = p(ck)

nY

i=1

p(xi
ri | ck), 8k = 1, 2, . . . , K.

(6)
Let M be the matrix of misclassification costs (K rows and K columns),

in which mij denotes the cost of predicting ci when the class state of an
instance is cj3.

The adaptation of NCC for error costs (CS-NCC) utilizes a criterion re-
sulting from the Bayes decision rule, according to which “the value of the

2These scores are the lower and upper probability values resulting from the lower and
upper probability values on the local credal sets and the näıve assumption, but, indeed,
they are proportional to lower and upper probability functions.

3The matrix of error costs is predetermined, and its values can be provided by an
expert. For example, an expert in bank loans can provide the costs of not giving a loan
and giving a loan that the customer does not return.
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class variable with the lowest expected risk is predicted” [5], that is, the class
value ct verifying:

ct = arg min
i=1,2,...,K

R(ci), (7)

where

R(ci) =
KX

j=1

mij ⇥ P (C = cj), (8)

So, CS-NCC computes the lower and upper risks using the probability
interval scores determined via Equation (6):

R(ci) =
KX

j=1

mij ⇥ P (cj), R(ci) =
KX

j=1

mij ⇥ P (cj), 8i = 1, 2, . . . , K. (9)

On these risk intervals, CS-NCC applies a dominance criterion for obtain-
ing the non-dominated states set. That criterion is called strong dominance,
and establishes that “cj dominates ci if, and only if, R(cj)  R(ci), 8i, j 2
{1, 2, . . . , K}. Strong dominance is the dominance criterion most employed
in the literature” [46].

Therefore, for a given instance that satisfiesX i = x
i
ri , with ri 2 {1, 2, . . . , ti}

8i = 1, 2, . . . , n, the set of class values output by CS-NCC is given by:
(
ci |

KX

j=1

mij ⇥ P (cj) <
KX

j=1

mkj ⇥ P (cj), 8k = 1, 2, . . . , K

)
, (10)

where P (cj) and P (cj) are computed via Equation (6).

3. Weighted Näıve Credal Classifier

The Weighted Näıve Credal Classifier (Weighted-NCC), proposed here,
takes the misclassification costs into account by considering instance weights.
Such weights depend on the costs of incorrectly classifying the corresponding
class values.

We utilize the notation of Section 2.3. The following formula is employed
to compute the misclassification cost associated with the class state cj [47]:

Cost(j) =
KX

i=1

mij, 8j = 1, 2, . . . , K. (11)
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It should be noted that the cost corresponding to cj is obtained via the
sum of the costs of predicting, for an instance with class state cj, another
class value.

We consider the A-NPI-M probability intervals on C on the training set:

IC =

⇢
max

✓
n(cj)� 1

N
, 0

◆
,max

✓
n(cj)� 1

N
, 0

◆�
, j = 1, 2, . . . , K

�
.

(12)
From this set of intervals, the following credal set is derived:

P (IC) =

⇢
p | max

✓
n(cj)� 1

N
, 0

◆
 p(cj)

 max

✓
n(cj)� 1

N
, 0

◆
, 8j = 1, 2, . . . , K

�
.

(13)

For quantifying the uncertainty-based information about C, the maximum
entropy on P (IC) is a suitable uncertainty measure as it satisfies all funda-
mental properties [48].

Hence, we consider the arrangement of the class frequencies that yields
the maximum entropy on P (IC), namely (n̂(c1), n̂(c2), . . . , n̂(cK)). Let
(p̂(c1), p̂(c2), . . . , p̂(cK)) be the probability distribution for which the max-
imum entropy on P (IC) is reached. Then, n̂(cj) = N ⇥ p̂(cj), 8j =
1, 2, . . . , K. For computing that arrangement, the method proposed in [49]
for the maximum entropy with the A-NPI-M is employed.

The weight of an instance with class state cj is given by:

wj =
N ⇥ Cost(j)

PK
i=1 n̂(ci)⇥ Cost(i)

, (14)

Cost(j) being the cost of misclassifying an instance for which C = cj, deter-
mined via Equation (11), 8j = 1, 2, . . . , K.

Let Wj denote the sum of weights for the class state cj: Wj = wj ⇥
n(cj), 8j = 1, 2, . . . , K. Let W be the total sum of weights: W =

PK
j=1 Wj.

Weighted-NCC computes the following A-NPI-M probability intervals,
related to the weighted training class frequencies:

IW =
�⇥
lwj , uwj

⇤ 
, (15)

where, 8j = 1, 2, . . . , K:

lwj = max

✓
Wj � 1

W
, 0

◆
, uwj = min

✓
Wj + 1

W
, 1

◆
. (16)
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The following credal set is associated with these intervals:

Pw(C) =
�
p | p(cj) 2

⇥
lwj , uwj

⇤
, 8j = 1, 2, . . . , K

 
. (17)

Let us assume that we have n attributes X
1
, X

2
, . . . , X

n and that X
i

takes values in
�
x
i
1, x

i
2, . . . , x

i
ti

 
. Suppose that we aim to classify an instance

that satisfies X i = x
i
ri , with ri 2 {1, 2, . . . , ti} 8i = 1, 2, . . . , n.

Weighted-NCC considers the local credal set on C given by Equation (17).
Concerning the local credal sets corresponding to the attributes conditioned
on the class values, it considers the sum of weights of the training instances
that have an attribute value and a certain value of the class variable:

Wxi
ri,j

= n
�
x
i
ri,j

�
⇥ wj, (18)

n
�
x
i
ri,j

�
being the number of training instances such that C = cj and X

i =
x
i
ri , 8i = 1, 2, . . . , n, j = 1, 2, . . . , K.
Let us denote:

lxi
ri
,wj

= max

 
Wxi

ri,j
� 1

Wj
, 0

!
, uxi

ri
,wj

= min

 
Wxi

ri,j
+ 1

Wj
, 1

!
,

8i = 1, 2, . . . , n, j = 1, 2, . . . , K.

(19)

Weighted-NCC considers the following credal set on X
i conditioned on

C = cj:

Pwj ,Xi(X i | cj) =
n
p | p(xi

ri) 2
h
lxi

ri
,wj

, uxi
ri
,wj

i
, 8i = 1, 2, . . . , n

o
. (20)

Hence, Weighted-NCC considers, for each class value cj, the set of proba-
bility distributions that derives from the näıve assumption and from making
all possible combinations on the local credal set on C, defined in Equation
(17), and the local credal sets on the attributes conditioned on the class
values, defined in Equation (20):

Pwj

�
cj, X

1
, . . . , X

n
�
=

(
pc(cj)

nY

i=1

pij | pc 2 Pw (C) , pij 2 Pwj ,Xi

�
X

i | cj
�
)
.

(21)
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We may deduce that, 8j = 1, 2, . . . , K:

min
pc2Pw(C), pij2Pwj,X

i (Xi|cj)

(
pc(cj)

nY

i=1

pij(x
i
ri | cj)

)
= lwj ⇥

nY

i=1

lxi
ri
,wj

,

max
pc2Pw(C), pij2Pwj,X

i (Xi|cj)

(
pc(cj)

nY

i=1

pij(x
i
ri | cj)

)
= uwj ⇥

nY

i=1

uxi
ri
,wj

.

In consequence, the probability interval scores computed by Weighted-
NCC for each class state are given by:

Pwj
(cj) = lwj ⇥

nY

i=1

lxi
ri
,wj

, Pwj(cj) = uwj ⇥
nY

i=1

uxi
ri
,wj

, 8j = 1, 2, . . . , K.

(22)
The stochastic dominance criterion is applied on these intervals for ob-

taining the non-dominated states set. It is the strongest dominance criterion
on probability intervals and the most employed in these situations [46]. The
stochastic dominance criterion states that “cj dominates ck if, and only if,
Pwj

(cj) � Pwk
(ck)” [46], 8j, k = 1, 2, . . . , K.

Thus, for an instance that satisfies X i = x
i
ri , 8i = 1, 2, . . . , n, the set of

class values predicted by Weighted-NCC is determined as follows:

n
WCC
d (x1

r1 , x
2
r2 , . . . , x

n
rn) =

(
ck | uwk

⇥
nY

i=1

uxi
ri
,wj

>

lwj ⇥
nY

i=1

lxi
ri
,wj

, 8j = 1, 2, . . . , K

)
,

(23)

where lwj and uwj are given by Equation (16), and lxi
ri
,wj

and uxi
ri
,wj

by

Equation (19), 8i = 1, 2, . . . , n, j = 1, 2, . . . , K.
Algorithm 1 summarizes Weighted-NCC.

3.1. Time complexity of Weighted-NCC

Our procedure needs to obtain an interval with extreme values similar to
the values used in the NB classifier. We also need to use a matrix about the
cost of errors with dimension K ⇥K, K being the number of class values.

The extreme values of the intervals have the same complexity of calcu-
lus as the ones corresponding to the NB classifier. NB has the computa-
tional complexity O(nK), where n is the number of predictive attributes
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Procedure Weighted-NCC(training class frequencies
(n(c1), n(c2), . . . , n(cK)), attribute frequencies
n
�
x
i
ri,j

�
, i = 1, 2, . . . , n, j = 1, 2, . . . , K), instance to classify

such that X i = x
i
ri

Compute the instance weights via Equation (14)
Compute the A-NPI-M probability intervals associated with the
weighted training class frequencies (Equation (16)) and its
corresponding credal set, Pw(C) (Equation (17))
for i = 1 to n do

for j = 1 to K do
Consider the credal set on X

i conditioned on C = cj,
Pwj ,Xi(X i | cj), computed through Equation (20)

end
end
for j = 1 to K do

Compute the set of joint probability distributions
Pwj (cj, X

1
, . . . , X

n) via Equation (21)
end
for j = 1 to K do

Compute the lower and upper scores for cj, Pwj
(cj) and Pwj(cj),

by means of Equation (22)
end
Determine the non-dominated states set, nWCC

d (x1
r1 , x

2
r2 , . . . , x

n
rn), via

Equation (23)
return n

WCC
d (x1

r1 , x
2
r2 , . . . , x

n
rn)

Algorithm 1: Summary of our proposed Weighted-NCC method.
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[50]. Hence, our procedure has a computational complexity of O(nK2). We
must remark that the K ⇥K values of the matrix of error costs constitute a
set of fixed (constant) and previously known values.

NB is a very quick procedure that can be used in very large real datasets.
Due to the similar complexity of our algorithm, it can be stated that our new
imprecise procedure can be used in a similar way. The experiments related
to processing time, carried out in Section 4.3, corroborate this issue.

3.2. Why our proposed cost-sensitive NCC?
The main di↵erences of our proposed Weighted-NCC versus the existing

CS-NCC can be summarized as follows:

• The existing CS-NCC uses the IDM to compute the probability inter-
vals for the class variable and the probability intervals of the attribute
values given the class values. In contrast, Weighted-NCC employs the
A-NPI-M to compute such extreme probabilities. As explained before,
the A-NPI-M is more suitable than the IDM because it does not require
the choice of a model parameter.

• Our proposed Weighted-NCC considers a weight for each training in-
stance based on the cost of incorrectly classifying its class value. Thereby,
for estimating the extreme probabilities, the larger the misclassification
cost of a class state, the higher the importance of an instance with that
class state.

Nonetheless, CS-NCC computes all lower and upper probability scores
by assuming the same importance for all instances. Then, for each class
state, CS-NCC estimates a risk interval based on the costs of outputting
such a class value and the probability interval scores of the other class
values. Consequently, the interval probability score estimated for that
class state is not considered for computing the corresponding risk inter-
val. The same happens with the misclassification cost associated with
that class value.

Hence, we could say that the outcomes of Weighted-NCC may be more
informative than the ones of CS-NCC. Example 3 illustrates this issue.

• Also, in some cases, CS-NCC makes precise predictions when it might
be more intuitive to predict more than one class value. This point
is shown in Example 4, where this drawback is mitigated with our
developed Weighted-NCC.
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Example 3. Let us assume that there are four possible values of the class
variable {c1, c2, c3, c4}. Suppose that there are N = 400 training instances and
that n(cj) = 100, for j = 1, 2, 3, 4. Let M be the matrix of misclassification
costs with the following values:

mjj = 0, 8j = 1, 2, 3, 4,

mij = j, 8i, j 2 {1, 2, 3, 4} , j 6= i.

We have the following misclassification costs for the class values (Equa-
tion 11):

Cost(1) = m21 +m31 +m41 = 3,

Cost(2) = m12 +m32 +m42 = 6,

Cost(3) = m13 +m23 +m43 = 9,

Cost(4) = m14 +m24 +m34 = 12.

We may note that, in this situation, the given arrangement of the class
frequencies, associated with the uniform probability distribution, coincides
with the one that gives rise to the maximum entropy with the A-NPI-M.
Therefore, we have the following instance weights (Equation (14)):

w1 = 0.4, w2 = 0.8, w3 = 1.2, w4 = 1.6.

Let X
1 and X

2 be two attributes. Suppose that we want to classify an
instance for which X

1 = x
1
0 and X

2 = x
2
0. For these attribute values, let us

assume the following observed training class frequencies:

X
1 = x

1
0 ! n(c1) = 21, n(c2) = 19, n(c3) = n(c4) = 15.

X
2 = x

2
0 ! n(c1) = 11, n(c2) = 8, n(c3) = n(c4) = 4.

With regard to the IDM parameter, let us assume the standard value s =
1. For CS-NCC, we have the following lower and upper probability scores,
computed by means of Equation (6):

P (c1) = 0.0056, P (c2) = 0.0037, P (c3) = P (c4) = 0.0015,

P (c1) = 0.0065, P (c2) = 0.0044, P (c3) = P (c4) = 0.002.
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The risk intervals are obtained by:

R(c1) = P (c2)m12 + P (c3)m13 + P (c4)m14 = 0.0122,

R(c1) = P (c2)m12 + P (c3)m13 + P (c4)m14 = 0.0156,

R(c2) = P (c1)m21 + P (c3)m23 + P (c4)m24 = 0.0123,

R(c2) = P (c1)m21 + P (c3)m23 + P (c4)m24 = 0.0154,

R(c3) = P (c1)m31 + P (c2)m32 + P (c4)m34 = 0.0143,

R(c3) = P (c1)m31 + P (c2)m32 + P (c4)m34 = 0.0169,

R(c4) = P (c1)m41 + P (c2)m42 + P (c3)m43 = 0.0142,

R(c4) = P (c1)m41 + P (c2)m42 + P (c3)m43 = 0.0162.

In this way, R(cj) < R(ck), 8j, k = 1, 2, 3, 4. Therefore, according to
the stochastic dominance criterion on these intervals, all class values are
non-dominated.

Concerning the lower and upper probability scores estimated by our pro-
posed Weighted-NCC method, we have that:

Pwj
(cj) = lwj ⇥ lx1

0,wj
⇥ lx2

0,wj
, Pwj(cj) = uwj ⇥ ux1

0,wj
⇥ ux2

0,wj
,

where lwj and uwj are determined by Equation (16) and lx1
0,wj

, lx1
1,wj

, ux1
0,wj

,
and ux2

0,wj
by Equation (19), 8j = 1, 2, 3, 4.

In consequence, we have the following lower and upper probability scores:

Pw1
(c1) = 0.0015, Pw2

(c2) = 0.0024, Pw3
(c3) = 0.0013, Pw4

(c4) = 0.0019,

Pw1(c1) = 0.0033, Pw2(c2) = 0.0038, Pw3(c3) = 0.0023, Pw4(c4) = 0.0029.

This implies that, under the stochastic dominance criterion on these in-
tervals, c3 is dominated by c2 because Pw2

(c2) > Pw3(c3).
In this scenario, the prediction of Weighted-NCC is probably more intu-

itive than the prediction of CS-NCC since the conditional frequencies of c3
are far lower than the conditional frequencies of c2, and the misclassification
cost of c3 is not much higher than the one of c2.

Example 4. Suppose that we have three class values {c1, c2, c3} and N = 300
training instances. Let us assume that n(cj) = 100, for j = 1, 2, 3. Suppose
that the matrix M of error costs is given by:

mjj = 0, 8j = 1, 2, 3,

mij = j, 8i, j 2 {1, 2, 3} , j 6= i.
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We have the following misclassification costs:

Cost(1) = m21 +m31 = 2,

Cost(2) = m12 +m32 = 4,

Cost(3) = m13 +m23 = 6.

As in Example 3, the given arrangement of the class frequencies coincides
with the one that leads to the maximum entropy with the A-NPI-M. Hence,
we have the following instance weights (Equation (14)):

w1 = 0.5, w2 = 1, w3 = 1.5.

Let X
1 and X

2 be two attributes. Suppose that we want to classify an
instance for which X

1 = x
1
0 and X

2 = x
2
0. Let us assume the following

observed training class frequencies for these attribute values:

X
1 = x

1
0 ! n(c1) = 95, n(c2) = 81, n(c3) = 68.

X
2 = x

2
0 ! n(c1) = 95, n(c2) = 81, n(c3) = 68.

Assuming the value s = 1 for the IDM parameter, we have the following
lower and upper probability scores estimated by CS-NCC (Equation 6):

P (c1) = 0.0056, P (c2) = 0.2127 P (c3) = 0.1506,

P (c1) = 0.0065, P (c2) = 0.2212 P (c3) = 0.1566.

The risk intervals are obtained by:

R(c1) = P (c2)m12 + P (c3)m13 = 0.8791,

R(c1) = P (c2)m12 + P (c3)m13 = 0.9122,

R(c2) = P (c1)m21 + P (c3)m23 = 0.7457,

R(c2) = P (c1)m21 + P (c3)m23 = 0.773,

R(c3) = P (c1)m31 + P (c2)m32 = 0.7212,

R(c3) = P (c1)m31 + P (c2)m32 = 0.7455.

According to the stochastic dominance criterion, both c1 and c2 are dom-
inated by c3 as R(c3) < R(cj), for j = 1, 2.

The following lower and upper probability scores are estimated by our
proposed Weighted-NCC:

Pwj
(cj) = lwj ⇥ lx1

0,wj
⇥ lx2

0,wj
, Pwj(cj) = uwj ⇥ ux1

0,wj
⇥ lx2

0,wj
,
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where lwj and uwj are given by Equation (16) and lx1
0,wj

, lx1
1,wj

, ux1
0,wj

, and
ux2

0,wj
by Equation (19), for j = 1, 2, 3.

Hence,

Pw1
(c1) = 0.1413, Pw2

(c2) = 0.2112, Pw3
(c3) = 0.2252,

Pw1(c1) = 0.1600, Pw2(c2) = 0.2264, Pw3(c3) = 0.2373.

In this case, c1 is dominated by both c2 and c3 since Pwj
(cj) > Pw1(c1), for

j = 2, 3. However, c2 and c3 are non-dominated because Pwj(c2) > Pw1
(c3)

and Pwj(c3) > Pw1
(c2).

It makes sense that c3 dominates c1 since the misclassification cost of c3
is much greater than the one of c1 and the conditional frequencies of c3 are
not drastically lower than the ones of c1. The misclassification cost of c2 is
lower than the one of c3 but the conditional frequencies of c2 are higher than
the ones of c3. Intuitively, the trade-o↵ between conditional frequencies and
misclassification costs of c2 and c3 are equivalent. Therefore, we can state
that, in this situation, the prediction made by our proposal might be more
intuitive than the one made by CS-NCC.

To sum up, the predictions made by the proposed Weighted-NCC might
be more intuitive and informative than the ones made by the existing CS-
NCC. In consequence, Weighted-NCC may perform better than CS-NCC.
We validate this via experimentation in Section 4.

4. Experiments

4.1. Experimental settings

4.1.1. Datasets
We have used 34 datasets from UCI Machine Learning Repository [51] to

check the performance of the two methods considered in our experimental
analysis. These datasets coincide with the ones employed in the experimental
studies carried out in [38, 52] for comparing cost-sensitive Imprecise Classi-
fication algorithms. They are varied concerning size, number of class values,
number of features (continuous and categorical), and ranges of values for dis-
crete variables. We have only chosen datasets that have three or more class
states since, “with only two class states, an Imprecise Classification method
always predicts all values of the class variable or a unique one” [38]. The
essential characteristics of each dataset are presented in Table 2.

20



Table 2: Datasets used in this experimental study. “N” indicates the number of instances,
“Attr” is the number of attributes, “Cont” and “Disc” mean, respectively, the number
of continuous and discrete attributes, “K” is the number of class states, and “Range”
indicates the range of values of the discrete variables.

Dataset N Attr Cont Disc K Range
anneal 898 38 6 32 6 2-10
arrhythmia 452 279 206 73 16 2
audiology 226 69 0 69 24 2-6
autos 205 25 15 10 7 2-22
balance-scale 625 4 4 0 3 -
car 1728 6 0 6 4 3-4
cmc 1473 9 2 7 3 2-4
dermatology 366 34 1 33 6 2-4
ecoli 366 7 7 0 7 -
flags 194 30 2 28 8 2-13
hypothyroid 3772 30 7 23 4 2-4
iris 150 4 4 0 3 -
letter 20000 16 16 0 26 -
lymphography 146 18 3 15 4 2-8
mfeat-pixel 2000 240 0 240 10 4-6
nursery 12960 8 0 8 4 2-4
optdigits 5620 64 64 0 10 -
page-blocks 5473 10 10 0 5 -
pendigits 10992 16 16 0 10 -
postop-patient-data 90 9 0 9 3 2-4
primary-tumor 339 17 0 17 21 2-3
segment 2310 19 16 0 7 -
soybean 683 35 0 35 19 2-7
spectrometer 531 101 100 1 48 4
splice 3190 60 0 60 3 4-6
sponge 76 44 0 44 3 2-9
tae 151 5 3 2 3 2
vehicle 946 18 18 0 4 -
vowel 990 11 10 1 11 2
waveform 5000 40 40 0 3 -
wine 178 13 13 0 3 -
zoo 101 16 1 16 7 2
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4.1.2. Procedure
We have applied the preprocessing used in the experimental comparisons

between IC methods carried out in [38, 53, 54] to the datasets considered in
this experimentation: we have replaced missing values with modal values for
discrete variables and with mean values for continuous attributes. Afterward,
we have discretized the datasets by using Fayyad and Irani’s discretization
algorithm [55]. For the preprocessing, we have employed the filters for dis-
cretization and missing values available in the Weka software [56].

In this experimental study, we have used two methods: CS-NCC and
Weighted-NCC, the only existing Bayesian algorithms for cost-sensitive IC.
Both algorithms have been implemented in Weka. Consistently with the ex-
perimental analyses carried out in [38, 52], we have utilized five cost matrices,
which are described below.

• “Cost Matrix 0/1: All incorrect predictions have a cost equal to 1”
[38].

• “Cost Matrix (I): Only the real class values influence the cost of
incorrect predictions. The lower is the frequency of a class value, the
higher is the cost associated with it” [38].

• “Cost Matrix (II): The cost of an erroneous classification is just
influenced by the predicted class value. The more observed values of
the class variable have less cost than the ones less observed” [38].

• “Cost Matrix (III): It is similar to Cost Matrix (I). However, now
the higher the frequency of a class value, the higher its corresponding
cost” [38].

• “Cost Matrix (IV): This cost matrix is equivalent to Cost Matrix
(II), but now the more observed values of the class variable have higher
costs than the less observed class values” [38].

We have repeated a 10-fold cross-validation procedure 10 times for each
cost matrix and preprocessed dataset.

4.1.3. Evaluation metrics
As said in the Introduction, an evaluation metric for cost-sensitive Impre-

cise Classification must consider the informativeness of the predictions and
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the misclassification costs. The following two metrics evaluate how informa-
tive an imprecise classifier is:

• Determinacy: It is the fraction of instances precisely classified.

• Indeterminacy Size: It indicates, among the instances such that two
or more class values are output, the average number of non-dominated
states.

Concerning the misclassification costs, the two following evaluation mea-
sures are useful [52]:

• Single Cost: It indicates the average cost of erroneous classifications
between the instances precisely classified.

• Set Cost: “It consists of the average cost of misclassifications among
the instances imprecisely classified. The cost of an incorrect imprecise
classification is determined by the maximum cost of predicting a non-
dominated class value” [13].

Formally, let cti be the true value of the class variable of the i-th test
instance, where ti 2 {1, 2, . . . , K}, and Ui the predicted set of class
values for that instance. If the i-th test instance is misclassified, then
the following value is considered:

↵ti = max
cj2Ui

mjti . (24)

Set Cost is determined by:

1

|{1  i  Ntest : |Ui| � 2}| ⇥
NtestX

i=1,|Ui|�2^i:Error

↵ti , (25)

Ntest being the number of test instances.

To measure the whole performance of the two algorithms considered here,
the MIC evaluation metric, introduced by Abellán and Masegosa [38], has
been employed because it is the well-established to test the performance of
a cost-sensitive imprecise classifier. Such an evaluation metric is defined as:

MIC =
1

Ntest
⇥
 
�

X

i:Correct

log2
|Ui|
K

� 1

K � 1
⇥
X

i:Error

�↵ti ⇥ log2 K

!
.

(26)
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The MIC evaluation metric strictly penalizes the errors. Its optimal value,
log2(K), is attained when a unique class value is correctly predicted for all
instances. If all class values are always predicted by a cost-sensitive imprecise
classifier, then the MIC value is equal to 0. This is logical because, in that
scenario, the classifier is non-informative.

4.1.4. Statistical comparisons
Considering the indications given in [57] for statistical comparisons be-

tween two algorithms, we compare, for each cost matrix, the results of CS-
NCC and Weighted-NCC in all the evaluation metrics considered here by
means of the following tests:

• Corrected Paired t-test: It is employed for comparing two algo-
rithms applied to a single dataset. This test checks whether one method
outperforms the other one across multiple runs of a cross-validation
procedure on a dataset.

• Wilcoxon test [58]: This test considers, for each dataset, the nor-
malized di↵erence among the results of the two algorithms, regardless
of signs. Then, it ranks the di↵erences and compares negative and
positive ranks.

A significance level of ↵ = 0.05 has been utilized for the aforementioned
tests.

4.2. Results and discussion

Tables 3, 4,5, and 6 summarize the results of each method for each cost
matrix in Single Cost, Set Cost Determinacy, and Indeterminacy Size, respec-
tively. Specifically, these tables show, for each metric and cost matrix, the
average results, in how many datasets a method significantly outperforms
the other one via the Corrected Paired t-test, and whether an algorithm
achieves a significantly better performance than the other one according to
the Wilcoxon test. We mark in bold the best results obtained in Average and
Corrected Paired t-test. Also, Figures 3, 4, 5, and 6 illustrate the average
results obtained by each classifier for each cost matrix in Single Cost, Set
Cost, Determinacy, and Indeterminacy Size, respectively.

Concerning these results, we can remark the following points:
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Table 3: Summary of Single Cost results for each cost matrix. In the ”Wilcoxon test”
rows, ”*” means that the method of the column significantly outperforms the other one
through the Wilcoxon test for the corresponding cost matrix. The rows ”Paired t-test”
show the number of datasets in which the algorithm of the column performs significantly
better than the other one via the Corrected Paired t-test for the corresponding cost matrix.

CS-NCC Weighted-NCC
Wilcoxon test *

Cost Matrix 0/1: Paired t-test 0 13
Average 0.0689 0.06

Wilcoxon test = =
Cost Matrix (I): Paired t-test 5 10

Average 0.2434 0.2316
Wilcoxon test = =

Cost Matrix (II): Paired t-test 7 7
Average 0.1655 0.2274

Wilcoxon test *
Cost Matrix (III): Paired t-test 0 17

Average 0.3156 0.2198
Wilcoxon test *

Cost Matrix (IV): Paired t-test 10 1
Average 0.1761 0.2613

• Regarding Single Cost (Table 3), Weighted-NCC significantly out-
performs CS-NCC via the Wilcoxon test for Cost Matrices 0/1 and
(III), while CS-NCC achieves a significantly better performance than
Weighted-NCC for Cost Matrix (IV). For Cost Matrices (I) and (II),
Weighted-NCC and CS-NCC perform equivalently according to the
Wilcoxon test in Single Cost. Weighted-NCC achieves a lower aver-
age Single Cost value than CS-NCC for Cost Matrices 0/1, (I), and
(III), while, for Cost Matrices (II) and (IV), the opposite happens (See
Figure 3). According to the Corrected Paired t-test, for Cost Matrices
0/1, (I), and (III), Weighted-NCC performs significantly better in more
datasets than CS-NCC. The contrary occurs for Cost Matrix (IV). Con-
sequently, for instances precisely classified, the misclassification costs of
Weighted-NCC are generally lower than the misclassifications costs of
CS-NCC, although it depends on the matrix of error costs considered.

• Due to the results achieved in Set Cost (Table 4), it can be stated
that, for instances imprecisely classified, the misclassification costs of
CS-NCC are much lower than the misclassification costs of Weighted-
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Table 4: Summary of Set Cost results for each cost matrix. In the ”Wilcoxon test” rows,
”*” means that the method of the column significantly outperforms the other one through
the Wilcoxon test for the corresponding cost matrix. The rows ”Paired t-test” show the
number of datasets in which the algorithm of the column performs significantly better
than the other one via the Corrected Paired t-test for the corresponding cost matrix.

CS-NCC Weighted-NCC
Wilcoxon test *

Cost Matrix 0/1: Paired t-test 17 0
Average 0.0094 0.0291

Wilcoxon test *
Cost Matrix (I): Paired t-test 15 0

Average 0.0201 0.0923
Wilcoxon test *

Cost Matrix (II): Paired t-test 14 3
Average 0.0629 0.2876

Wilcoxon test *
Cost Matrix (III): Paired t-test 19 1

Average 0.0265 0.2831
Wilcoxon test = =

Cost Matrix (IV): Paired t-test 10 3
Average 0.2265 0.2425

NCC. Indeed, for the five cost matrices, CS-NCC gets a lower average
Set Cost value than Weighted-NCC (See Figure 4), and the number
of datasets where CS-NCC achieves a significantly better performance
than Weighted-NCC in Set Cost according to the Corrected Paired
t-test is much greater than the number of datasets where the con-
trary happens. Furthermore, CS-NCC performs significantly better
than Weighted-NCC via the Wilcoxon test in Set Cost for all cost ma-
trices, except for Cost Matrix (IV).

• Determinacy results (Table 5) reveal that the existing CS-NCC pre-
cisely classifies more instances than our proposed Weighted-NCC. In
fact, for the five cost matrices, the average Determinacy value achieved
by CS-NCC is higher than the one obtained by Weighted-NCC (See
Figure 5), and the number of datasets in which CS-NCC significantly
outperforms Weighted-NCC in Determinacy according to the Corrected
Paired t-test is much higher than the number of datasets in which the
contrary occurs. Moreover, for Cost Matrices 0/1, (II), and (III), CS-
NCC achieves a significantly better performance than Weighted-NCC
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Table 5: Summary of Determinacy results for each cost matrix. In the ”Wilcoxon test”
rows, ”*” means that the method of the column significantly outperforms the other one
through the Wilcoxon test for the corresponding cost matrix. The rows ”Paired t-test”
show the number of datasets in which the algorithm of the column performs significantly
better than the other one via the Corrected Paired t-test for the corresponding cost matrix.

CS-NCC Weighted-NCC
Wilcoxon test *

Cost Matrix 0/1: Paired t-test 20 0
Average 0.5781 0.5108

Wilcoxon test = =
Cost Matrix (I): Paired t-test 15 6

Average 0.5853 0.5713
Wilcoxon test *

Cost Matrix (II): Paired t-test 16 2
Average 0.6096 0.5212

Wilcoxon test *
Cost Matrix (III): Paired t-test 27 0

Average 0.6159 0.441
Wilcoxon test = =

Cost Matrix (IV): Paired t-test 7 5
Average 0.5762 0.559

in Determinacy according to the Wilcoxon test.

• Concerning Indeterminacy Size (Table 6), Weighted-NCC signifi-
cantly outperforms CS-NCC via the Wilcoxon test for all cost matrices.
Also, for the five cost matrices, the average Indeterminacy Size value
attained by Weighted-NCC is considerably lower than the one obtained
by CS-NCC (See Figure 6), and the results of the Corrected Paired t-
test in Indeterminacy Size indicate that the number of datasets where
Weighted-NCC achieves a significantly better performance than CS-
NCC is much higher than the number of datasets in which Weighted-
NCC is significantly outperformed by CS-NCC. Hence, for imprecise
predictions, Weighted-NCC predicts fewer class states than CS-NCC.

To analyze the overall performance of CS-NCC and Weighted-NCC, Ta-
ble 7 presents a summary of the MIC results. Similar to the tables associated
with the other metrics, it allows us to see, for each cost matrix, the average
MIC results obtained by CS-NCC and Weighted-NCC, in how many datasets
a method obtains significantly better results than the other one via the Cor-
rected Paired t-test, and whether an algorithm significantly outperforms the
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Table 6: Summary of Indeterminacy Size results for each cost matrix. In the ”Wilcoxon
test” rows, ”*” means that the method of the column significantly outperforms the other
one through the Wilcoxon test for the corresponding cost matrix. The rows ”Paired t-test”
show the number of datasets in which the algorithm of the column performs significantly
better than the other one via the Corrected Paired t-test for the corresponding cost matrix.

CS-NCC Weighted-NCC
Wilcoxon test *

Cost Matrix 0/1: Paired t-test 0 16
Average 7.8306 5.621

Wilcoxon test *
Cost Matrix (I): Paired t-test 0 27

Average 7.9163 5.2825
Wilcoxon test *

Cost Matrix (II): Paired t-test 2 19
Average 6.6141 5.4406

Wilcoxon test *
Cost Matrix (III): Paired t-test 0 16

Average 7.8591 5.4478
Wilcoxon test *

Cost Matrix (IV): Paired t-test 0 16
Average 6.2478 5.3297

other one by means of the Wilcoxon test. Again, we mark in bold the best
results obtained in Average and Corrected Paired t-test. Figure 7 shows the
average MIC results for each cost matrix. The complete MIC results can be
found in Appendix A.
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Figure 3: Average Single Cost results for each cost matrix.

Table 7: Summary of MIC results for each cost matrix. In the ”Wilcoxon test” rows, ”*”
means that the method of the column significantly outperforms the other one through
the Wilcoxon test for the corresponding cost matrix. The rows ”Paired t-test” show the
number of datasets in which the algorithm of the column performs significantly better
than the other one via the Corrected Paired t-test for the corresponding cost matrix.

CS-NCC Weighted-NCC
Wilcoxon test = =

Cost Matrix 0/1: Paired t-test 10 11
Average 0.8864 0.9224

Wilcoxon test *
Cost Matrix (I): Paired t-test 3 17

Average 0.8086 0.9316
Wilcoxon test = =

Cost Matrix (II): Paired t-test 14 10
Average 0.8299 0.8377

Wilcoxon test = =
Cost Matrix (III): Paired t-test 13 10

Average 0.8461 0.7471
Wilcoxon test *

Cost Matrix (IV): Paired t-test 3 20
Average 0.7679 0.8733

We remark the following issues related to these results:

• For Cost Matrices 0/1, (II), and (III), CS-NCC and Weighted-NCC
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Figure 4: Average Set Cost results for each cost matrix.

obtain statistically equivalent results via the Wilcoxon test. According
to the Corrected Paired t-test, for these cost matrices, the number of
datasets in which CS-NCC significantly outperforms Weighted-NCC is
not far greater than the number of datasets where the opposite occurs.
For Cost Matrices 0/1 and (II), the average MIC value of Weighted-
NCC is higher than the one achieved by CS-NCC. On the contrary, for
Cost Matrix (III), CS-NCC gets a far greater average MIC value than
Weighted-NCC. Thus, for Cost Matrices 0/1, (II), and (III), there is
no clear winner between CS-NCC and Weighted-NCC.

• Weighted-NCC performs significantly better than CS-NCC via the
Wilcoxon test for Cost Matrices (I) and (IV). Moreover, for these cost
matrices, the number of datasets in which Weighted-NCC significantly
outperforms CS-NCC via the Corrected Paired t-test is much larger
than the number of datasets where CS-NCC performs significantly bet-
ter than Weighted-NCC through this test. Also, for Cost Matrices (I)
and (IV), the average MIC value achieved by Weighted-NCC is much
higher than the one of CS-NCC (See Figure 7). So, for such cost ma-
trices, Weighted-NCC performs far better than CS-NCC.

4.3. Processing time
In this subsection, we compare the processing time of CS-NCC, Weighted-

NCC, and the original Näıve Bayes algorithm (NB). Remark that NB has
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Figure 5: Average Determinacy results for each cost matrix.

been successfully applied to a massive amount of real data [59, 60, 61]. Thus,
we aim to check the applicability of the proposed method to large databases.
We cannot compare the performance of NB with the other two algorithms
because, so far, there is no evaluation metric to compare the performance of
a precise classifier with an imprecise classifier.

We utilize the same 34 datasets employed in the first part of the experi-
ments using the same preprocessing. We have employed the implementation
available in Weka for NB with default parameters. For both CS-NCC and
Weighted-NCC, we have used Cost Matrix (I), assuming that the processing
times of both algorithms with the other cost matrices are similar.

Following the recommendations given in [57] for statistical comparisons
between three or more algorithms on many datasets, we compare the process-
ing time of the three methods via the Friedman test [62] with a significance
level of ↵ = 0.05. This test separately ranks the algorithms for each dataset.
The null hypothesis of this test is that all algorithms perform equivalently.

Table 8 shows the average Friedman rank of each algorithm. The complete
results related to processing time can be seen in Appendix B. According to the
Friedman test, the three algorithms have equivalent performance with regard
to processing time. In fact, we may observe that the average Friedman ranks
of the three algorithms are quite similar. In consequence, we can state that
NB, CS-NCC, and Weighted-NCC have similar processing times.
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Figure 6: Average Indeterminacy Size results for each cost matrix.

Table 8: Average Friedman ranks of NB, CS-NCC, and Weighted-NCC corresponding to
processing time.

Algorithm Average Friedman rank
NB 2.0882

CS-NCC 1.9706.
Weighted-NCC 1.9402

4.4. Summary of the results
We summarize the experimental results as follows:

• CS-NCC predicts a single class state more frequently than Weighted-
NCC. For instances precisely classified, the misclassification costs of
Weighted-NCC tend to be lower than the misclassification costs of CS-
NCC. It is because, as illustrated in Example 4, in some cases where it
may be more intuitive to predict more than one class value, CS-NCC
precisely classifies an instance, unlike Weighted-NCC.

• In contrast, for instances imprecisely classified, Weighted-NCC predicts
fewer class states than CS-NCC even though the misclassification costs
are higher with Weighted-NCC. This occurs since, as argued in Sec-
tion 3.2 and shown in Example 3, Weighted-NCC might lead to more
informative and intuitive predictions than CS-NCC.
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Figure 7: Average MIC results for each cost matrix.

• Concerning the whole performance, for Cost Matrices 0/1, (II), and
(III), it can be stated that CS-NCC and Weighted-NCC obtain equiv-
alent results. However, for Cost Matrices (I) and (IV), Weighted-NCC
significantly outperforms CS-NCC. We may note that, for such cost
matrices, predicting the more frequent class values may imply a higher
cost than predicting the less frequent ones. In these cases, the risk
intervals predicted by CS-NCC are probably less informative. Actu-
ally, for Cost Matrices (I) and (IV), CS-NCC does not significantly
outperform Weighted-NCC through the Wilcoxon test in Determinacy.
This might be the reason why, for these cost matrices, Weighted-NCC
achieves a significantly better overall performance than CS-NCC.

• Therefore, we can conclude that, depending on the matrix of error
costs considered, Weighted-NCC performs equivalently or significantly
better than CS-NCC.

• Both CS-NCC and Weighted-NCC have equivalent processing time to
NB. Consequently, our proposal can be applied to large databases,
where the NB algorithm has been successfully employed.
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5. Conclusions and future work

Bayesian classification methods are simple and e↵ective and have been
successfully utilized in practical applications. The main advantage of Bayesian
classification algorithms is their low computational time. In consequence,
they are quite suitable for large datasets, which is very important nowa-
days because of the huge amount of data in many areas. A quick and very
known Bayesian classification method is the Näıve Bayes algorithm (NB).
Despite its simplicity, NB has achieved good results in practice. In practi-
cal applications, misclassifications often imply di↵erent costs. Furthermore,
for classifying an instance, classification algorithms usually predict a unique
class value. Nevertheless, sometimes, due to the lack of information, it might
more reasonable that classification methods predict two or more class val-
ues, which is known as Imprecise Classification (IC). In these situations, an
imprecise classifier can provide di↵erent and vital information (see Example
1, which illustrates the importance of IC). Abellán and Masegosa [38] pro-
posed a version of the NB algorithm for cost-sensitive IC, called cost-sensitive
Näıve Credal Classifier (CS-NCC). So far, it is the only Bayesian method for
cost-sensitive IC.

A Bayesian method for cost-sensitive IC, called theWeighted Näıve Credal
Classifier (Weighted-NCC), has been introduced in this research. Weighted-
NCC weights the instances by considering the error costs of their class values.
For classifying an instance, Weighted-NCC estimates, for each class value, an
interval score by using the Non-Parametric Predictive Inference Model, the
instance weights, and the näıve assumption. Then, it determines the non-
dominated states set by means of a dominance criterion on such intervals. We
have shown that our proposed Weighted-NCC might yield more intuitive and
informative predictions than the existing CS-NCC. Also, we have illustrated
that, in some cases in which it may be more intuitive to predict more than
one class value, CS-NCC predicts a single class state, unlike Weighted-NCC.

We have compared the performance of CS-NCC and our developedWeighted-
NCC via an experimental analysis. Such an analysis has demonstrated that
CS-NCC precisely classifies more instances than Weighted-NCC, but the
misclassification costs for precise predictions are generally lower with the
latter algorithm than with the former; for imprecise predictions, our pro-
posed Weighted-NCC method predicts fewer class values than the existing
CS-NCC even though the misclassification costs are higher with our pro-
posal; regarding the whole performance, for some cost matrices, CS-NCC
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and Weighted-NCC obtain statistically equivalent results while, for other
cost matrices, Weighted-NCC performs significantly better than CS-NCC.

Hence, we can conclude that the two Bayesian approaches for cost-sensitive
IC are equally appropriate for some error cost settings. However, for other
error cost settings, Weighted-NCC is much more suitable than CS-NCC. One
of these settings is Cost Matrix (I), where the misclassification costs depend
on the real values of the class variable, and less frequent class states have
higher costs than more frequent values of the class variable. This type of er-
ror cost setting is employed in some essential fields, such as medicine. In this
way, our proposed Bayesian algorithm for cost-sensitive IC is more suitable
than the existing one for medical diagnosis to save lives.

Moreover, we have compared the processing time of CS-NCC, Weighted-
NCC, and the original NB algorithm, which has been successfully applied to
very large real datasets. It has been highlighted that the processing times of
these three methods are equivalent. Consequently, our proposed algorithm
may be appropriate for large databases. This is an important issue because
of the huge amount of data in many application areas nowadays.

For future work, other Bayesian methods for cost-sensitive IC could be
introduced by using the costs of incorrect classifications di↵erently, proposing
other estimations of the interval scores for the class values, or relaxing the
näıve assumption. Our introduced method could also be adapted for other
special types of classification. An example of such types is Multi-Label Clas-
sification, where some of the most recent algorithms can be found in [63, 64].
Moreover, it would be interesting to develop evaluation metrics to compare
the performance of a precise classifier with an imprecise classifier.
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Appendix A. Complete MIC results

Table 9: Complete MIC results for Cost Matrix (0/1). In the last column, � (•) means
that Weighted-NCC (CS-NCC) significantly outperforms CS-NCC (Weighted-NCC) via
the Corrected Paired t-test for the dataset of the row. The best result for each dataset is
marked in bold font.

Dataset CS-NCC Weighted-NCC
anneal 0.0054 0.9655 �
arrhythmia 0.0000 0.4272 �
audiology 0.0000 0.2145 �
autos 0.0000 0.4342 �
balance-scale 0.6905 0.6839
bridges-version1 0.2129 0.0587 •
bridges-version2 0.2285 0.0594 •
car 1.1293 1.1322
cmc 0.2830 0.2861
dermatology 1.5057 1.3667 •
ecoli 1.5936 1.5800
flags 0.0000 0.0000
hypothyroid 1.1946 1.1386 •
iris 0.9807 0.9762
letter 2.4024 2.4356 �
lymphography 0.6639 0.4502 •
mfeat-pixel 1.4655 0.8338 •
nursery 1.4165 1.2847
optdigits 2.0918 2.1136 �
page-blocks 1.4751 1.4856 �
pendigits 1.9911 2.0110 �
postoperative-patient-data 0.1408 0.0286 •
primary-tumor 0.0004 0.4545 �
segment 1.7198 1.7217
soybean 2.5364 2.4291 •
spectrometer 0.1088 0.3590 �
splice 1.0217 1.0215
sponge 0.0000 0.0000
tae 0.2589 0.2608
vehicle 0.6697 0.6782
vowel 1.1191 1.4151 �
waveform 0.7691 0.7702
wine 0.9854 0.9142 •
zoo 1.4764 1.3721 •
Average 0.8864 0.9224
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Table 10: Complete MIC results for Cost Matrix (I). In the last column, � (•) means
that Weighted-NCC (CS-NCC) significantly outperforms CS-NCC (Weighted-NCC) via
the Corrected Paired t-test for the dataset of the row. The best result for each dataset is
marked in bold font.

Dataset CS-NCC Weighted-NCC
anneal 0.0000 1.0209 �
arrhythmia 0.0000 0.4629 �
audiology 0.0000 0.1677 �
autos 0.0000 0.5267 �
balance-scale 0.6037 0.6037
bridges-version1 0.1654 0.0944
bridges-version2 0.1331 0.1061
car 1.0843 1.0748 •
cmc 0.1062 0.1094
dermatology 1.4902 1.4471
ecoli 1.4362 1.5615 �
flags 0.0000 0.0000
hypothyroid 1.1189 1.3431 �
iris 0.9205 0.9208
letter 2.0222 2.0411 �
lymphography 0.5647 0.8745 �
mfeat-pixel 1.4528 1.2027 •
nursery 1.3718 1.3613 •
optdigits 2.0249 2.0555 �
page-blocks 1.4512 1.4699 �
pendigits 1.8589 1.8760 �
postoperative-patient-data 0.0108 0.0003
primary-tumor 0.0000 0.5915 �
segment 1.6812 1.6942
soybean 2.4724 2.4480
spectrometer 0.0993 0.7478 �
splice 1.0036 1.0082 �
sponge 0.0000 0.1097 �
tae -0.0481 -0.0406
vehicle 0.4522 0.4942 �
vowel 0.8738 1.0713 �
waveform 0.7084 0.7097
wine 0.9835 0.9671
zoo 1.4493 1.5528
Average 0.8086 0.9316
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Table 11: Complete MIC results for Cost Matrix (II). In the last column, � (•) means
that Weighted-NCC (CS-NCC) significantly outperforms CS-NCC (Weighted-NCC) via
the Corrected Paired t-test for the dataset of the row. The best result for each dataset is
marked in bold font.

Dataset CS-NCC Weighted-NCC
anneal 0.0179 0.9405 �
arrhythmia 0.0897 0.2725 �
audiology 0.1627 0.2190
autos 0.0000 0.2343 �
balance-scale 0.6609 0.6702
bridges-version1 0.2715 0.1268 •
bridges-version2 0.2740 0.1046 •
car 0.8639 1.0668 �
cmc 0.1340 0.0299 •
dermatology 1.4816 1.4109 •
ecoli 1.4671 1.5120
flags 0.0000 0.0000
hypothyroid 1.2501 1.0742 •
iris 0.9328 0.9457
letter 1.7340 2.0425 �
lymphography 0.7337 0.2505 •
mfeat-pixel 1.4569 1.2063 •
nursery 1.2319 1.1556
optdigits 2.0142 2.0476 �
page-blocks 1.4665 1.4533 •
pendigits 1.8371 1.8803 �
postoperative-patient-data 0.4163 -0.1210 •
primary-tumor 0.3412 0.0732 •
segment 1.6444 1.6809 �
soybean 2.5135 2.4341 •
spectrometer 0.1204 0.2521
splice 0.9977 1.0040 �
sponge 0.0000 0.0000
tae 0.0151 0.0114
vehicle 0.4371 0.4152
vowel 0.5418 1.1511 �
waveform 0.6549 0.6379 •
’wine 0.9849 0.9325 •
zoo 1.4702 1.3680 •
Average 0.8299 0.8377
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Table 12: Complete MIC results for Cost Matrix (III). In the last column, � (•) means
that Weighted-NCC (CS-NCC) significantly outperforms CS-NCC (Weighted-NCC) via
the Corrected Paired t-test for the dataset of the row. The best result for each dataset is
marked in bold font.

Dataset CS-NCC Weighted-NCC
anneal 0.0679 0.7941 �
arrhythmia 0.1362 0.2371 �
audiology 0.2157 0.1729
autos 0.0000 0.2078 �
balance-scale 0.5742 0.5739
bridges-version1 0.2480 0.1261 •
bridges-version2 0.2666 0.1117 •
car 0.9102 0.9232 �
cmc 0.0278 0.0449 �
dermatology 1.5080 1.2305 •
ecoli 1.4616 1.4257
flags 0.0000 0.0000
hypothyroid 1.2713 1.0505 •
iris 0.9809 0.9787
letter 2.0300 2.0581 �
lymphography 0.7196 0.1348 •
mfeat-pixel 1.4600 1.0841 •
nursery 1.3058 0.6901 •
optdigits 2.0097 2.0230 �
page-blocks 1.4184 1.3962 •
pendigits 1.8768 1.9063 �
postoperative-patient-data 0.3024 -0.0336 •
primary-tumor 0.2514 0.0561 •
segment 1.6630 1.6770
soybean 2.4414 1.3424 •
spectrometer 0.1098 0.1012
splice 0.9970 0.9974
sponge 0.0000 0.0000
tae 0.1043 0.0993
vehicle 0.4226 0.4337
vowel 0.8782 1.1050 �
waveform 0.6312 0.6364 �
wine 0.9860 0.9141 •
zoo 1.4918 0.9029 •
Average 0.8461 0.7471
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Table 13: Complete MIC results for Cost Matrix (IV). In the last column, � (•) means
that Weighted-NCC (CS-NCC) significantly outperforms CS-NCC (Weighted-NCC) via
the Corrected Paired t-test for the dataset of the row. The best result for each dataset is
marked in bold font.

Dataset CS-NCC Weighted-NCC
anneal 0.8050 0.9717 �
arrhythmia 0.0398 0.2857 �
audiology 0.0885 0.2210 �
autos 0.0229 0.3561 �
balance-scale 0.5077 0.5578
bridges-version1 0.1803 0.0407 •
bridges-version2 0.1715 0.0595 •
car 0.6703 1.0635 �
cmc 0.0425 0.1026 �
dermatology 1.4868 1.4662
ecoli 1.1761 1.4621 �
flags 0.0000 0.0000
hypothyroid 1.2193 1.2226
iris 0.9643 0.9634
letter 1.7413 2.0408 �
lymphography 0.5142 0.5863 �
mfeat-pixel 1.4549 1.3141 •
nursery 1.0020 1.2771 �
optdigits 1.9908 2.0376 �
page-blocks 1.4033 1.4358 �
pendigits 1.8610 1.8974 �
postoperative-patient-data -0.1263 -0.0979
primary-tumor -0.2258 0.1229 �
segment 1.7046 1.7036
soybean 2.3312 2.4594 �
spectrometer 0.0617 0.2815 �
splice 0.9985 1.0050
sponge 0.0000 0.0241 �
tae 0.0096 0.0705
vehicle 0.3803 0.4905 �
vowel 0.5198 1.1512 �
waveform 0.6809 0.6986 �
wine 0.9834 0.9725
zoo 1.4476 1.4485
Average 0.7679 0.8733
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Appendix B. Complete processing time results

Table 14: Complete processing time results for NB, CS-NCC, and Weighted-NCC, in
seconds. The best result for each dataset is marked in bold font.

Dataset NB CS-NCC Weighted-NCC
anneal 0.0070 0.0047 00.0048
arrhythmia 0.0431 0.0378 0.0361
audiology 0.0014 0.0013 0.0008
autos 0.0027 0.0022 0.0025
balance-scale 0.0009 0.0011 0.0008
bridges-version1 0.0006 0.0003 0.0005
bridges-version2 0.0002 0.0000 0.0003
car 0.0008 0.0011 0.0013
cmc 0.0009 0.0013 0.0009
dermatology 0.0011 0.0005 0.0008
ecoli 0.0006 0.0009 0.0013
flags 0.0005 0.0005 0.0002
hypothyroid 0.0148 0.0119 0.0105
iris 0.0003 0.0005 0.0003
letter 0.2061 0.2030 0.2014
lymphography 0.0003 0.0003 0.0005
mfeat-pixel 0.0131 0.0133 0.0133
nursery 0.0098 0.0123 0.0088
optdigits 0.1100 0.0986 0.1202
page-blocks 0.0394 0.0438 0.0408
pendigits 0.0969 0.0919 0.1061
postoperative-patient-data 0.0002 0.0003 0.0002
primary-tumor 0.0003 0.0006 0.0005
segment 0.0355 0.0378 0.0359
soybean 0.0008 0.0008 0.0008
spectrometer 0.2906 0.2633 0.2658
splice 0.0064 0.0047 0.0053
sponge 0.0003 0.0005 0.0005
tae 0.0000 0.0000 0.0005
vehicle 0.0052 0.0045 0.0047
vowel 0.0172 0.0178 0.0169
waveform 0.0745 0.0728 0.0794
wine 0.0016 0.0017 0.0014
zoo 0.0002 0.0000 0.0000
Average 0.0289 0.0274 0.0283
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