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Abstract

Some statistical methods for extreme value analysis assume that the maximum
observed value represents the endpoint of the support. However, in cases involv-
ing right-censored observations, it is often unclear whether the true value of a
censored observation exceeds the largest observed value. This paper is inspired
by the Supercentenarian dataset, which contains the ages at death of individu-
als who lived beyond 110 years, with right-censored data for those still alive at
the time of data collection. This study employs Nonparametric Predictive Infer-
ence (NPI), a method that provides probability statements for a range of events
of interest. NPI is a frequentist method that relies on minimal assumptions,
focusing explicitly on future observations. It uses imprecise probabilities based
on Hill’s assumption A(n) to quantify uncertainty. In this paper, we derive the
probability that the true lifetime of at least one right-censored observation—or
one of the future observations—exceeds the largest observed value. Furthermore,
we extend this analysis to the exceedance of multiple largest observations, pro-
vided that they exceed the largest censored observation. We also investigate the
time between any two of these largest observations, deriving the lower and upper
probabilities for the exceedance of this time. We then demonstrate the proposed
method using the Supercentenarian dataset, where the analysis is performed sep-
arately for men and women. We show how this approach can help to assess the
likelihood of future extreme observations and provide insights into the validity of
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assuming the largest observed value as the endpoint of support. This work high-
lights the strengths of NPI in handling right-censored data and its application to
real-world datasets.

Keywords: Nonparametric Predictive Inference, Supercentenarian data,
right-censored data, Exceedance

1 Introduction

Statistical methods for analysing extreme values typically assume that the largest
value in a data set represents the upper bound of its support. However, this assumption
may be problematic when the data set includes right-censored observations. In such
cases, the true value of a censored observation could exceed the largest observed value.
This paper is motivated by the literature on extreme value theory, where several
studies assume that the maximum value of the random quantities under consideration
corresponds to the largest observed value in the data set [1, 2]. Specifically, the paper
draws inspiration from the Supercentenarian data set [2], which contains the ages at
death of individuals who lived beyond 110 years. This data set includes right-censored
observations for those who were still alive at the time of data collection. The focus
of this paper is to investigate the likelihood that one or more of the right-censored
observations correspond to a value greater than the largest observed value.

To address this, we propose using Nonparametric Predictive Inference (NPI), a
predictive method that provides probability statements for various events of interest.
In particular, we compute the probability that the actual lifetime of one or more
right-censored observations exceeds the largest observed value, either for the censored
data or for future observations. NPI is a frequentist method that makes minimal
assumptions and focuses on quantifying uncertainty about future outcomes. It uses
imprecise probabilities based on Hill’s assumption A(n) to account for this uncertainty.

We extend this analysis to the exceedance of the second, third, fourth, and up to
the j-th largest observations, as long as they exceed the largest censored observation.
Additionally, we consider the time between any two of these largest observations and
calculate the lower and upper probabilities for the exceedance of this time interval.

The paper is structured as follows: Section 2 introduces Hill’s assumption A(n)

and its generalisation for handling right-censored data. In Section 3, we analyse the
exceedance of the largest observed value from the NPI perspective and extend this
analysis to include future observations. Section 4 explores the exceedance of the j-
th largest observations, considering the time between two of the largest values and
calculating the lower and upper probabilities for the exceedance of a given time inter-
val. The proposed methods are demonstrated using the Supercentenarian dataset in
Section 5. Finally, Section 6 provides concluding remarks.
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2 Nonparametric Predictive Inference (NPI)

Over the past few decades, Nonparametric Predictive Inference (NPI) has been devel-
oped for various data types and applied to a range of problems in statistics, as well as
in fields like risk, reliability, operations research, and finance [3]. NPI is a statistical
method that relies on minimal assumptions, particularly Hill’s assumption A(n) [4],
and uses imprecise probabilities to quantify uncertainty [5, 6].

Let X1, X2, . . . , Xn, Xn+1 be real-valued, absolutely continuous, and exchangeable
random quantities. The ordered observed values are denoted by x1 < x2 < · · · < xn,
with x0 = −∞ and xn+1 = ∞ (or x0 = 0 for non-negative random quantities) [7]. It
is assumed that there are no ties among the data; if ties exist, they are handled by
assuming small differences between tied observations, a common approach in statistics
[8]. The observations divide the real line into n + 1 intervals Ij = (xj , xj+1) for
j = 0, 1, . . . , n. Hill’s assumption A(n) [9] states that the probability of the next
observation Xn+1 falling into any of these intervals is equally likely, i.e.,

PXn+1
(xj , xj+1) =

1

n+ 1
, for j = 0, 1, . . . , n. (1)

NPI, based on Hill’s assumption A(n), provides direct probabilities for future ran-
dom quantities based on observed values. In NPI, uncertainty is quantified using lower
and upper probabilities, which are the sharpest bounds for events of interest when
A(n) is assumed to hold [5].

However, A(n) is not suitable for handling right-censored data. Coolen and Yan
[10] introduced rc-A(n), a generalization of A(n), for right-censored observations. This
generalization assumes that at the time of censoring, the residual lifetime of a censored
observation is exchangeable with the residual lifetimes of other observations that have
not failed or been censored. For handling censored data, two additional assumptions,
the Ã(n) assumption and the shifted-Ã(n) assumption, are introduced. These assump-
tions differ in how probability mass is assigned to intervals or subintervals formed by
failure and censoring times. In this work, we focus on the shifted-Ã(n) assumption,
which allows for the application of A(n) but with the starting point shifted from 0 to
the right-censoring time cii∗ .

Let X1, X2, . . . , Xn, Xn+1 be non-negative, exchangeable, and continuous random
quantities representing lifetimes. Suppose there are n total observations, including u
failure time observations, x1 < x2 < · · · < xu, and ν = n − u right-censoring times,
c1 < c2 < · · · < cν . For simplicity, let x0 = 0 and xu+1 = ∞. Additionally, suppose
there are si right-censored observations in the interval Ii = (xi, xi+1), denoted by
ci1 < ci2 < · · · < cisi , with

∑u
i=1 si = ν, such that cii∗ ∈ (xi, xi+1) for i = 0, 1, . . . , u

and i∗ = 1, 2, . . . , si. Let Xci
i∗

represent the random quantity corresponding to the

right-censoring time cii∗ . The shifted-Ã(n) assumption [10, 11] specifies the probability
distribution for Xci

i∗
, conditioned on Xci

i∗
> cii∗ , via the following M -function values:

MX
ci
i∗
(xk, xk+1) =

1

ñci
i∗

+ 1
, for k = i+ 1, . . . , u, (2)
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MX
ci
i∗
(cii∗ , xk+1) =

1

ñci
i∗

+ 1
, (3)

MX
ci
i∗
(cil,∞) =

1

ñci
i∗

+ 1
, for l = i∗ + 1, . . . , ν, (4)

where ñci
i∗

is the number of observations in the risk set at time cii∗ , for c
i
i∗ ∈ (xi, xi+1),

and i∗ = 1, 2, . . . , si. This assumption is consistent with the idea that exchangeability
of random quantities in the risk set prior to censoring implies exchangeability for those
that exceed a given censoring time, aligning with the assumption of non-informative
censoring [10, 11].

In practice, when dealing with tied observations in NPI, it is common to assume
that the tied observations differ by small amounts [8, 12]. If there is a tie between an
event time and a right-censoring time, the standard approach is to assume that the
right-censoring time occurs just after the event time [13]. In this paper, we assume
there are no ties in the data, but the same approach is used if ties are present (as
discussed in [8, 10, 12, 13]).

3 Exceedance of the largest observed value

Building on the A(n) assumption and the concept of non-informative right censoring
described in Section 2, this section introduces a new method to determine the prob-
ability that the largest observed value in a dataset with right-censored observations
will be exceeded. Specifically, the method addresses the question: What is the prob-
ability that one or more lifetimes among the censored observations exceed the largest
observed value?

Let X1, X2, . . . , Xn be non-negative, exchangeable, and continuous random quan-
tities. We have u observed event times, denoted by x1 < x2 < · · · < xu, and v = n−u
right-censored observations, with censoring times denoted by c1 < c2 < · · · < cv. For
simplicity, we define x0 = 0 and xu+1 = ∞. The random variable corresponding to a
censored observation at time cr is denoted by Xcr , where r = 1, 2, . . . , v. The largest
observed event time in the dataset is represented by R = xu.

In addition to assuming exchangeability of X1, X2, . . . , Xn, we adopt the assump-
tion that, at any right-censoring time cr, the remaining time until the event for a
censored observation is exchangeable with the remaining times for all other observa-
tions in the risk set at cr [10, 11]. Under non-informative right censoring [10, 11], we
use the shifted-Ã(n) assumption. This assumption generalizes A(n) by shifting the ref-
erence point from 0 to the observed censoring time cr, which partially specifies the
distribution of Xcr via the following M -function values:

MXcr
(xi, xi+1) =

1

ñcr + 1
, i = 0, . . . , u (5)

where cr ∈ (xi, xi+1), and ñcr is the number of observations in the risk set just before
cr (r = 1, 2, . . . , v).
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Using this framework, we can calculate the probability that at least one censored
lifetime exceeds the largest observed event timeR, considering only the current dataset
of n observations. For convenience, let GR(0) denote this event of interest. This nota-
tion is used because we are focusing solely on the current dataset, with no future
observations (i.e., m = 0) included. The probability for this event is expressed as:

P (GR(0)) = 1−
v∏

r=1

ñcr

ñcr + 1
(6)

where ñcr represents the number of observations in the risk set (those still functioning
or uncensored) just before cr. The proof of this result and an illustrative example are
provided in Appendix A.

Extending this analysis, we now consider predictions for future observations. Let
Xn+1, Xn+2, . . . , Xn+m represent future non-negative, exchangeable, continuous ran-
dom quantities. Define ñx0 = n, the initial size of the risk set at x0 = 0, and recall
that R denotes the largest observed event time. The event of interest is now extended
to include whether at least one lifetime, either among the censored observations or
among the m ≥ 1 future individuals, exceeds R. The probability for this extended
event is given by:

P (GR(m)) = 1−

[
m∏
i=1

n+ i− 1

n+ i

v∏
r=1

ñcr

ñcr + 1

]
= 1−

[
n

n+m

v∏
r=1

ñcr

ñcr + 1

]
(7)

where ñcr represents the number of observations in the risk set just before cr.

This expression shows that P (GR(m)) increases as m grows. Notably, as m → ∞,
the second term tends to zero, leading to P (GR(m)) → 1. This implies that as more
individuals are included, the probability of exceeding R becomes increasingly likely.
The proof of this result and an illustrative example are provided in Appendix B.

4 Exceedance of multiple largest observations and
time intervals

In the previous section, we examined the exceedance of the largest observed value,
R, in the context of right-censored data. In this section, we extend this analysis to
the exceedance of the second, third, fourth, ..., up to the jth largest observations, as
long as they exceed the largest censored observation, Xcv . We then consider the time
t between any two of these largest observations and calculate the lower and upper
probabilities for the exceedance of time t.

We maintain the notation introduced in the previous section, with a few additions.
To simplify notation, we redefine R (previously R = xu) as R1 = xu, representing
the first largest event time in the dataset. Similarly, let R2 = xu−1 denote the second
largest event time, R3 = xu−2 the third largest, and so on, up to the largest observed
event time greater than the censored observation cv. Thus, we have the ordering R1 >
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R2 > R3 > . . . > Rj , corresponding to xu > xu−1 > xu−2 > . . . > xu−i, where xu−i >
cv for i = 0, 1, . . . , u and j = 1, 2, . . . , u. Recall that ñcr , for r = 1, 2, . . . , v, represents
the number of observations in the risk set just before time cr. We assume no ties occur
among the observations, and the method is based on the shifted Ã(n) in Equation (5),
under the exchangeability and non-informative right censoring assumptions [10, 11].

As in the previous section, we can directly compute the probability for the event
that at least one of the right-censored individuals has a lifetime greater than any of
the largest observed values, provided that it exceeds the largest censored observation
at cv. That is, for Rj = xu−j+1, where xu−j+1 > cv for j = 1, . . . , u, the probability
is given by

P (GRj
(0)) = 1−

v∏
r=1

ñcr − j + 1

ñcr + 1
. (8)

Next, we extend the analysis by considering the addition of future individuals to
the study, as we did in Section 3. We focus on the event that at least one of the right-
censored individuals, or one of the m ≥ 1 future individuals, has a lifetime greater
than the jth largest observed value, Rj = xu−j+1, where xu−j+1 > cv. Let GRj

(m)
denote this event.

The probability that a lifetime exceeds any of the largest observed values, when
calculated backwards from the largest value to the jth largest (as long as it exceeds
the largest censored observation), is given by

P (GRj
(m)) = 1−

[
m∏
i=1

n+ i− j

n+ i

v∏
r=1

ñcr − j + 1

ñcr + 1

]
, (9)

or equivalently,

P (GRj
(m)) = 1−

[
n(n− 1) . . . (n− j + 1)

(n+m)(n+m− 1) . . . (n+m− j + 1)

v∏
r=1

ñcr − j + 1

ñcr + 1

]
. (10)

The proofs of these results are provided in Appendix C.

We now consider the event that at least one of the right-censored individuals, or
one of the m ≥ 1 future individuals, has a lifetime greater than a specific time t,
where t lies between two consecutive largest observed values, say xi and xi+1, for
i = 0, 1, . . . , u, as long as xi > cv. For simplicity, let Gt∈(xi,xi+1)(m) denote this event.

The lower probability for the event Gt∈(xi,xi+1)(m) is the probability of the event
Gxi+1

(m), i.e.,
P (Gt∈(xi,xi+1)(m)) = P (Gxi+1

(m)),

while the upper probability is the probability of the event Gxi
(m), i.e.,

P (Gt∈(xi,xi+1)(m)) = P (Gxi
(m)).

For example, if t ∈ (xu−1, xu), where R1 = xu and R2 = xu−1 represent the first
and second largest event times in the dataset, with xu−1 > cv, then the lower and
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upper survival of t, respectively, are

P (Gt∈(R2,R1)(m)) = P (GR1
(m)),

P (Gt∈(R2,R1)(m)) = P (GR2(m)),

which is given by Equation (9). which can be computed using Equation (9)
In the next section, we apply the methods introduced in this paper to the full

supercentenarian dataset, separately for women and men.

5 Application to the Supercentenarian data

This paper analyses a dataset used by Alves et al. [2], which includes the ages at
death of 1,740 individuals who lived past 110 years old, along with the ages of those
who were still alive when the data were collected. The dataset was compiled by the
Gerontology Research Group (GRG) and collected on April 22, 2018, from Tables B
and C of their records.1 For analysis, ages are presented in days, though here we will
also use years. It is assumed that there are no ties in age between individuals, and for
simplicity, we treat each year as 365 days, ignoring leap years.

Notably, the dataset highlights the extreme lifespans of supercentenarians, with
Jeanne Calment from France holding the record for the oldest verified age at 122.5
years, and Jiroemon Kimura from Japan holding the record for men at 116.2 years.
The dataset includes 1,580 lifetimes of supercentenarian women and 160 of super-
centenarian men, with women generally living longer. Of the 1,580 supercentenarian
women, 72 were still alive on April 22, 2018, and are thus considered right-censored.
In contrast, only two supercentenarian men out of 160 were alive at the time of data
collection.

This study aims to estimate the probability that at least one of the right-censored
supercentenarian women will live beyond Jeanne Calment’s age, and similarly, the
probability that at least one of the right-censored supercentenarian men will exceed
Jiroemon Kimura’s age. The methods outlined in Sections 3 and 4 will be applied sep-
arately to the supercentenarian men and women. The first two examples will illustrate
the methods from Section 3, while the latter two will demonstrate the methods from
Section 4.

Example 1. (Supercentenarian Women Data) In this example, we analyse the super-
centenarian data for women, which includes n = 1580 supercentenarian women, of
whom 72 were still alive at the time of the study and their lifetimes are thus right-
censored. Jeanne Calment’s age of 122.5 years was the largest age recorded in the
dataset, so we set R = 122.5. The objective is to determine the probability, P (GR(0)),
that at least one of the 72 right-censored supercentenarian women will have a lifetime

1The dataset is available at http://www.grg.org/Adams/Tables.htm, and further details can be found in
[2].
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exceeding R = 122.5 years. This probability is given by the following formula:

P (G122.5(0)) = 1−
72∏
r=1

ñcr

ñcr + 1
= 1− 0.6567 = 0.3433

Thus, based on our model with non-informative right censoring, there is a 34.33%
chance that at least one of the 72 right-censored supercentenarian women will live
longer than Jeanne Calment’s age.

Next, consider adding m = 1 future supercentenarian woman, denoted Xn+1, to
the study. Conditional on the assumption that all 72 right-censored supercentenarian
women have failed before reaching R = 122.5, the probability, P (G122.5(1)), that at
least one of the 72 right-censored women or the new supercentenarian woman Xn+1

will exceed R is given by:

P (G122.5(1)) = 1−

[
1580

1580 + 1

72∏
r=1

ñcr

ñcr + 1

]
= 1− 0.6563 = 0.3437

Now, suppose m = 2 future supercentenarian women, Xn+1 and Xn+2, are added
to the study. Conditional on the assumption that all 72 right-censored women and the
first future supercentenarian woman Xn+1 have failed before reaching R = 122.5, the
probability, P (G122.5(2)), that at least one of the 72 right-censored women or any of
the two new supercentenarian women will exceed R is:

P (G122.5(2)) = 1−

[
1580

1580 + 2

72∏
r=1

ñcr

ñcr + 1

]
= 1− 0.6559 = 0.3441

For larger values of m ≥ 2, the probability P (G122.5(m)) that at least one of the
72 right-censored supercentenarian women or any of the m future supercentenarian
women will live longer than R = 122.5 can be calculated as:

P (G122.5(m)) = 1−

[
1580

1580 +m

72∏
r=1

ñcr

ñcr + 1

]
= 1−

[
1580

1580 +m
× 0.6567

]
As m → ∞, the probability P (G122.5(m)) approaches 1, indicating that with

enough future supercentenarians, the event becomes almost certain, as illustrated in
Figure 1.

One interesting aspect to consider is determining the smallest m such that the
value of the probability P (GR(m)) exceeds a specified probability P , where P ∈ [0, 1].
For example, from Figure 1, we find that:

P (G122.5(m)) = 1−
[

1580

1580 +m
× 0.6567

]
> P

where P (G122.5(m)) exceeds P = 0.95 when m ≥ 19200 future supercentenarian
women are considered.
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Fig. 1 The probability P (G122.5(m)) for the supercentenarian women dataset, as in Example 1.
This figure illustrates the likelihood that at least one of the 72 right-censored women or any of the
m future supercentenarian women will exceed the age of 122.5 years. In particular, for m = 2, the
probability is 0.3441, and as m increases, the probability approaches 1, indicating that with a larger
number of future supercentenarians, the event becomes almost certain.

Example 2. (Supercentenarian men data) In this example, we examine the super-
centenarian data for men. The dataset consists of 160 supercentenarian men, two of
whom were still alive at the time of the study, and therefore, their lifetimes are right-
censored. Since Jiroemon Kimura’s age of 116.2 years was the largest recorded age
in the dataset, we set R = 116.2. The focus is on determining the probability of the
event G116.2(0), which is the probability that at least one of the two right-censored
supercentenarian men has a lifetime exceeding the largest observed age, R = 116.2.
This probability is given by Equation (6) as follows:

P (G116.2(0)) = 1−
2∏

r=1

ñcr

ñcr + 1
= 1− 0.9444 = 0.0556

Thus, there is a 5.56% chance that at least one of the two right-censored supercente-
narian men would live beyond Jiroemon Kimura’s age of 116.2 years.

Next, consider m = 1 future supercentenarian man, Xn+1, added to the study, in
addition to the n = 160 supercentenarian men. The lifetime of Xn+1 is considered,
conditional on the assumption that both right-censored supercentenarian men have
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already failed before the age R = 116.2. The probability of the event G116.2(1), which
is the probability that at least one of the two right-censored men or the lifetime of
Xn+1 exceeds R = 116.2, is calculated using Equation (7) as:

P (G116.2(1)) = 1−

[
160

160 + 1

2∏
r=1

ñcr

ñcr + 1

]
= 1− 0.9385 = 0.0615

Now, consider m = 2 future supercentenarian men, Xn+2, added to the study, in
addition to the n = 160 supercentenarian men and the first future supercentenarian,
Xn+1. The lifetime of Xn+2 is considered, conditional on the assumption that both
right-censored supercentenarian men and Xn+1 have already failed before the age
R = 116.2. The probability of the event G116.2(2), that at least one of the two right-
censored men or one of the lifetimes of Xn+1 and Xn+2 exceeds R = 116.2, is given
by:

P (G116.2(2)) = 1−

[
160

160 + 2

2∏
r=1

ñcr

ñcr + 1

]
= 1− 0.9327 = 0.0673

Consideringm ≥ 2 future supercentenarian men added to the study, the probability
of the event G116.2(m), that at least one of the two right-censored supercentenarian
men or one of the lifetimes of the m ≥ 2 future supercentenarian men exceeds R =
116.2, is calculated using Equation (7). The results are displayed in Figure 2 as:

P (G116.2(m)) = 1−

[
160

160 +m

2∏
r=1

ñcr

ñcr + 1

]
= 1−

[
160

160 +m
× 0.9444

]
An interesting point to consider is identifying the smallest value of m for which the

probability P (GR(m)) exceeds a given threshold P , where P ∈ [0, 1]. For instance, as
shown in Figure 2, we observe that:

P (G116.2(m)) = 1−
[

160

160 +m
× 0.9444

]
> P

where P (G116.2(m)) exceeds P = 0.95 when m ≥ 2900 future supercentenarian men
are added to the study.

Example 3. (Supercentenarian women data) In this example, we use data from n =
1580 supercentenarian women (as in Example 1). Among them, 72 women were still
alive at the time of the study, and their lifetimes are right-censored. Additionally,
there are eight supercentenarian women whose ages exceed the largest censored value,
with the oldest recorded age being 117.1. In this case, we consider the second-largest
age, R2 = 119.3, and the third-largest age, R3 = 117.8, in contrast to the first largest
age of R1 = 122.5, as considered in Example 1.

We are interested in determining the probability of the event GR2
(0), which refers

to the probability that at least one of the 72 right-censored supercentenarian women
has a lifetime exceeding the second-largest observed age, R2 = 119.3. This probability
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Fig. 2 The probability P (G116.2(m)) for the supercentenarian men dataset, as in Example 2. This
figure shows the likelihood that at least one of the two right-censored supercentenarian men or any of
the m future supercentenarian men will exceed the age of R = 116.2 years. For m = 0, the probability
is 0.0556, indicating a 5.56% chance that one of the right-censored men would exceed this age. As
more future supercentenarians are added to the study, the probability increases, with the probability
approaching 1 as m becomes larger. Notably, the probability exceeds 0.95 when at least 2900 future
supercentenarian men are included in the study.

is computed as follows:

P (G119.3(0)) = 1−
72∏
r=1

ñcr − 1

ñcr + 1
= 1− 0.4228 = 0.5772.

Next, we compute the probability for the event GR3
(0), which is the probability that

at least one of the 72 right-censored supercentenarian women has a lifetime exceeding
the third-largest observed age, R3 = 117.8. This probability is:

P (G117.8(0)) = 1−
72∏
r=1

ñcr − 2

ñcr + 1
= 1− 0.2655 = 0.7345.

Thus, based on our model assumptions, which involve the A(n) assumption and non-
informative right censoring, we find that the probability of at least one of the 72
supercentenarian women surviving beyond R2 = 119.3 is 0.5772. This probability
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increases to 0.7345 for surviving beyond R3 = 117.8. Additionally, it is more likely
that someone will survive any of the eight supercentenarian women, as the analysis
proceeds from the first largest age to the eighth largest age, all of which exceed the
largest censored age of 117.1.

Now, let us consider the scenario where m = 2 future supercentenarian women,
Xn+1 and Xn+2, are added to the study, alongside the existing n = 1580 supercente-
narian women. The lifetime of Xn+2 is considered, conditional on the assumption that
all 72 right-censored supercentenarian women and Xn+1 have failed before reaching
R2 = 119.3. The probability of the event GR2(2), which is the probability that at
least one of the 72 right-censored women or one of the future women (Xn+1 or Xn+2)
survives beyond R2 = 119.3, is computed as:

P (G119.3(2)) = 1−

[
1580 · 1579

(1580 + 2)(1580 + 1)

72∏
r=1

ñcr − 1

ñcr + 1

]
= 1− 0.4217 = 0.5783.

Similarly, for the survival beyond the third largest observed age R3 = 117.8, we
compute the probability for the event GR3

(2), which is the probability that at least
one of the 72 right-censored supercentenarian women or Xn+1 and Xn+2 survives
beyond R3 = 117.8:

P (G117.8(2)) = 1−

[
1580 · 1579 · 1578

(1580 + 2)(1580 + 1)(1580)

72∏
r=1

ñcr − 2

ñcr + 1

]
= 1− 0.2645 = 0.7355.

Thus, for survival times between R2 = 119.3 and R3 = 117.8, the upper survival
probability is 0.7355 (corresponding to R3 = 117.8) and the lower survival probability
is 0.5783 (corresponding to R2 = 119.3).

Considering m ≥ 2 future supercentenarian women added to the study, the prob-
abilities for the events GR1

(m), GR2
(m), and GR3

(m)—that at least one of the 72
right-censored supercentenarian women or one of the m ≥ 2 future women survives
beyond R1 = 122.5, R2 = 119.3, or R3 = 117.8—are shown in Figure 3.

From Figure 3, if we consider a specific probability value, say P = 0.95, we can
determine the smallest m for which the probabilities P (G122.5(m)), P (G119.3(m)),
and P (G117.8(m)) exceed P = 0.95. It is evident from the figure that as the largest
recorded age decreases (moving backward through the ordered ages), the smallest m
that results in a probability greater than P = 0.95 also decreases. Specifically, for
the event G122.5(m), the smallest m such that P (G122.5(m)) > 0.95 is m ≥ 19200
future supercentenarian women. For the event G119.3(m), the smallest m for which
P (G119.3(m)) > 0.95 is m ≥ 3050 future supercentenarian women. Finally, for the
event G117.8(m), the smallest m that makes P (G117.8(m)) > 0.95 is m ≥ 1180 future
supercentenarian women.

Example 4. (Supercentenarian Men Data) In this example, we again use the data on
n = 160 supercentenarian men, as in Example 2. Two of these men are still alive at
the time of the study, so their lifetimes are right-censored. Additionally, there are 33
supercentenarian men whose ages exceed the largest censored supercentenarian age,

12
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Fig. 3 The probabilities P (GR1
(m)), P (GR2

(m)), and P (GR3
(m)) for the supercentenarian women

dataset, as in Example 3. These probabilities represent the likelihood that at least one of the 72
right-censored supercentenarian women, or any of the m future supercentenarian women, will survive
beyond the specified age thresholds: R1 = 122.5, R2 = 119.3, and R3 = 117.8. For each case,
the probability increases with the addition of future supercentenarians. As illustrated, the smallest
number of future supercentenarian women required for the probability to exceed 0.95 is m ≥ 19200 for
R1, m ≥ 3050 for R2, and m ≥ 1180 for R3. This demonstrates that as the reference age decreases,
the number of future supercentenarians needed to achieve a high probability decreases as well.

which is 111.9. In Example 2, we considered the first largest recorded age, R1 = 116.2.
In this case, we focus on the second and third largest ages recorded, R2 = 115.7 and
R3 = 115.5, respectively.

The interest is in calculating the probability for the event GR2
(0), which represents

the probability that at least one of the two right-censored supercentenarian men has a
lifetime greater than the second largest observed value, R2 = 115.7. This probability
is obtained as follows:

P (G115.7(0)) = 1−
2∏

r=1

ñcr − 1

ñcr + 1
= 1− 0.8903 = 0.1097.

13



Similarly, the probability for the event GR3(0), where at least one of the two right-
censored supercentenarian men has a lifetime greater than the third largest recorded
age, R3 = 115.5, is

P (G115.5(0)) = 1−
2∏

r=1

ñcr − 2

ñcr + 1
= 1− 0.8378 = 0.1622.

Under the assumptions of the model, which is based on the A(n) assumption and non-
informative right censoring, the probability that at least one of the right-censored
supercentenarian men will live longer than the second largest observed age, R2 =
115.7, is 0.1097. This probability increases to 0.1622 if considering survival beyond
the third largest age, R3 = 115.5. Additionally, it is more likely that one of the 33
supercentenarian men, whose ages exceed 111.9, will survive any of the ages from R1

to R3.
Next, consider the addition of m = 2 future supercentenarian men, denoted Xn+1

and Xn+2, to the study. The lifetime of Xn+2 is considered, conditional on the fact
that the two right-censored supercentenarian men and Xn+1 have all failed before
reaching the second largest recorded age, R2 = 115.7. The probability for the event
GR2(2), that at least one of the right-censored supercentenarian men or the future
supercentenarian men Xn+1 and Xn+2 will live longer than R2, is

P (G115.7(2)) = 1−

[
160 · 159

(160 + 2)(160 + 1)

2∏
r=1

ñcr − 1

ñcr + 1

]
= 1− 0.8684 = 0.1316.

Similarly, considering the survival of the third largest age, R3 = 115.5, and the
addition of m = 2 future supercentenarian men, the probability for the event GR3

(2)
is

P (G115.5(2)) = 1−

[
160 · 159 · 158

(160 + 2)(160 + 1)(160)

2∏
r=1

ñcr − 2

ñcr + 1

]
= 1− 0.8070 = 0.1930.

Now, consider the event Gt∈(R3,R2)(2), where t lies between R3 = 115.5 and R2 =
115.7, in the case of adding m = 2 future supercentenarian men. The lower probability
for the event Gt∈(115.5,115.7)(2) is derived from the probability for the event G115.7(2),
as shown in Equation (4), yielding:

P (Gt∈(115.5,115.7)(2)) = P (G115.7(2)) = 0.1316.

The corresponding upper probability for the event Gt∈(115.5,115.7)(2) is derived from
the probability for the event G115.5(2), as shown in Equation (4), yielding:

P (Gt∈(115.5,115.7)(2)) = P (G115.5(2)) = 0.1930.

Finally, consider the case where m ≥ 2 future supercentenarian men are added
to the study. The probabilities for the events GR1

(m), GR2
(m), and GR3

(m), which

14
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Fig. 4 The probabilities P (GR1 (m)), P (GR2 (m)), and P (GR3 (m)) for the supercentenarian men
dataset, as in Example 4. These probabilities represent the likelihood that at least one of the two right-
censored supercentenarian men, or any of the m future supercentenarian men, will survive beyond the
specified age thresholds: R1 = 116.2, R2 = 115.7, and R3 = 115.5. The probability increases with
the addition of future supercentenarians. From the figure, it is evident that as the largest recorded
age decreases, the smallest number of future supercentenarians required to exceed a probability of
0.95 decreases. Specifically, for the event G116.2(m), the smallest m such that P (G116.2(m)) > 0.95
is m ≥ 2900; for G115.7(m), it is m ≥ 515; and for G115.5(m), it is m ≥ 250.

represent the probabilities that at least one of the two right-censored supercentenarian
men or one of the m ≥ 2 future supercentenarian men will live longer than R1 = 116.2,
R2 = 115.7, and R3 = 115.5, respectively, are shown in Figure 4.

From Figure 4, if we consider a specific probability value, say P = 0.95, we can
determine the smallest m for which the probabilities P (G116.2(m)), P (G115.7(m)),
and P (G115.5(m)) exceed P = 0.95. It is evident from the figure that as the largest
recorded age decreases (moving backward through the ordered ages), the smallest
m that results in a probability greater than P = 0.95 also decreases. Specifically,
we see that P (G116.2(m)) exceeds 0.95 when m ≥ 2900 future supercentenarian
men, P (G115.7(m)) exceeds 0.95 when m ≥ 515 future supercentenarian men, and
P (G115.5(m)) exceeds 0.95 when m ≥ 250 future supercentenarian men.

15



6 Concluding remarks

In this paper, we introduced a method to estimate the probability that the true life-
time corresponding to a right-censored observation exceeds the largest observed value
in a dataset. This method also extends to consider future observations, calculating
the probability that at least one future or right-censored observation has a lifetime
exceeding the largest observed value. Furthermore, we extended the analysis to the
exceedance of the second, third, and up to the j-th largest observations, provided they
exceed the largest censored observation. Additionally, we examined the time between
any two of these largest observations, calculating the lower and upper probabilities for
the exceedance of the time between them.

The method is built upon the Nonparametric Predictive Inference (NPI) frame-
work, particularly utilising the shifted A(n) assumption. This assumption, combined
with the exchangeability assumption and non-informative right censoring, offers a
flexible and assumption-minimal approach for deriving predictive probabilities. These
assumptions focus on the remaining times to the event of interest for individuals reach-
ing a certain age and allow for the quantification of uncertainty in future observations.
The use of NPI is especially suited for extreme value analysis because it does not rely
on parametric assumptions, making it well-suited for data with extreme values, such
as the Supercentenarian dataset, where the true tail behaviour of the distribution is
of particular interest.

We applied these methods to the Supercentenarian dataset, with separate analyses
for women and men. The results show that assuming the largest observed value as the
endpoint of support is not appropriate in the context of extreme value analysis. For
instance, the probabilities of surviving beyond the largest observed age were notably
high, demonstrating the importance of considering exceedance probabilities rather
than treating the largest observed value as a definitive endpoint.

While the NPI method, with its minimal assumptions, provides valuable insights,
it does have limitations. It is not sufficient to make detailed predictions beyond the
largest observed value without incorporating additional distributional assumptions or
accounting for other complexities in the data. Future research could consider extending
this methodology by integrating additional assumptions about the underlying distri-
bution or by using alternative approaches that allow for covariates and random effects
to refine survival probability estimates. Such extensions could enhance the predictive
power of the analysis, especially when applied to larger and more diverse datasets that
consider other factors, such as health status, socio-economic factors, and geography.

This work provides a foundation for understanding the uncertainty associated with
extreme survival outcomes and has practical applications in fields such as health-
care, demography, and insurance. The exceedance probabilities we have derived could
inform resource allocation for long-term care, inform population models of extreme
longevity, and guide insurance risk assessments for longevity-related products. Further
exploration of these implications will help shape policies that consider the growing
number of individuals living to extreme ages.

It is also of interest to develop the NPI approach to include further information
through modelling the dependence of lifetimes on covariates. This will provide an
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alternative to inferences such as the Proportional Hazards model and will be enabled
by the development of NPI for regression problems, which is currently ongoing.

In conclusion, while NPI offers a robust framework for extreme value analysis in
the context of right-censored data, integrating additional assumptions and expanding
the data set will be key to refining survival predictions and enhancing the practical
relevance of this approach. NPI for right-censored data is closely related to the Kaplan-
Meier (KM) estimate for the population survival function for such data [14]. The
NPI-based lower and upper survival functions bound the KM estimate, but they have
strong consistency properties for prediction, which do not hold for the KM estimate.
Furthermore, NPI provides predictive inference which is exactly calibrated [15], a
strong consistency property in frequentist statistics.
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Appendix A Proof of Equation (6) with an
illustrative example

Proof of Equation (6): We first consider the individual Xcv , who is the last indi-
vidual to be censored at censoring time cv, such that there are no further censorings
beyond it. For Xcv , we can apply the shifted-Ã(n), as given in Equation (5), which
allows us to apply A(n) with the starting point shifted from 0 to the highest right-
censoring time cv. The lifetime of this individual Xcv will either exceed R or not. If
the lifetime of Xcv exceeds R, then based on the shifted-Ã(n), the probability that
Xcv > R is

P (Xcv > R) =
1

ñcv + 1

If the lifetime ofXcv does not exceedR, then the probability for the eventXcv < R,
knowing the value of ñcv , is

P (Xcv < R) = 1− 1

ñcv + 1
=

ñcv

ñcv + 1

where ñcv is the number of observations in the risk set just prior to time cv.
Next, we consider the previous individual with the second censoring time cv−1,

namely Xcv−1
, conditional on Xcv < R. It is important to note that for Xcv−1

, it
does not matter where exactly the final individual’s failure time or lifetime, Xcv , is, as
long as it occurs before R. Specifically, we do not need to take censoring into account
for Xcv because we are conditioning on what happens before R. Thus, it does not
matter what the exact value of Xcv is within the interval (Xcv−1

,R). Therefore, the
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probability that Xcv−1 exceeds R, given that Xcv < R, based on the shifted-Ã(n), is

P (Xcv−1 > R | Xcv < R) =
1

ñcv−1
+ 1

and the probability for the event of interest, Xcv−1
< R, given Xcv < R, knowing the

value of ñcv−1
, is

P (Xcv−1 < R | Xcv < R) = 1− 1

ñcv−1 + 1
=

ñcv−1

ñcv−1 + 1

where ñcv−1
is the number of observations in the risk set just prior to time cv−1.

The same procedures are repeated for all other individuals whose lifetimes have
been right-censored at censoring times cr, where r = 1, 2, . . . , v−3, v−2. If the lifetime
of an individual Xcr does not exceed R, we check the previous individuals at those
censoring times cr. The important thing to note is that for these individuals, it does
not matter exactly where their failure times occur as long as they have already failed
before R. Generally, for the lifetime of these later individuals, censoring does not need
to be taken into account, since it is based on what happens before R. Therefore, for an
individual Xcr at time cr, we only know the number of individuals between Xcr and
R, and we also know that all of them failed before R. The probability that Xcr > R,
given that Xcr+1

< R, . . . , Xcv−1
< R, Xcv < R, based on the shifted-Ã(n), as in

Equation (5), is

P (Xcr > R | Xcr+1 < R, . . . , Xcv−1 < R, Xcv < R) =
1

ñcr + 1

and the probabilities for the event of interest, that no one survives beyond R, knowing
the values of ñcr for r = 1, 2, . . . , v − 3, v − 2, are

P (Xcr < R | Xcr+1 < R, . . . , Xcv−1 < R, Xcv < R) = 1− 1

ñcr + 1
=

ñcr

ñcr + 1
(A1)

It is crucial to emphasize that for the event of interest above, we do not need to
apply A(n) with censoring, since it is written as a conditional event that all individuals
have lifetimes less than R. If an individual’s lifetime exceeds R, then we know that
the event of all individuals being less than R is not true.

Consequently, the probability for the event of interest GR(0), denoted by
P (GR(0)), is

P (GR(0)) = 1−
v∏

r=1

ñcr

ñcr + 1

Thus, the proof is complete.

The following example illustrates the probabilities presented in this section.
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Example 5. Suppose we have a dataset consisting of n = 10 observations. Of these
ten individuals, seven died at ages 111, 113, 115, 116, 119, 120, and 122, while three
observations were still alive at the time the data were collected. Their lifetimes were
right-censored at ages 112, 114, and 117. Note that the largest recorded observation is
122, so R = 122. Let Xc1 , Xc2 , and Xc3 denote the random quantities corresponding
to the right-censoring times at 112, 114, and 117, respectively.

We first consider the individual Xc3 , who was censored last at age 117, such that
there are no further censorings beyond this point. The lifetime ofXc3 will either survive
beyond R or not. If Xc3 > 122, then based on the shifted-Ã(3) with 3 observations in
the risk set just prior to time c3, the probability that Xc3 > 122 is:

P (Xc3 > 122) =
1

4

If Xc3 < 122, then the probability that Xc3 < 122 is 1− 1
4 = 3

4 .
Next, we consider Xc2 , who was censored at age 114, conditional on Xc3 < 122.

For Xc2 , we do not need to account for censoring of Xc3 , since Xc3 < 122 and thus
does not influence the probability. We only know that there were 3 deaths between
116 and 122. Thus, the probability that Xc2 > 122, given Xc3 < 122, based on the
shifted-Ã(6) with ñc2 = 6, is:

P (Xc2 > 122 | Xc3 < 122) =
1

7

Therefore, the probability for Xc2 < 122, given Xc3 < 122, is 1− 1
7 = 6

7 .
Next, we considerXc1 , who was censored at age 112, conditional on bothXc2 < 122

and Xc3 < 122. For Xc1 , we again do not need to account for censoring for Xc2 and
Xc3 , since both died before 122. It does not matter what the exact values of Xc2 and
Xc3 are within the interval (114, 122), and we only know that there were 6 deaths
between 113 and 122. Thus, the probability that Xc1 > 122, given that Xc2 < 122
and Xc3 < 122, based on the shifted-Ã(8) with ñc1 = 8, is:

P (Xc1 > 122 | Xc2 < 122, Xc3 < 122) =
1

9

Therefore, the probability that Xc1 < 122, given Xc2 < 122 and Xc3 < 122, is 1− 1
9 =

8
9 .

Consequently, the probability that at least one of the three individuals Xc1 , Xc2 ,
and Xc3 , whose lifetimes are right-censored at ages 112, 114, and 117, respectively,
would have a lifetime greater than R = 122, is:

P (G122(0)) = 1−
3∏

r=1

ñcr

ñcr + 1
= 1−

[
3

4
× 6

7
× 8

9

]
= 1− 4

7
= 0.4286
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This example illustrates how to derive the probability for the event of interest
G122(0). We do not need to account for censoring in the A(n) setting because we are
conditioning on the fact that all individuals are less than R = 122.

Appendix B Proof of Equation (7) with an
illustrative example

Proof of Equation 7: For m = 1, we consider the lifetime of the first future indi-
vidual, Xn+1, conditional on the fact that all individuals whose lifetimes have been
right-censored at censoring times cr (where r = 1, 2, . . . , v) have failed before the
value R. It is crucial to note that, for all right-censored individuals, it does not matter
exactly where their lifetimes are, as long as they occur before R. Therefore, the only
information we need is the number of individuals in the risk set at time x0, denoted
ñx0

= n. The probability of the event that Xn+1 > R, given that all Xcr < R,
r = 1, 2, . . . , v, based on the shifted-Ã(n) as in Equation (5), with ñx0

= n, is

P (Xn+1 > R | Xc1 < R, Xc2 < R, . . . , Xcv < R) =
1

ñx0
+ 1

=
1

n+ 1
.

The probability of the complementary event, that Xn+1 < R, given the same
conditions, is

P (Xn+1 < R | Xc1 < R, Xc2 < R, . . . , Xcv < R) = 1− 1

n+ 1
=

n

n+ 1
.

For m = 2, we consider the lifetime of the second future individual, Xn+2, condi-
tional on the lifetime of the first future individual, Xn+1, and all individuals whose
lifetimes have been right-censored at times cr (where r = 1, 2, . . . , v) having failed
before R. Again, the probability that Xn+2 > R, given that Xn+1 < R and all
Xcr < R, is derived based on the shifted-Ã(n), now with ñx0

+1 = n+1, as Xn+1 has
been added. Thus, the probability is

P (Xn+2 > R | Xn+1 < R, Xc1 < R, . . . , Xcv < R) =
1

(ñx0
+ 1) + 1

=
1

n+ 2
.

The probability for the complementary event, Xn+2 < R, is

P (Xn+2 < R | Xn+1 < R, Xc1 < R, . . . , Xcv < R) = 1− 1

n+ 2
=

n+ 1

n+ 2
.

In general, for an event Xn+i > R where i = 2, 3, . . . ,m, conditional on the
previous future individuals and all right-censored individuals, the probability based
on the shifted-Ã(n) is

P (Xn+i > R | Xn+1 < R, . . . , Xn+i−1 < R, Xc1 < R, . . . , Xcv < R) =
1

(ñx0 + i− 1) + 1
=

1

n+ i
.
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For the complementary event Xn+i < R, the probability is

P (Xn+i < R | Xn+1 < R, . . . , Xn+i−1 < R, Xc1 < R, . . . , Xcv < R) = 1− 1

n+ i
=

n+ i− 1

n+ i
.

(B2)

Since the event of interest, GR(m), accounts for both future observations and
the data set containing the n observations, Equation (A1), which is related to the
data set with only the n observations, and Equation (B2), which is related to future
observations, are required to compute the probability that all right-censored times
exceed R. Therefore, the probability for the event GR(m), denoted PR(G(m)), is

P (GR(m)) = 1−

[
m∏
i=1

n+ i− 1

n+ i
×

v∏
r=1

ñcr

ñcr + 1

]
= 1−

[
n

n+m

v∏
r=1

ñcr

ñcr + 1

]
.

Thus, the proof is complete.

The following example illustrates the probabilities presented in this section.
Example 6. We again use the same data on n = 10 observations (as in Example
5). We consider that Xn+1 and Xn+2 are the lifetimes of the first and second future
individuals to be included in the study. We now ask for the probability that at least
one of the three individuals, Xc1 , Xc2 , Xc3 , with lifetimes right-censored at ages 112,
114, and 117, or one of the future individuals, Xn+1 and Xn+2, has a lifetime greater
than the largest observed value R = 122.

We first consider the lifetime of Xn+1, conditional on that Xc1 , Xc2 , Xc3 , with
right-censored lifetimes at ages 112, 114, and 117, have failed before R = 122. The
probability that Xn+1 > 122, given that Xc1 < 122, Xc2 < 122, Xc3 < 122, is

P (Xn+1 > 122 | Xc1 < 122, Xc2 < 122, Xc3 < 122) =
1

11
.

The probability that Xn+1 < 122, given the same conditions, is

P (Xn+1 < 122 | Xc1 < 122, Xc2 < 122, Xc3 < 122) = 1− 1

11
=

10

11
.

Next, we consider the lifetime of the second future individual Xn+2, conditional on
that Xn+1 < 122 and the right-censored individuals have also failed before 122. The
probability that Xn+2 > 122, given that Xn+1 < 122, Xc1 < 122, Xc2 < 122, Xc3 <
122, is

P (Xn+2 > 122 | Xn+1 < 122, Xc1 < 122, Xc2 < 122, Xc3 < 122) =
1

12
.

The probability that Xn+2 < 122, given the same conditions, is

P (Xn+2 < 122 | Xn+1 < 122, Xc1 < 122, Xc2 < 122, Xc3 < 122) = 1− 1

12
=

11

12
.
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Consequently, the probability for the event G122(2), denoted by P (G122(2)), is
derived as

P (G122(2)) = 1−

[
2∏

i=1

n+ i− 1

n+ i

3∏
r=1

ñcr − 1

ñcr

]

= 1−
[(

10

11
× 11

12

)
×
(
3

4
× 6

7
× 8

9

)]
= 1− 40

84
= 0.5238.

Appendix C Proof of the results in Section 4

We now take into account the second largest observed value in the dataset, denoted by
R2 = xu−1, as long as there are no censored observations past it, such that xu−1 > cv.
We consider the event of interest: for at least one of the individuals whose lifetimes have
been right-censored, the actual lifetime value is larger than the second largest observed
value, R2. For ease of notation, let GR2

(0) denote this event. The probability for the
event GR2

(0) is then found in the same manner as for the event GR(0) (exceeding the
first largest observation), as derived in Section 3.

For individuals whose lifetimes have been right-censored at time cr, where r =
1, 2, . . . , v, censoring does not need to be considered as long as all these individuals
failed before R2, and we only know the number of individuals between Xcr and R2.
Based on the shifted-Ã(n) as given in Equation (5), we have

PXcr
(R2,R) = PXcr

(R,∞) =
1

ñcr + 1
,

where ñcr is the number of observations in the risk set just before time cr, for r =
1, 2, . . . , v. Therefore, the probability that Xcr > R2, given that all other individuals
failed before R2, is

P (Xcr > R2|Xcr+1 < R2, . . . , Xcv−1 < R2, Xcv < R2) =
2

ñcr + 1
.

The probability for the event of interest, that nobody survives the value R2, is then

P (Xcr < R2|Xcr+1
< R2, . . . , Xcv−1

< R2, Xcv < R2) = 1− 2

ñcr + 1
=

ñcr − 1

ñcr + 1
.

Thus, the probability for the event GR2
(0), denoted by P (GR2

(0)), is given by

P (GR2
(0)) = 1−

v∏
r=1

ñcr − 1

ñcr + 1
.

Following the same reasoning, we obtain the probability for the event GR3
(0),

where at least one individual, whose lifetime has been right-censored, has an actual
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lifetime greater than the third largest observed value, R3 = xu−2, with xu−2 > cv.
The probability is

P (GR3
(0)) = 1−

v∏
r=1

ñcr − 2

ñcr + 1
.

In a similar fashion, one can compute the probability for any event where at least
one individual’s lifetime exceeds a specified largest observed value, as long as it is
greater than the largest censored observation at cv. Specifically, for Rj = xu−j+1,
where xu−j+1 > cv, we have

P (GRj
(0)) = 1−

v∏
r=1

ñcr − j + 1

ñcr + 1
.

We are now considering the addition of future items to the study, as we did in
Section 3. We then examine the event of interest where, for at least one of the individ-
uals whose lifetimes have been right-censored, or one of the m ≥ 1 future individuals
added to the study, the actual lifetime would be larger than the second largest observed
value, R2 = xu−1, with xu−1 > cv. Let GR2(m) denote this event.

The probability for the event Xn+i > R2, for i = 1, 2, . . . ,m, conditional on the
failure of all previous future individuals and those whose lifetimes have been right-
censored at times cr, where r = 1, 2, . . . , v, before R2 = xu−1, is derived based on the
shifted-Ã(n) in Equation (5) as

P (Xn+i > R2|Xn+1 < R2, . . . , Xn+i−1 < R2, Xc1 < R2, . . . , Xcv < R2) =
2

n+ i
.

The probability for the event Xn+i < R2, given that Xn+1 < R2, . . . , Xn+i−1 < R2, is

P (Xn+i < R2|Xn+1 < R2, . . . , Xn+i−1 < R2, Xc1 < R2, . . . , Xcv < R2) = 1− 2

n+ i
=

n+ i− 2

n+ i
.

Thus, the probability for the event of interest GR2(m), denoted by P (GR2(m)), is
given by

P (GR2(m)) = 1−

[
m∏
i=1

n+ i− 2

n+ i

v∏
r=1

ñcr − 1

ñcr + 1

]
,

which simplifies to

P (GR2
(m)) = 1−

[
n(n− 1)

(n+m)(n+m− 1)

v∏
r=1

ñcr − 1

ñcr + 1

]
.

Using the same reasoning, the probability for the event of interest GR3
(m), where

at least one individual (from either the right-censored individuals or the m future
individuals) has a lifetime exceeding the third largest observed value R3 = xu−2, is
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given by

P (GR3
(m)) = 1−

[
m∏
i=1

n+ i− 3

n+ i

v∏
r=1

ñcr − 2

ñcr + 1

]
,

which simplifies to

P (GR3(m)) = 1−

[
n(n− 1)(n− 2)

(n+m)(n+m− 1)(n+m− 2)

v∏
r=1

ñcr − 2

ñcr + 1

]
.

Similar to the above explanation, one could straightforwardly obtain the prob-
ability for the event that at least one of the individuals whose lifetimes have been
right-censored, or one of them ≥ 1 future individuals added to the study, has an actual
lifetime value larger than any other largest observed value, as long as it is greater than
the largest censored observation at cv. Consequently, the probability that someone
survives any largest observed value recorded in a data set, when it exceeds the largest
censored observation, increases as it is calculated backwards from the largest recorded
value to the j-th largest observed value, provided that it surpasses the largest cen-
sored observation. In general, for Rj = xu−j+1, where xu−j+1 > cv, the probability is
given as follows:

P (GRj
(m)) = 1−

[
m∏
i=1

n+ i− j

n+ i

v∏
r=1

ñcr − j + 1

ñcr + 1

]

which simplifies to:

P (GRj
(m)) = 1−

[
n(n− 1) . . . (n− j + 1)

(n+m)(n+m− 1) . . . (n+m− j + 1)

v∏
r=1

ñcr − j + 1

ñcr + 1

]
.

Thus, the proof is complete.
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