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Abstract. The survival signature is a useful tool for quantification of
reliability of large systems and networks with relatively few types of
components. This paper provides an introductory overview of the sur-
vival signature, with emphasis on recent developments and challenges to
enable its use for practical applications. Topics discussed include different
survival signatures for specific scenarios, the level of detail in reliability
modelling, and computational aspects.
In the literature, system reliability quantification is mostly focused on
binary state systems with typically only few components in relatively
straightforward configurations and with single functions. Real-world sys-
tems, on the other hand, often have multiple levels of functioning and
consist of many components in a variety of configurations while they may
need to perform multiple functions, leading to substantial challenges for
reliability quantification.
In the twelve years since its introduction, the survival signature has
gained much attention in the literature, and progress has been made
on the challenges indicated above. However, many challenges remain,
including some theoretical questions about the very nature of system
reliability in real-world situations.
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1 Survival Signature

Coolen and Coolen-Maturi [6] introduced the survival signature for quantifica-
tion of reliability of binary state systems with binary state components. Con-
sider a system with K ≥ 1 types of components, with nk components of type
k ∈ {1, 2, . . . ,K} and

∑K
k=1 nk = n. The essential assumption is that the ran-

dom failure times of components of the same type are exchangeable [9, 13]. The
state vector x ∈ {0, 1}n of the system describes the states of its components,
with 1 representing that a component functions and 0 that it does not func-
tion. The system structure function ϕ(x) ∈ {0, 1} describes the functioning of
the system given the component states x, where 1 represents that the system
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functions and 0 that it does not function. Due to the arbitrary ordering of the
components in the state vector, components of the same type can be grouped to-
gether, leading to a state vector that can be written as x = (x1, x2, . . . , xK), with
xk = (xk

1 , x
k
2 , . . . , x

k
nk
) the sub-vector representing the states of the components

of type k.
The survival signature, denoted by Φ(l1, l2, . . . , lK), with lk = 0, 1, . . . , nk for

k = 1, . . . ,K, is defined as the probability that the system functions given that
precisely lk of its nk components of type k function, for each k ∈ {1, 2, . . . ,K}.
There are

(
nk

lk

)
state vectors xk with

∑nk

i=1 x
k
i = lk; let Sk

l denote the set of these
state vectors for components of type k and let Sl1,...,lK denote the set of all state
vectors for the whole system for which

∑nk

i=1 x
k
i = lk, k = 1, 2, . . . ,K. Due to the

exchangeability assumption for the failure times of the nk components of type
k, all the state vectors xk ∈ Sk

l are equally likely to occur, hence

Φ(l1, . . . , lK) =

[
K∏

k=1

(
nk

lk

)−1
]
×

∑
x∈Sl1,...,lK

ϕ(x) (1)

The survival signature is useful for deriving the probability for the event that
the system functions at time t > 0, so for TS > t, where TS is the random system
failure time. Let Ck(t) ∈ {0, 1, . . . , nk} denote the number of components of type
k in the system which function at time t > 0, then

P (TS > t) =

n1∑
l1=0

· · ·
nK∑

lK=0

{
Φ(l1, . . . , lK)P

(
K⋂

k=1

{Ck(t) = lk}

)}
(2)

Equation (2) is the essential result in survival signature theory. It shows that the
system survival function can be computed with the required inputs, namely the
information about the system structure and about the component failure times,
being completely separated. Hence, the effect of changing a system’s structure on
its survival function can easily be investigated. One can also compare different
system structures in general, without assumptions for the random failure times,
by comparing the systems’ survival signatures [28]. The system survival function
is sufficient for important metrics such as the expected failure time of the system,
or its remaining time till failure once it has been functioning for some time.

The survival signature requires specification at
∏K

k=1(nk+1) inputs while the
structure function must be specified at 2n inputs; in particular for large values of
n and relatively small values of K, so large systems with few component types,
the difference is enormous. If all components are of different types, so K = n,
then the survival signature does not provide any advantages, in the sense of
reduced representation, over the structure function. If all components are of the
same type, so K = 1, then the survival function is closely related to Samaniego’s
system signature [26, 27].

Equation (2) only requires the assumption that failure times of components
of the same type are exchangeable. If one assumes that the failure times of
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components of different types are independent, then Equation (2) becomes

P (TS > t) =

n1∑
l1=0

· · ·
nK∑

lK=0

{
Φ(l1, . . . , lK)

K∏
k=1

P (Ck(t) = lk)

}
(3)

If, in addition, one assumes that the failure times of components of the same
type are independent and identically distributed (iid), with known cumulative
distribution function (CDF) Fk(t) for type k, then this leads to

P (TS > t) =

n1∑
l1=0

· · ·
nK∑

lK=0

{
Φ(l1, . . . , lK)

K∏
k=1

(
nk

lk

)
[Fk(t)]

nk−lk [1− Fk(t)]
lk

}
(4)

One can also assume a parametric CDF to enable learning about the parameter
based on data, e.g. using Bayesian statistics [2], or use a frequentist statistical
method, for example Nonparametric Predictive Inference [10, 11]. The general
formula for the system survival function, Equation (2), can also be applied if com-
ponents’ failure times are dependent, for example there may be common-cause
failure modes, a risk of cascading failures, load sharing between components and
so on. Initial studies into several of such possibilities have been published [7, 15,
16] and there are many related research challenges, in particular on modelling
actual dependencies in real-world scenarios.

In the remainder of this paper, a brief overview of the theoretical develop-
ments of the survival signature concept is presented, together with a discussion
of some key challenges for practical implementation of the concept to challenging
real-world scenarios. Section 2 discusses several generalizations of the survival
signature while computational aspects are considered in Section 3. Some possi-
bly less obvious issues for practical modelling to quantify reliability of large-scale
systems are discussed in Section 4. The paper ends with brief mentioning of some
further results and challenges in Section 5.

2 Generalized Survival Signatures

The survival signature concept has been generalized in several ways. A crucial
generalization is for multi-state systems, where both the system and components
can have multiple states ranging from perfect functioning to failure. Qin and
Coolen [23] presented this generalization, enabling a wide variety of applications
to be developed, including support for inspection and replacement decisions. Of
course, the processes of state changes for components must be modelled and
mapping the components’ states to the system state can be a complex task, but
this is anyhow required if one aims at reliability quantification of multi-state
systems.

Coolen-Maturi et al. [12] generalised the concept of the survival signature for
multiple systems with multiple types of components and with some components
shared between systems. A particularly important feature is that the functioning
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of these systems can be considered at different times, enabling computation of
relevant conditional probabilities with regard to a system’s functioning condi-
tional on the status of another system with which it shares components. This
is important for many practical systems and networks, for example computer
networks, but the theory has a wider relevance as it can directly be applied to a
system which performs multiple functions, which is the case for many practical
systems. This has led to a substantial area of research, typically considering spe-
cific reliability scenarios or restricted system structures, e.g. Yi et al [31] consider
systems with a monotone structure function.

Huang et al. [19] presented survival signatures for general phased-missions
scenarios, which have several additional challenges such as the possibility that
not all components of one type function in the same phases. Whilst such mod-
elling can become rather complex, it does provide a framework for decision sup-
port, for example on optimal ordering of phases or re-ordering in case some
components are known to have failed during the process.

3 Computational Aspects

For reliability of small systems and networks one can simply derive the sys-
tem structure function and use Equation (1) to compute the survival signature.
This approach has been implemented in the statistical software R [1], and can
be used for small to medium-sized systems and networks. Reed [24] presented
a substantial improvement on the required computation time by using binary
decision diagrams, which can also be used for reliability of multi-terminal net-
works [25]. Using basic combinatorics, one can compute the survival signature of
a system consisting of two subsystems in either series or parallel configuration,
if the survival signatures of those subsystems are available; this enables quick
computation of the survival signatures of series-parellel systems of any size [11].
As a generalization of this combinatorial method, the survival signature for a
multi-state system can be easily derived from the survival signatures of its sub-
systems if the state of the system is a function of the states of the subsystems
[23].

The main reason for the introduction of the survival signature is to enable
quantification of system reliability, and related statistical inferences, for large
real-world systems and networks, for which one normally would not have the
full structure function available. We can think here, for example, about large
industrial systems or transportation networks with thousands of components.
For such cases, one may need to approximate the survival signature. To do
so, it is particularly useful that the survival signature of a coherent system
is an increasing function. Approximating the survival signature has received
much attention. For example, Behrensdorf et al [4] use percolation theory to
exclude areas of the input space of the survival signature where its value does
not increase, followed by approximation of the survival signature in the other
parts of the input space by Monte Carlo (MC) methods. They illustrate their
method on a model of the Great Britain (GB) electricity transmission network,
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consisting of 29 nodes of two types, and on a model of the Berlin metro network,
consisting of 306 nodes and 350 edges, with the nodes divided into two types
based on their degree. Also using MC, Di Maio et al [14] use entropy to direct
the sampling towards non-trivial areas of the input space, and they illustrate
their method on the same GB electricity transmission network. Recently, Lopes
da Silva and Sullivan [29] have presented a powerful method to approximate the
survival signature for two-terminal networks with two types of components. They
show that each MC replication to estimate the survival signature entails solving
a multi-objective maximum capacity path problem, and adapt a Dijkstra-like bi-
objective shortest path algorithm to solve this problem. They show the efficiency
of their algorithm compared to other approaches, which increases with the size
of the network, by application to several networks including a power system,
which has 4,000 nodes and 29,336 arcs and includes cycles and self-loops.

Once the survival signature of a system or network has been derived, or
approximated, it is a useful tool for a range of objectives. For example, it en-
ables very efficient simulation to learn the system survival function, as presented
by Patelli et al [22] and extended by George-Williams et al [18] for inclusion
of dependent failures. It is also useful for statistical inference for the system
reliability, as learning from data, possibly in combination with the use of ex-
pert judgements, is crucial in many applications. If one has data available on
the individual component types, then inference on the system’s failure time is
quite straightforward. Nonparametric Predictive Inference [10], a frequentist ap-
proach using few modelling assumptions made possible by the use of imprecise
probabilities [3], can be used to derive bounds for the system survival function
[11]. The application of Bayesian methods has been presented as well [2], this
is particularly useful if one has relatively little data on component failures and
therefore wishes to include expert judgements. Walter et al [30] generalized the
Bayesian approach combined with the survival signature by using sets of priors,
as typically done in theory of robust Bayesian methods. They showed that, by
choosing the sets of priors in a specific way, one can enable detection of conflict
between prior judgements and data, when data become available and are used to
update the prior distributions. This can be of great practical importance, as it
can point to prior judgements being too optimistic, hence the system reliability
may be substantially lower than was originally thought.

4 Modelling for System Reliability

The main challenges for reliability quantification for large systems and networks
result from the size and complexity of real-world systems and networks. This
includes many factors, such as functional requirements and environmental cir-
cumstances, and it may well be that no two components are believed to have
exchangeable failure times. Also, one may wish to distinguish many different
functioning states for components and systems. However, the key issue in devel-
oping a mathematical model for the reliability of a practical system is the target
aim of the model, which is typically to support some decision processes. Cru-
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cially, there tend to be limited time and resources for the modelling, which will
imply that one does not need to, or even can, include all factors that could distin-
guish between the random failure types of components in the model. Crucially,
exchangeability assumptions for the failure times of different components should
not be interpreted as strong judgements of their failure time distributions being
identical, but instead they are choices with regard to the level of modelling of the
system [9]. Similarly, the number of functioning states is typically determined
by the corresponding decision problems for which the modelling is undertaken.
The main consideration here, from practical perspective, is to choose levels of
modelling which are suitable for the tasks whilst being achievable given practical
constraints, and not to aim at models which are more detailed representations
of reality than is necessary.

An aspect of quantification of system reliability which has received relatively
little attention in the literature, but is of great practical importance, is the choice
of which components to include in the study. Intuitively, one would consider it
necessary to provide a complete model, but for large systems the definition of
what components actually are, and which are relevant for describing the relia-
bility of the system for a specific application, has received little attention. From
this perspective, Coolen and Coolen-Maturi [8] argued in favour of a change of
the nature of the system structure function, from deterministic to stochastic,
meaning that the system structure function value for given states of the com-
ponents is a probability distribution over possible states, rather than a single
state. This would enable modelling of system reliability based on only the states
of a subset of its components, whilst statistical inference would remain possible
based on data from the process. It could also reflect uncertain influences on the
system reliability which may not be taken into account explicitly, such as vari-
able environmental circumstances or variations in the use of the system. This is
an area where substantial research progress would be needed, which would best
be based on practical applications.

5 Concluding remarks

This paper has provided an introductory overview of the survival signature with
some discussion of recent developments and main challenges. Many examples of
powerful methodology for system reliability quantification enabled by the use of
survival signatures have not been discussed, these include new component reli-
ability importance measures [17], resilience achieved by swapping components
within a system [21], reliability-redundancy allocation [20], stochastic compar-
ison of different systems [28] and stochastic processes to describe the system
reliability over time with varying assumptions on loads or failure processes [5].
It should be noticed that quite some well-known decision processes, in particular
management of systems which requires planning of inspections and maintenance
activities, fit very well with the level of modelling corresponding to the survival
signature. For example, on determining stocks of spare components it is typically
not relevant, if there are multiple components of the same type in a system, to
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consider which specific component may fail at some future time, only its type
may be relevant. There may also be opportunities to apply the survival signature
concept to scenarios away from traditional engineering, for example the resilience
of big organisational structures could be modelled with survival signatures if an
organisation has a workforce which mainly consists of groups of workers with
exchangeable skills.

Since its introduction, just over a decade ago, the survival signature has
received increasing attention from academic researchers and has been acknowl-
edged to be a powerful tool for quantification of reliability of systems and net-
works. The main intention has always been to provide a practical tool that
enables upscaling of reliability quantification, and related statistical inference
and decision support, to large scale practical systems and networks, consisting
of thousands of components. The route to achieve this still has several major
challenges, including further development of computational methods and new
ways to model the practically relevant aspects of systems. The achievements of
the survival signature, as reported in the literature thus far, are substantial and
indicate that a step-change in reliability quantification for large-scale practical
systems and networks is feasible.
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