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Abstract

The effectiveness of educational interventions has traditionally been evaluated using effect

size measures which focus on a single feature of the distribution of the outcomes under inter-

vention and control conditions: a (standardized) mean difference. Recently there has been

increased interest in methods which assess the information contained in the full distributions

of outcomes under intervention and control, providing measures of separation from these

distributions which do not depend on arbitrary cut-offs, hence which are “threshold-free”.

We investigate the statistical relationship between several concepts of this type, and discuss

how they can be used to estimate alternative effect size metrics as well as their uncertainties

in the context of multilevel models as commonly used for the analysis of educational data.

A specific aim of this paper is to investigate how the recently proposed “gain index” relates

to other measures of separation including the Area under the Curve (AUC) and the over-

lapping index. A simulation study, using data with an educationally motivated structure, is

presented to compare the different methodologies.
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1. Introduction

In the educational sciences, the effectiveness of a new intervention (such as, a new teaching

concept or a new online learning tool), is commonly investigated through experimental studies

involving the randomized allocation of individuals to an intervention and a control group.

The experimental units in such studies are usually pupils (possibly nested within classrooms5

and/or schools), and one is interested whether or not a specific educational outcome, such as

a reading or writing score, has improved due to the intervention. Therefore, a post-test score

(collected from pupils after delivery of the intervention) is benchmarked against a baseline

score (collected from pupils before intervention delivery). Some statistical method is then

applied to demonstrate whether, and to which extent, the intervention has been “effective”,10

i.e., whether it can be evidenced to have improved the outcome of interest.

Measures of the effectiveness of interventions are most commonly based on the “effect

size”, which is a standardized mean difference or a standardized estimate of the intervention

parameter from a fitted statistical model. While straightforward to compute, their inter-

pretation relies on arbitrary categorizations or thresholds (such as Cohen’s categorization,15

Cohen (1988)) or intuitive but debatable mappings (such as months of progress, Higgins et al.

(2016)).

A different line of thinking attempts to assess whether individuals in the intervention

group are (in some yet-to-specify sense) “more likely” to benefit from the intervention than

individuals in the control group. The related statistical methods, hitherto less commonly20

considered in the educational context, are not based on estimated point or interval estimates

of intervention effects or effect sizes, but attempt to draw inferences on the effectiveness
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of an intervention by making comparative distributional statements on some attainment

score under the intervention and control group. An idea of this type was recently presented

(Uwimpuhwe et al., 2022), aiming to estimate the proportion of pupils who actually benefitted25

from an intervention. Their approach uses a two-component Bayesian mixture model fitted

to the “gain scores” (a term to be given more attention in the next section) in order to

identify pupils as either progressed or non-progressed, which after cross-classification with

the intervention assignments leads to an estimate of the proportion of pupils who progressed

due to the intervention only.30

We will show that their approach can be considered to be related to the Receiver Op-

erating Characteristics curve (ROC), a device frequently used in reliability and medical di-

agnostics. Specifically, the ROC approach gives rise to a Kolmogorov-Smirnov (KS) -type

statistic, as well as an estimator for the Area under the Curve (AUC) based on the Mann-

Whitney U statistic. The former can be shown to have a strong conceptual link to the35

gain index (Uwimpuhwe et al., 2022); one can argue that both aim to measure very similar

constructs. Such methodology also relates to the Overlapping coefficient (OVL) studied re-

cently by Franco-Pereira et al. (2021). All these approaches exploit the relative positioning

of two distributions, and they can do so in fully nonparametric ways, which don’t require

specifications of thresholds or parametric distributions. One could argue that the gain index40

possesses these properties as well: while it is based on a Gaussian mixture distribution, the

Gaussianity of the components does not play an important role (Uwimpuhwe et al., 2022).

However, the ROC and OVL-based approaches lead to statistics that are easier to compute

than the gain index, and do not require neither the fitting of a mixture model nor Bayesian

MCMC machinery. There are, however, nuanced differences in the notions of “assessing ef-45
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fectiveness” that all these statistics capture, which do not only have to do with questions of

estimation or computation.

In this context, while Uwimpuhwe et al. (2022) reported a “strong correlation” between

the gain index and the effect size, this assessment was based on a small sample of educational

trials funded by the same organization, hence possibly with similar characteristics. Moreover,50

a plain correlation value does not allow any insights into whether the gain index could

capture different dimensions of pupil attainment under certain scenarios, such as differing

intra-class-correlations. Furthermore, little is known about the relationship of the other

mentioned indexes (OVL, KS, AUC) to either effect size or gain index. Since educational

trials are expensive, time-intensive, and the resulting data often difficult to access due to the55

requirement of using specialized analysis systems such as, in the UK, the Secure Research

Service (SRS) by the Office for National Statistics, a simulation-based approach is the only

practical way to comprehensively answer such questions. Therefore, in this work, we will

examine, by means of a simulation study, the relationships between Uwimpuhwe et al. (2022)’s

approach and these simpler probabilistic (but fully nonparametric) approaches, as described60

above. We will also put some emphasis on conceptual considerations linking these approaches,

and on elucidating any interpretational differences between these indexes.

The paper unfolds as follows. Section 2 reviews the various threshold-free effect size mea-

sures. Specifically, Section 2.1 will recall the gain index. The several ROC-based approaches

will be considered in Section 2.2, followed by a nonparametric version of the Overlapping co-65

efficient in Section 2.3. Technical and inferential details are dealt with in Section 3. Section

4 will present the simulation study benchmarking the individual approaches, before the work

is concluded in Section 5.
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2. Threshold-free effect size measures

2.1. Gain Index70

The gain index (Uwimpuhwe et al., 2022) aims to estimate the proportion of pupils

that actually benefit from an intervention. The idea behind this approach is that, in the

time between pre-and post-intervention, some pupils will make progress irrespective of the

intervention. Hence, in other words, one can describe the gain index as the proportion of

pupils who would not have made progress without the intervention.75

The implementation of this idea requires a binary concept of “progress”. This in turn

will require a measure to assess student attainment, and a classification procedure to identify

pupils as progressed or non-progressed, based on this measure.

Beginning with the former, näıvely this could be directly a post-test score of some reading

or numeracy test following the intervention. However, it will usually be appropriate to80

account for prior attainment by adjusting for pre-test scores, either by taking differences of

post- and pre-test scores, or by fitting a linear regression model of post-test versus pre-test

scores, and considering the residual from the fitted model as the measure of attainment (Xiao

et al., 2019). In the educational literature, the former is known as gain score (Zimmerman and

Williams, 1982). For simplicity of presentation we follow here the terminological convention85

used in Uwimpuhwe et al. (2022) who refer to this measure, say yi, as the gain score for pupil

i, irrespective of whether it is obtained as a difference or as a residual. For an educational

experiment, one would typically expect the pre-intervention (“baseline”) distributions of

scores to be very similar for intervention and control groups, but then to diverge following

the intervention, rendering a stretched but not necessarily bimodal distribution of gain scores90
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(see Figure 1 for an illustration).

*** Figure 1 about here ***

For the classification step, one fits a two-component mixture model to the joint distribu-

tion of gain scores. The mixture component corresponding to the “larger” mixture centre is

associated with “progress”, and the lower component with “no progress”. Then one utilizes95

the mixture responsibilities, that is the posterior probabilities that each pupil corresponds

to a certain mixture centre, in order to cross-classify all pupils (intervention and control) to

both mixture components. This can be seen as a MAP (maximum a posteriori) estimate of

one of the states “progress” or “no progress” for each pupil. Doing this for all pupils results

in a 2×2 contingency table with axes intervention/control and progress/no progress, as illus-100

trated in Table 1. For each of control and intervention group separately, one then computes

the proportion of pupils who had made progress, yielding values p1 and p2 respectively. The

gain index is the difference, GI = p2 − p1, between these two proportions.

*** Table 1 about here ***

The reader may recognize that the layout in Table 1 resembles the Binomial effect size105

display (BESD, Rosenthal and Rubin (1982)), one of the earlier attempts in the literature

to move away from traditional effect size measures. The BESD is however quite limited in

practice, as it requires prior dichotomisation of the data (if the outcome is not yet in binary

form), and the computation of the “experimental success rate” derived from it makes some

assumptions on the symmetry of the outcome distribution of intervention and control which110

can be considered questionable.

It is important to understand that, under the gain index machinery, the allocation of

pupils to the progressed or non-progressed groups is entirely automated by the mixture model.
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The data analyst has no control over the proportions allocated to each group. However, since

only one mixture model is fitted to the combined intervention and control data, this is not115

a problem: If the progressed group gets larger, this will hold for both the control and the

intervention arm, and increase both p1 and p2 accordingly, so essentially neutralising the

effect of the overall mixture proportions (not “exactly” in a strict mathematical sense, but

at least “in tendency”).

Mathematically, the gain index can take a value between −1 and 1. However, in an120

education setting, it is almost impossible to obtain extreme values close to or equal to the

boundaries {−1, 1}. If the intervention is effective, the proportion of progressed pupils in the

intervention group (p2) is expected to be greater than that from the control group (p1), and

this yields a positive gain index. On the other hand, a negative gain index means a greater

proportion of control group pupils who have progressed (p1 > p2). Variability of the gain125

index estimates can be assessed via the posterior distribution yielding posterior standard

errors and credible intervals.

2.2. Receiver Operating Characteristics (ROC) curves

The Receiver Operating Characteristic (ROC) is a commonly used device in reliability and

medical diagnostics. It is a graphical plot that depicts the diagnostic performance of binary130

classifiers. This section provides a brief introduction to ROC curves and related measures,

but before we delve into that, we need to introduce some notation.

Denote by Y T the random variable producing the gain score under the intervention (T ;

treatment) group, and Y C the gain score under the control group (C). Assume that we

associate good progress with Y g > s, for g ∈ {C, T}, and some positive threshold s. Then135
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we can define the quantities

ST (s) = P (Y T > s)

and

SC(s) = P (Y C > s),

which can be seen as the analogue of the true positive rate (TPR, sensitivity) and the false

positive rate (FPR, 1-specificity), respectively, as used in diagnostic test theory. The gain

index could then be interpreted as an empirical estimate of ST (s)− SC(s), for some value of140

s. While this value of s does not play a role in the computation of the gain index, one can

think of the classification procedure induced by the mixture model as making implicitly such

a choice: for most practical purposes, the MAP procedure will be monotone, i.e. for a given

mixture model there will be a constant s (albeit never explicitly calculated) so that pupils

with gain score larger than s will be identified as “progressed” and those with gain score145

smaller than s as “not progressed”. The benefit of Uwimpuhwe et al. (2022)’s approach is

hence clear – it avoids the explicit specification of the constant s, hence rendering the method

“threshold-free” in the terminology of Yuan et al. (2015).

A similarly appealing approach to the problem is offered by Receiver Operating Charac-

terstics (ROC) theory. Plotting ST (s) versus SC(s), over a meaningful range of constants s,150

produces the ROC curve, which can be explicitly described by reparametrizing SC(s) ≡ t,

(SC(s), ST (s)) = (t, ST (S
−1
C (t))) = (t,ROC(t)), (1)

for t ∈ [0, 1]. So, in terms of common terminology for ROC curves, the quantity Y would

correspond to the diagnostic test, and T or C to the condition to be diagnosed. In our

context, the idea is slightly different — we do not want to diagnose a condition, but we
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want to know whether the intervention status C or T impacts differently on the outcome Y .155

This is in a similar spirit to work by Pepe (2003, p.74) who found that ROC curves can be

“useful in applications outside of diagnostic testing”; e.g. for “evaluating treatment effects

on an outcome in a clinical trial” by capturing the separation between two distributions. The

curve ROC(t) as defined in (1) is indeed meaningful for this purpose, as, clearly, effective

interventions are those for which ROC(t) rises quickly.160

Two well known summary statistics measuring the similarity of two distributions can be

directly extracted from the ROC curve. Firstly, the Kolmogorov-Smirnov index defined as

KS = max
t

|ROC(t)−t| = sup
s∈(−∞,∞)

|P (Y T > s)−P (Y C > s)| = sup
s∈(−∞,∞)

|ST (s)−SC(s)|. (2)

The KS index measures the maximum vertical distance between the ROC curve and the 45-

degree line (uninformative test, or ineffective intervention). It takes values between 0 for the

uninformative test (ineffective intervention) and 1 for the perfect intervention (Pepe, 2003).165

So, the KS statistics can be interpreted as a version of the gain index corresponding to the

threshold s which maximizes |ST (s)− SC(s)|. It would appear plausible, considering Figure

1, that such a value s corresponds to a setting where the two distributions are well separated,

suggesting that the KS statistic identifies a similar notion of “separability” of distributions

as the gain index. An estimate of KS can be obtained as the maximum vertical distance170

between the empirical ROC curve, R̂OC, and the 45◦ line, that is

K̂S = max
t

|R̂OC(t)− t| = sup
s∈(−∞,∞)

|ŜT (s)− ŜC(s)|, (3)

with expressions for the estimates ŜT (s) and ŜC(s) to be given later in this subsection. The

statistic K̂S is just the well-known Kolmogorov-Smirnov statistic for testing the equality of

the two distributions. One can also use a Kolmogorov-Smirnov-based test to compare the
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equivalence of different ROC curves; this will not be considered further in this paper; we175

refer the reader to Bradley (2013).

Secondly, it is a well known fact that the integral over this curve, i.e. the area under the

curve (AUC) is given by

AUC =

∫ 1

0

ROC(t) dt (4)

where higher AUC values indicate more accurate tests, with AUC = 1 for perfect or ideal

tests and AUC = 0.5 for uninformative tests, corresponds mathematically to the probability180

statement

AUC = P (Y T > Y C). (5)

That is, if one samples randomly one gain score from Y T and one from Y C , then (5)

is the probability that Y T > Y C . Equation (5) captures directly the notion of whether

an “intervention works”: If it does, there should be a positive probability to the event

that Y T − Y C > 0. An idea of this type was also pursued by McGraw and Wong (1992),185

approximating expression (5) based on normality assumptions on Y C and Y T . We will

calculate (5) without any distributional assumptions.

One could of course be more stringent and demand that Y T − Y C > δ, for some educa-

tionally relevant threshold δ > 0. This would however bring back the requirement to specify

that threshold, which we have been setting out to avoid.190

One could think of this AUC-based concept as integrating the performance of the diagnos-

tic test across all possible thresholds, hence avoiding the need for its choice. The conceptual

analogy between (4) and (5) suggests that AUC can be used to make a statement on whether

the intervention has worked, in the sense of: If the gain score was used as a diagnostic test
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between the intervention and control ‘condition’, then how well would it discriminate?195

Of course, implementing this concept in practice will require us to be able to estimate

(5) from real data. Denote by yTi , i = 1, . . . , n and yCj , j = 1, . . . ,m the measured gain

scores relating to the intervention and control group, respectively. Firstly we note that both

ST (s) and SC(s) are in principle easily estimable through the empirical survivor functions

ŜT (s) = 1
n

∑n
i=1 1{yTi > s} and ŜC(s) = 1

m

∑m
j=1 1{yCj > s}, where 1{E} is an indicator200

function which is equal to 1 if event E occurs and 0 else. These estimates could then be used

to build an empirical ROC curve {(ŜC(s), ŜT (s)), s ∈ (−∞,∞)}, which then would lead to

the empirical AUC through stepwise integration (i.e. summation). However, this is actually

not necessary as one can estimate AUC in a much simpler way based on the Mann-Whitney U

test known from nonparametric test theory (Pepe, 2003). This is a test for the null hypothesis205

that, for randomly selected values A and B from two populations, the probability of A being

greater than B is equal to the probability of B being greater than A. It can be seen as a test

that compares whether the distribution of a dependent variable is the same for two groups,

and therefore whether the two groups belong to the same population. We now identify A

notationally with Y T and B with Y C . Then the corresponding test statistic, known as the210

Mann-Whitney U statistic, is given by

U =
n∑

i=1

m∑
j=1

[
1{yTi > yCj }+

1

2
1{yTi = yCj }

]
. (6)

One can then show (Hanley and McNeil, 1982) that the empirical area under the curve

corresponds just to

ÂUC =
U

nm
, (7)

hence opening up a quick computational device for computing the AUC, and so for the
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computation the empirical estimate of (5). Further ROC summary indices do exist, such as215

the partial area under ROC (Pepe, 2003), which are not considered further in this work.

2.3. The Overlapping Index (OVL)

The overlap coefficient (OVL) quantifies the similarity (or difference) between two distri-

butions via the overlapping area of their probability density functions, e.g. the two plots in

Figure 2 are examples of low and high overlapping probability densities.220

*** Figure 2 about here ***

Now let fY T and fY C be the corresponding probability densities (of some gain score), for

the intervention and control groups, respectively. The overlap coefficient is the overlap area

between the two densities, defined as

OVL =

∫
min[fY T (y), fY C (y)]dy. (8)

The index OVL takes a value between 0 and 1, where OVL = 0 if the two probability densities225

are disjoint and OVL = 1 if the two densities are identical. There are no clear cutoff values

to describe the discrimination ability of this measure, but a rule of thumb has been suggested

(Franco-Pereira et al., 2021) as follows:

OVL = 1 no differentiation;

0.75 < OVL < 1 poor differentiation;

0.55 < OVL < 0.75 good differentiation;

0.35 < OVL < 0.55 very good differentiation;

OVL < 0.35 excellent differentiation.

Several fully nonparametric, kernel-based approaches for the computation of the overlap

coefficient have been introduced and studied in the literature (Pastore and Calcagǹı, 2019;230
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Franco-Pereira et al., 2021). Thus, the densities in Equation (8) are replaced by appropriate

kernel density estimators. The density estimator for fY T (y) is given by

f̂Y T (y) =
1

nh

n∑
i=1

K

(
y − yTi

h

)
where K is a Gaussian kernel function and h a bandwidth parameter which can can be

automatically selected by

h = (4/3)1/5n−1/5q, where q =

√√√√ 1

n− 1

n∑
i=1

(
yTi −

n∑
j=1

yTj
n

)2

.

Similarly we can define f̂Y C (y), and substituting these densities estimates in (8) yields235

the following estimate for the overlapping index:

ÔVL =

∫
min[f̂Y T (y), f̂Y C (y)]dy. (9)

3. Technical and inferential aspects

3.1. Multilevel adjustment

The gain index approach uses a Bayesian “shared parameter mixture model” (Evans and

Erlandson, 2004) in order to account for the within-class correlation of a potential multilevel240

structure in the data. It does not appear obvious how such an approach could be followed in

the context of either the ROC-based measures or the OVL statistic. However, a simple way

around this problem is to use the residuals of an appropriate multilevel model (accounting

for pre-test but excluding the intervention effect), rather than of a plain regression model, in

order to compute the gain scores. We will apply this approach for the KS, Gini (AUC), and245

OVL measure in Section 4.
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Of course, one could then in principle also use this approach for the gain index itself. It

would be expected that the resulting quantity behaves similarly to the original gain index

(GI). Hence, for comparison purposes, a new version of the gain index to which we refer

as “residual gain index” (GIres), that uses the same residual information as ROC (and its250

derived quantities) or the OVL statistics is considered along with the gain index (GI). The

GIres accounts for clustering, at the first step of the gain index computation, by using a

multilevel model to obtain the residuals or gain scores, and an unclustered finite mixture

model in the second step. In contrast, the original GI obtains residuals from the OLS model,

with clustering being accounted for in the second step using a finite mixture model.255

3.2. Use of indexes as effect size measures

Several of the indexes mentioned in Sections 2.2 and 2.3 are closely related, or even

equivalent, under some assumptions or certain transformations. Understanding these de-

facto equivalences is important when carrying out any quantitative study of these metrics,

as we aim to do in Section 4. Therefore, we summarize these relationships here.260

Firstly, we observe that, for the KS statistic (3), large values correspond to large sepa-

rations of the two involved distributions, and that this statistic will always reside between 0

(no separation) and 1 (maximal separation). A closely related statistic is the Youden Index,

J = sups∈(−∞,∞)(ST (s) − SC(s)), which is the maximum distance between the true positive

and false positive rates (Krzanowski and Hand, 2009). Since the Youden index assumes that265

the proportion of positive results for the intervention is greater or equal than that for the

control (Youden, 1950), i.e.

ST (s) ≥ SC(s) for all s, (10)
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the two quantities KS and J are equivalent under this assumption. However, when the

intervention is less effective than the control, then J will be undefined but KS will still give

an undirected measure of the separability of the distributions. The property (10) is also270

known as stochastic dominance (Mart́ınez-Camblor, 2023) and implies non-crossing ROC

curves.

Secondly, we also know from the Proposition in Section 3 of Mart́ınez-Camblor (2023)

that, again under the assumption of stochastic dominance, the (distributional version of the)

overlapping index is just given by 1 minus the Youden index. Hence, for the sake of general275

comparability, we will consider the quantity 1 − OVL, rather than the overlapping index

OVL by itself, in our comparative analysis. The quantity 1−OVL takes then the value 0 for

complete identity of distributions and 1 for maximum separability.

Thirdly, a notable variant of the AUC is the Gini coefficient, 2×AUC−1, which has some

benefits in terms of interpretability as compared to AUC itself. Specifically, while the AUC280

ranges from 0 to 1, with the value 1/2 meaning no separation, the Gini coefficient ranges

from −1 to 1, with 0 representing no separation, in line with the gain index.

Summarizing, the gain index GI, its residual variant GIres, and the Gini coefficient, take

values between -1 and 1, and the statistics KS and 1−OVL between 0 and 1, where however

0 always means “no separation” under all statistics. Furthermore, complete separation of285

the intervention and control group, in favor of the control, will for all of these statistics

correspond to the value of 1, so that for practical purposes the statistics can be considered

to be on equal scale, and hence can be sensibly compared in the range [0,1]. A comparison of

the ranges and properties of these statistics is provided in Table 2, and a summary display

putting these criteria in conceptual relation with each other is provided in Figure 3. We give290
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a quantitive comparison of these measures in the simulation study in Section 4.

*** Table 2 about here ***

*** Figure 3 about here ***

It is noted finally that theoretical equivalences of the type just mentioned do not nec-

essarily translate into exactly matching numerical results in practical experiments. This is295

because the estimators of these quantities are partially based on different principles; for in-

stance, as outlined in Section 2.3, for the overlapping index, some smoothing is involved,

while for the other statistics it isn’t. This explains that, while under stochastic dominance

one has in theory (as argued above)

KS = J = 1−OVL,

the estimates K̂S and 1 − ÔVL will not usually coincide, even if stochastic dominance is300

fulfilled.

3.3. Estimation and uncertainty

In practice, there is the important question of which software or tool to use in order

to practically estimate the quantities elaborated on. Furthermore, in order to make robust

decisions on the effectiveness of an intervention, it is essential that one is able to quantify the305

uncertainty of the measures considered. In this section we summarize how this is achieved

for the metrics under consideration.

The estimation of the gain index (including its residual variant) is intrinsically Bayesian.

Hence, the estimated gain index is obtained as the mean from its posterior distribution,

and estimates of its uncertainty can be naturally obtained from appropriate quantiles of310

this posterior distribution. In practice, we obtain gain index estimates and their Bayesian
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credible intervals using the r2jags package (Su et al., 2015) and the function provided in

the supplementary material of Uwimpuhwe et al. (2022).

Estimates of KS were obtained using the stats package, and a bootstrapping procedure

with 1000 iterations was employed to determine their 95% confidence intervals.315

Estimates and confidence intervals for ÂUC, and by extension for the estimate of the Gini

index, Ĝini = 2× ÂUC− 1, are obtained using the pAUC package (Robin et al., 2011).

Estimates of the OVL have been obtained using the kernel method described earlier

Franco-Pereira et al. (2021), and the variance of this estimator is estimated using boot-

strap, enabling the computation of confidence intervals for OVL (Pastore and Calcagǹı,320

2019; Franco-Pereira et al., 2021).

4. Simulation study

4.1. Simulation model setup

In order to illustrate and compare the methods presented in this paper in an educationally

relevant setting, we simulated data from a cluster randomized trial (CRT) design, which is325

a commonly used design for trials commissioned by the Education Endowment Foundation

(EEF). To account for CRT design, the following model suggested in the EEF statistical

guidelines (Education Endowment Foundation, 2022), which controls for baseline measure-

ments and accounts for school clustering, was considered:

Yij = β0 + β1Pij + β2Tij + bi + ϵij. (11)

Here, Yij and Pij are respectively the post- and pre-intervention outcomes of pupil i from330

school j, Tij is a two-arms intervention indicating whether pupil i from school j was random-

ized to receive control (reference category; Tij = 0) or intervention (Tij = 1), bi ∼ N(0, σ2
b )
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is a school-specific random intercept, with σb capturing between-school variability, and ϵij ∼

N(0, σ2) is pupil-level random error, with σ capturing within-school variability.

In order to simulate data that capture two natural groupings of educational outcomes,335

we included a latent groups variable (LG) indicating progress (LGij = 1) and no progress

(reference category; LGij = 0) into the model given by Equation (11). This led us to consider

the following simulation model:

Yij = β0 + β1Pij + β2Tij + β3LGij + bi + ϵij. (12)

The second parameter β3 controls the extent to which the average post-test attainment

between the LG groups differs, or in other words, the degree of separation between the340

progressed and non-progressed groups. The degree of separation incurred by this process

is illustrated in Figures 4 and 5, for the exemplary settings of β3 = 2, 4, and 8, through

overlapping plots and ROC curves, respectively, using a randomly generated data set from

each of the three settings. We consider these as to be corresponding to small, medium, and

large separation. We see that, while the OVL representation distinguishes the three cases345

very clearly, in the ROC representation the distinction between the three possible settings

appears less obvious, which would lead us to suspect that OVL is more sensitive to β3 than

the AUC-based measures (KS and Gini) are.

*** Figure 4 about here ***

*** Figure 5 about here ***350

4.2. Separation measures as a function of effect size and latent group separation

We initially fix the residual variance σ2 = 12 and the cluster variance σ2
b = 0.342, implying

an intra-class correlation (ICC) of approximately 0.1 as typically encountered for educational
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interventions in the UK (Singh et al., 2023). In this simulation study we have considered

fifteen scenarios to simulate data sets from, based on five choices of β2 , and three choices of β3.355

Specifically, we determine the five values of β2 using the fact that β2 = ES×
√
σ2 + σ2

b , with

the effect size settings ES = −0.15, 0.05, 0.2, 0.5, 0.8, the last three of which corresponding to

small, medium and large effect sizes according to Cohen (1988). The values -0.15 and 0.05

correspond to negative and very small effect sizes, which are not uncommon in educational

settings (Ashraf et al., 2021). For β3, we consider the settings 2, 4 and 8 as motivated in the360

previous subsection.

The LGij and Tij variables were simulated so that the percentage of progressed pupils

(LGij = progress) was 0.462 in the control group (Tij = 0) and 0.750 in the intervention group

(Tij = 1), resulting in a “true” GI of 0.750− 0.462 = 0.288. Consequently, the same true GI

would be obtained for each simulated data by cross-tabulating the Tij and LGij variables.365

For each of the two treatment arms (control and intervention), we simulated eight schools,

each with a size of 30 pupils. This yields a total sample size of 480 for each dataset. The

baseline scores (Pij) were generated from N(0, 0.52), random schools (bi) from N(0, 0.342)

and residuals (ϵij) from N(0, 12). The outcome (Yij) was obtained from equation (12), where

β0 was fixed to 0 and β1 to 0.5.370

For each of the fifteen scenarios, 100 datasets were simulated. The average estimates

across scenarios for GI, GIres, K̂S, Ĝini and 1− ÔVL, are shown in Table 3. As specified in

Section 3.1, the gain scores (Yij) used in calculation of K̂S, Ĝini, 1 − ÔVL and GIres were

defined as residuals (ϵij) from a fitted multilevel model of type (11) but with intervention

terms (β2Tij) excluded. The Yij scores were subsequently organized based on intervention375

groups to obtain Y g
ij representing gain scores for the intervention group (i.e. g = T if Tij = 1)
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and Y C
ij for the control group (i.e. g = C if Tij = 0), respectively.

*** Table 3 about here ***

Several observations can be drawn from Table 3. First, we find that all measures tend to

increase with the true effect size, for all settings of β3. Secondly, we find that the “true gain380

index” of 0.288 is reasonably well estimated by both the original and the residual version of the

gain index, with estimation getting more precise for larger effect sizes and larger separation

between the progressed and non-progressed groups. We also find that the original and the

residual-based gain index estimates can hardly be distinguished; their values are very similar,

and in fact very slightly smaller for GIres than for GI. The confidence bands of the residual385

version appear however to be slightly wider than those of the original gain index version,

indicating a practical advantage of the latter. Thirdly, we find that K̂S and 1− ÔVL behave

broadly similarly as a function of ES, but the Gini measure covers a larger range of the unity

interval, in fact “overtaking” the other measures on the way from small to large effect sizes.

On the other hand, but as expected from previous considerations, 1 − ÔVL and the gain390

index show a stronger dependency on the parameter β3 than K̂S and Ĝini; specifically their

performance at identifying the intervention effect increases when the attainment difference

between the progress groups is generally larger.

*** Figure 6 about here ***

A more illuminating view on the results is provided through a graphical representation.395

Figure 6 shows the five threshold-free measures against the true effect size, for β3 = 2, 4 and

8. We see from the panels in that figure that, perhaps rather surprisingly, all of the considered

threshold-free, probabilistic separation measures are almost perfectly linearly related to the

true underlying effect size. Specifically, all measures, except Gini (AUC), show largely parallel
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behavior, that is they capture the same information on distributional separability, but subject400

to some vertical offset. In particular, this confirms our previous theoretical considerations

that KS and 1−OVL provide equivalent information, which is in turn very strongly related to

the one provided by the gain index. All these criteria provide information on the proportion

of pupils benefitting from an intervention, rather than on the size of the effect. However,

only the gain index allows exactly this interpretation.405

One can also observe that these curves get flatter once the parameter β3 increases. For

the gain index, this can be intuitively explained: After all, the “true” gain index, under all

simulation scenarios, is constant at 0.288. This means that the gain index shows the less

bias, the larger the underlying separation between progressed and non-progressed groups; a

behavior which makes fully sense given the methodological approach behind this index. In410

other terms, smaller slopes in Figure 6 indicate that a dimension of progress closer to the gain

index is captured by the respective measure, whereas larger slopes mean that overall progress,

as induced by the simulated ES, is measured. If the underlying gap between progressed and

non-progressed pupils gets larger (β3 increases), it becomes harder for the intervention to

move pupils from the non-progressed to the progressed group (even if they do make some415

progress), hence the traditional effect size and the gain index become less correlated.

The behavior of these four criteria is different to that of the Gini coefficient (i.e, AUC),

which shows a steeper behavior than the other measures, for any choice of the progress

separation parameter β3. Hence, AUC addresses a dimension of pupil achievement which is

more closely related to the original effect size index. Also, we observe that the only other420

measure which still enables some effect size–dependent discrimination for highly separated

latent progress groups is the KS – which is not unsurprising given that it shares with the
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AUC the conceptual reliance on ROC curves.

4.3. Separation measures as a function of ICC, pre-test, and true gain index

In this subsection we provide some additional simulation results which show the impact of425

some other auxiliary simulation settings. While these add limited insight to the relationship

of the indices between each other, they do shed light on the robustness of the results w.r.t.

deviations from the parameter settings of the simulation in the previous subsection. Firstly,

noting that the “true” gain index of 0.288 is rather large in comparison with values typically

found for educational trials, we consider additional settings of 0.05 and 0.12, corresponding430

in magnitude to the results reported in Uwimpuhwe et al. (2022). Secondly, we consider a

larger ICC of 0.2, resulting from a school-level variance of σ2
b = 0.5. Such an ICC value is

still consistent with values reported in the educational literature (Zopluoğlu, 2012). Thirdly,

we also compare two settings of the pre-test parameter β1. The impact of baseline effects on

effect size estimates is generally expected to be small (Verbeke and Fieuws, 2007); hence it will435

be interesting to see whether this also holds for the various separation measures considered.

In these simulations, we leave the progress group separation parameter β4 = 4 and the effect

size ES = 0.2 fixed, corresponding to intermediate values used in Table 3. Finally, in this

framework, we consider the additional settings of ICC = 0.3 and ICC = 0.4 when the true

gain index is 0.288 and β1 = 1. While such high ICC values are unlikely to be observed in440

educational trials, the results may shed light on the theoretical behavior of the criteria when

within-school correlations are extremely large.

*** Table 4 about here ***

Results of this simulation study are reported in Table 4. Focusing initially on the results

above the dashed line, we observe that the gain index is again reasonably estimated under445
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all settings, where however the smaller gain index settings appear to be easier estimable than

the highest one. The difference between GI and GIres also increases as the true gain index

increases, with the values being closer when ICC is smaller. All displayed criteria do replicate

the design pattern imposed by the true gain index. All separation measures do show some

slight sensitivity to the ICC (i.e. σ2
b ), with the sensitivity being smallest for the gain index450

estimation itself. As expected, the pre-test parameter β1 does not play any role, apart from a

very slight impact on the overlapping coefficient. Considering now the results for the higher

ICC settings of 0.3 and 0.4, we observe that all measures, except the gain index itself, show

some weakness in maintaining the levels of separation identified at ICC = 0.1 and ICC = 0.2.

This appears to indicate that the multilevel adjustment through the Bayesian mixture model,455

as used in the gain index, is more effective than the residual-based adjustment used for all

other indicators (including the residual gain index). It is mentioned however again that ICC

values of 0.3 and higher are unlikely to actually occur in educational trials.

5. Discussion

Through conceptual considerations and simulations, we have illustrated that the gain460

index is strongly related, and in fact measures equivalent information, to the Overlapping

index and, taking some slightly different behavior under rather extreme scenarios aside, also

to the KS index. On the other hand, the AUC criterion reflects a quantity that is more related

to the original effect size measure. Whether or not these two families of measures correlate

strongly depends on the gap in the latent distribution of progressed and non-progressed465

students: If that gap is small, then the two families of measures will be linearly related,

with the gain index possibly providing more useful information, and indicating progress of a
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subgroup of pupils even if the overall effect size is close to zero, or in fact negative. However,

the gain index will measure a different dimension of student progress than the original effect

size (typically estimates by Hedges’ g) and Gini (AUC) when the underlying progress gap is470

large, as in this case it is less likely for the intervention to ‘flip’ a pupil over. An interesting

intermediate position in this respect is taken by the KS statistic, which behaves similarly to

the gain index for small separation of progress groups, but continues to measure some aspect

of overall (mean) progress under large separation.

Summarizing, for most applied scenarios, considering any of gain index, residual gain475

index, or the overlapping index, in addition to AUC or Gini (or Hedges’ g), will provide a

pretty complete insight into the student progress accomplished by an educational interven-

tion: Large values of the former indicate whether the intervention has benefitted a large

proportion of pupils; large values of the latter indicate whether there has been a good overall

(mean) progress across pupils. While the KS statistic appears to be in the unique position480

of capturing elements of the two dimensions at the same time, it is still stronger related to

the gain index family than to traditional effect sizes. When choosing between the gain index,

the OVL, or KS, then computational simplicity, the availability of many standard software

packages for their computation, the solid grounding in the statistical literature, and perhaps

a slightly better comprehensibility of the statistics themselves, speak for the latter two mea-485

sures. If the focus is on relative comparisons of models, parameter configurations, or data

sets, then OVL or KS will fully serve this purpose.

However, the gain index may still have an advantage in terms of its interpretability, as

it is designed to measure directly what the educational researcher may be interested in: the

proportion of pupils that have benefitted from an intervention. This may outweigh the more490
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elaborated computations required and the perhaps additional effort required by the researcher

to understand that it does exactly this.

As with all simulation work, a word of caution is in order, in the sense that our results

are valid within the ranges of the parameter settings explored in our simulation studies. We

have given a glimpse of this limitation by considering, in subsection 4.1, ICC values of 0.3495

and 0.4, despite solid evidence from both US and UK contexts that such high ICC values are

extremely rare to occur in educational trials (Hedges and Hedberg (2007), Singh et al. (2023)).

Hence, further experiments to explore other simulation settings are still encouraged. Some

additional interest could, for instance, lie in “degenerate” or boundary cases, only partially

explored in here, such as where the gain index or progress group separation approach zero.500

Future studies could also focus on the application and validation of threshold-free measures

in diverse real world educational settings, as these measures have not been widely used in

applied research. This would help in understanding their effectiveness and limitations in

real-world conditions.

Presenting simple and interpretable measures of educational intervention effectiveness is505

crucial for education policy-making (Gorard et al., 2020) as it provides a clear and concise

way to assess the impact of interventions on educational outcomes. This is important to make

informed decisions based on evidence. Research indicates that educational interventions can

vary widely in their design, delivery, and outcomes (Buhl-Wiggers et al., 2022). Further,

since pupil’s educational outcomes vary a lot, a holistic evaluation of the effectiveness of510

interventions requires the availability of measures which capture the information in the full

outcome distributions (Uwimpuhwe et al., 2022) rather than focusing on mean differences as

in traditional effect size measures, which help assessing program effectiveness at a broader
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level (Higgins et al., 2016).

The threshold-free (non-parametric, probabilistic) measures of separation enhance our515

understanding of educational interventions by considering the entire outcome distribution,

thereby also capturing individual student progress. Educators and researchers should em-

brace advantages of these measures and use them alongside traditional metrics to inform

evidence-based decision-making. Utilising these simple and interpretable measures, edu-

cational policy makers and school teachers can easily compare different interventions and520

determine which ones are most effective in improving educational outcomes. This stream-

lined approach would help in allocating resources efficiently and implementing evidence-based

policies that have a positive impact on education systems.
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Table 1: Computation of gain index from pupil numbers cross-classified to progressed and non-progressed

groups. Adapted from Table 2 in Uwimpuhwe et al. (2022).

Random assignment non-progressed progressed proportion gain index

Control a b p1 = b/(a+ b)

Intervention c d p2 = c/(c+ d) GI = p2 − p1
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Table 2: Separation and effect size measures with their operational ranges, as well as key values of no and

perfect separation. For the U statistic, n and m indicate the sample size of the control and intervention

group, respectively. Where these are theoretical quantities which need estimation (for KS, AUC, Gini, J ,

and OVL), the properties continue to hold true for the estimates K̂S, ÂUC, Ĵ , Ĝini, ÔVL. The two gain

index measures, as well as U , are by construction empirical quantities without distributional counterparts.

perfect separation in favour of...

Criterion range no separation control intervention

GI [-1,1] 0 -1 1

GIres [-1,1] 0 -1 1

KS [0,1] 0 1 1

J [0,1] 0 NA 1

AUC [0,1] 1/2 0 1

U [0, nm] nm
2

0 nm

Gini [-1,1] 0 -1 1

OVL [0,1] 1 0 0

1−OVL [0,1] 0 1 1
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Table 3: Results of the simulation study with 0.288 as the true gain index. Ĝini corresponds to 2× (ÂUC−

0.5). Each number in the table gives an average value over 100 simulated data sets. 95% CIs are given

between brackets.

Scenario: GI GIres K̂S Ĝini 1− ÔVL

β3 = 2

ES = −0.15 0.117 [0.053, 0.180] 0.106 [0.039, 0.171] 0.178 [0.120, 0.274] 0.178 [0.076, 0.278] 0.151 [0.100, 0.229]

ES = 0.05 0.157 [0.093, 0.219] 0.145 [0.078, 0.210] 0.228 [0.167, 0.323] 0.254 [0.156, 0.354] 0.196 [0.135, 0.273]

ES = 0.2 0.186 [0.122, 0.249] 0.173 [0.106, 0.238] 0.265 [0.204, 0.359] 0.312 [0.214, 0.408] 0.231 [0.166, 0.307]

ES = 0.5 0.243 [0.178, 0.306] 0.229 [0.161, 0.294] 0.337 [0.277, 0.430] 0.418 [0.326, 0.510] 0.301 [0.234, 0.375]

ES = 0.8 0.298 [0.231, 0.362] 0.283 [0.213, 0.349] 0.409 [0.349, 0.498] 0.516 [0.432, 0.602] 0.370 [0.303, 0.441]

β3 = 4

ES = −0.15 0.233 [0.191, 0.273] 0.226 [0.182, 0.269] 0.274 [0.202, 0.364] 0.246 [0.146, 0.348] 0.252 [0.186, 0.333]

ES = 0.05 0.249 [0.208, 0.289] 0.243 [0.200, 0.286] 0.291 [0.223, 0.381] 0.302 [0.202, 0.400] 0.269 [0.200, 0.350]

ES = 0.2 0.261 [0.221, 0.301] 0.256 [0.213, 0.298] 0.305 [0.240, 0.396] 0.342 [0.246, 0.438] 0.283 [0.213, 0.363]

ES = 0.5 0.284 [0.243, 0.323] 0.280 [0.237, 0.322] 0.340 [0.279, 0.432] 0.422 [0.330, 0.514] 0.314 [0.246, 0.392]

ES = 0.8 0.306 [0.265, 0.346] 0.304 [0.260, 0.346] 0.388 [0.326, 0.477] 0.496 [0.410, 0.582] 0.350 [0.284, 0.425]

β3 = 8

ES = −0.15 0.282 [0.264, 0.298] 0.281 [0.263, 0.298] 0.293 [0.218, 0.380] 0.250 [0.150, 0.350] 0.319 [0.249, 0.405]

ES = 0.05 0.283 [0.266, 0.299] 0.283 [0.265, 0.299] 0.300 [0.229, 0.388] 0.302 [0.204, 0.402] 0.318 [0.247, 0.404]

ES = 0.2 0.285 [0.268, 0.301] 0.284 [0.266, 0.301] 0.307 [0.242, 0.398] 0.342 [0.246, 0.438] 0.318 [0.248, 0.403]

ES = 0.5 0.287 [0.270, 0.304] 0.287 [0.269, 0.304] 0.338 [0.277, 0.431] 0.420 [0.328, 0.512] 0.323 [0.258, 0.404]

ES = 0.8 0.290 [0.273, 0.308] 0.290 [0.271, 0.308] 0.387 [0.324, 0.475] 0.492 [0.406, 0.578] 0.340 [0.280, 0.414]
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Table 4: Results of the simulation study with the true gain index GItrue = 0.05, 0.120, 0.288; intra-class

correlation ICC = 0.1, 0.2 (corresponding to σ2
b = 0.34, 0.5); and pre-test parameters β1 = 0.5, 1; with fixed

β3 = 4; and ES = 0.2. Ĝini corresponds to 2 × (ÂUC − 0.5). Each number in the table gives an average

value over 100 simulated data sets. 95% CIs are given between brackets. Additional simulation results for

ICC = 0.3 and ICC = 0.4 are given below the dashed line.

Scenario:
GI GIres K̂S Ĝini 1− ÔVL

GItrue ICC β1

0.050 0.10 0.50 0.058 [0.017, 0.099] 0.059 [0.016, 0.102] 0.119 [0.083, 0.214] 0.100 [-0.004, 0.202] 0.104 [0.071, 0.184]

0.050 0.10 1.00 0.058 [0.017, 0.099] 0.059 [0.016, 0.102] 0.119 [0.083, 0.214] 0.100 [-0.004, 0.202] 0.104 [0.071, 0.183]

0.050 0.20 0.50 0.059 [0.018, 0.100] 0.059 [0.009, 0.108] 0.117 [0.082, 0.212] 0.098 [-0.006, 0.200] 0.101 [0.069, 0.181]

0.050 0.20 1.00 0.059 [0.018, 0.100] 0.059 [0.009, 0.108] 0.117 [0.082, 0.212] 0.098 [-0.006, 0.200] 0.101 [0.069, 0.181]

0.120 0.10 0.50 0.119 [0.078, 0.160] 0.117 [0.074, 0.161] 0.165 [0.112, 0.259] 0.172 [0.070, 0.274] 0.143 [0.094, 0.227]

0.120 0.10 1.00 0.119 [0.078, 0.160] 0.117 [0.074, 0.161] 0.165 [0.112, 0.260] 0.172 [0.070, 0.274] 0.146 [0.095 ,0.229]

0.120 0.20 0.50 0.120 [0.079, 0.161] 0.111 [0.061, 0.160] 0.161 [0.109, 0.257] 0.166 [0.064, 0.270] 0.138 [0.090, 0.220]

0.120 0.20 1.00 0.120 [0.079, 0.161] 0.111 [0.061, 0.160] 0.161 [0.109, 0.257] 0.166 [0.064, 0.270] 0.138 [0.090 ,0.220]

0.288 0.10 0.50 0.261 [0.221, 0.301] 0.256 [0.213, 0.298] 0.305 [0.239, 0.396] 0.342 [0.246, 0.438] 0.282 [0.213, 0.362]

0.288 0.10 1.00 0.261 [0.221, 0.301] 0.256 [0.213, 0.298] 0.305 [0.239, 0.396] 0.342 [0.246, 0.438] 0.283 [0.215, 0.363]

0.288 0.20 0.50 0.262 [0.221, 0.301] 0.238 [0.188, 0.286] 0.299 [0.235, 0.390] 0.336 [0.240, 0.434] 0.272 [0.205, 0.350]

0.288 0.20 1.00 0.262 [0.221, 0.301] 0.238 [0.188, 0.286] 0.299 [0.235, 0.390] 0.336 [0.240, 0.434] 0.275 [0.207, 0.352]

0.288 0.30 1.00 0.260 [0.220, 0.300] 0.213 [0.158, 0.267] 0.283 [0.220, 0.376] 0.322 [0.225, 0.420] 0.254 [0.187, 0.331]

0.288 0.40 1.00 0.262 [0.221, 0.301] 0.187 [0.127, 0.246] 0.266 [0.204, 0.359] 0.307 [0.209, 0.404] 0.235 [0.171, 0.312]
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Figure 1: Pre- and Post-intervention distributions and gain score distribution. The value s is a hypothetical

threshold in the notation of Section 2.2.
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Figure 3: Relationship between several criteria to assess the agreement of two distributions. Solid lines mean

equivalence up to a linear transformation; long-dashed line mean equivalence under stochastic dominance;

short-dashed lines mean different handling of the multilevel (clustering) structure; dotted lines indicate

conceptual relationship.
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Figure 4: Overlapping figures with different values of β3 representing how well the latent groups (LG) are

separated. Each of the three panels show a (single) simulated data set of size 480 consisting of intervention

and control groups with ES = 0.2. Other parameters are set as described Section 4.2.

Figure 5: ROC curves for the same simulated data sets as in Figure 4 with different values of β3, representing

how well the latent groups (LG) are separated.
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Figure 6: Top left, top right, and bottom panels: Measures of separation as a function of the true ES, for

fixed β3. The true gain index (at 0.288) is indicated by a dashed line.
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