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Abstract

A key aspect of statistical inference is estimation of population char-
acteristic. This paper investigates the reproducibility of estimates of
population characteristics. It focuses on estimates based on data col-
lected by survey-based randomised response methods (RRT) to obtain
the truth in cases when the characteristic is sensitive. This work intro-
duces a new approach called 𝝐-reproducibility of estimates based on
data collected from quantitative RRT methods. This approach defines
the 𝝐−reproducibility probability as the probability that, in the event
that an experiment is repeated under similar circumstances, the esti-
mate based on the data from the repeated experiment will not differ
more 𝝐 from the estimated based on the original data. To address pre-
diction issues, the quantification approach makes use of Nonparametric
Predictive Inference (NPI). The findings demonstrate that lower reported
response variability for RRT approaches increases reproducibility of
estimates using bootstrap and representative sample while maintain-
ing an equivalent degree of privacy for survey respondents. A number
of RRT methods are compared, including the Greenberg method, the
Eichhorn and Hayre method, and the optional multiplicative method.

Keywords: Reproducibility Probability, Nonparametric Predictive Inference,
Bootstrap Method, Representative Sample, Randomised Response Data,
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Greenberg Method, Eichhorn and Hayre Method, Optional Multiplication
Method.

1 Introduction

Statistical inference is crucial for estimating population characteristics
and drawing accurate conclusions about experiments. Goodman [1]
emphasized the importance of statistical reproducibility in research,
arguing that p-values are often misunderstood and inaccurately used.
Senn [2] agreed with Goodman but disagreed, stating that p-values
overstate the strength of evidence against the null hypothesis. Both
argued for a more detailed approach that includes effect sizes, confi-
dence intervals, and other measures.

Recent studies emphasize reproducibility of experiment conclusions,
particularly when methods, circumstances, researchers, or sample size
change. This literature review explores various experiments on repro-
ducibility.

Additionally, Billheimer [7] highlights the significance of predictive
inference and scientific reproducibility. According to his viewpoint,
parametric modelling is a helpful approximation of the prior distribu-
tion of either parameters or future observations; the distribution of
future observations is the only thing that is affected by parameter selec-
tions. Furthermore, conclusions or decisions based on predictions must
to be evaluated in light of the overall research problem. In addtion, he
highlights the importance of the predictive inference approach, which
motivates statisticians to use observable quantities to define interesting
findings and predict the probability of them in future investigations.

Alghamdi et al. [8, 9] studied the statistical reproducibility of
hypothesis test results using RRT techniques. They used nonpara-
metric predictive inference to quantify reproducibility, which is a
prediction issue. The study found that reproducibility of RRT data
with an equivalent level of privacy is higher when there is less variation
in reported answers of RRT techniques.

This paper investigates the reproducibility of estimates, highlight-
ing that for real-valued random quantities, an estimate of a parameter
or population characteristic cannot be precisely reproduced. It intro-
duces a new concept called 𝜖-reproducibility, which is the probability
that if an experiment is repeated under the same conditions, the
future sample estimate will not differ more than 𝜖 from the original
sample estimate. The objective of this paper is to introduce NPI for
𝜖-reproducibility of estimates and compare 𝜖-reproducibility of mean
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when data are collected using RRT methods.

This paper is organised as follows. Section 2 introduces the RRT
methods for the study in this paper. Nonparametric Predictive Inference
(NPI) is introduced in Section 3. Section 4 introduces NPI for repro-
ducibility. Then Section 5 shows reproducibility of estimates and uses
both NPI-Bootstrap and a representative sample. Section 6 introduces
numerical examples of 𝜖−Reproducibility of estimates based on RRT
methods using NPI-Bootstrap and the representative sample. Section 7
presents a discussion of related topics for further research.

2 Randomised Response Techniques (RRT)

Warner [10] introduced randomised response techniques (RRT) to col-
lect reliable data on sensitive variables. These techniques use a device
like a coin or spinner to hide responses from the interviewer. How-
ever, Warner method cannot collect sensitive quantitative variables.
Therefore, Greenberg et al. [11] suggested an unrelated question RRT
technique to determine the number of people who have a sensitive
characteristic in a population. This paper uses some quantitative RRT
methods for a survey in which sensitive questions are answered using
real numbers such as the Greenberg method (GM), the optional mul-
tiplicative method (MM) and where the Eichorn and Hayre method
(EH) and their efficiency and privacy degree. Various RRT techniques
have been suggested [11–13], For more information, those quantitative
RRT are introduced as follows.

The Greenberg technique (GM) [14] uses the Warner technique,
replacing nonsensitive questions with unrelated ones and using quan-
titative responses. Both answers of these question are real-valued
quantities. Let the probability that the sensitive question is asked be
𝛾, where 0 ≤ 𝛾 ≤ 1, and let the answer be the random quantity 𝑋𝑖

with expected value 𝐸(𝑋𝑖) = 𝜇𝑥 and variance 𝜎2
𝑥. The probability that

the unrelated question is asked be 1 − 𝛾, The answer to this question
is the random quantity 𝑌𝑖 with expected value 𝐸(𝑌𝑖) = 𝜇𝑦 and variance

𝜎2
𝑦. Both 𝜇𝑦 and 𝜎2

𝑦 are assumed to be known.

Assume that random quantity 𝑍𝑖 denotes response of the 𝑖𝑡ℎ

respondent (𝑖 = 1, 2, ..., 𝑛), so

𝑍𝑖 =

{
𝑋𝑖 with probability 𝛾
𝑌𝑖 with probability 1 − 𝛾

(1)
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The expected value of 𝑍𝑖 is

𝐸(𝑍𝑖) =𝛾𝐸(𝑋𝑖) + (1 − 𝛾)𝐸(𝑌𝑖) = 𝛾𝜇𝑥 + (1 − 𝛾)𝜇𝑦 (2)

With �̄� denoting to the sample mean is 𝜇𝑥 by

�̂�𝑥 =
�̄� − (1 − 𝛾)𝜇𝑦

𝛾
(3)

The variance of 𝑍𝑖 [15] is

Var(𝑍𝑖) =
1

𝛾2

[
𝜎2
𝑦 + 𝛾(𝜎2

𝑥 − 𝜎2
𝑦) + 𝛾(1 − 𝛾)(𝜇𝑥 − 𝜇𝑦)2

]
(4)

Another quantitative method is Eichhorn and Hayre method [12].
Assume that there is random quantity 𝑋𝑖 as the true response with
expected value 𝐸(𝑋𝑖) = 𝜇𝑥 and variance 𝜎2

𝑥 = 𝑉(𝑋𝑖), where 𝑖 = 1, ..., 𝑛,
and 𝜇𝑥 and 𝜎2

𝑥 are unknown. The randomisation device provides a
numerical value 𝑆𝑖 that follows a predetermined probability distribu-
tion with a known mean 𝐸(𝑆𝑖) = 𝜃 and variance 𝑟2, where the random
quantities 𝑆𝑖 and 𝑋𝑖 are assumed to be independent variables. In this
method, respondents choose a number and report the product of the
real responses 𝑋𝑖 and 𝑆𝑖, as follows:

𝑍𝑖 = 𝑋𝑖𝑆𝑖 (5)

Because 𝑆𝑖 and 𝑋𝑖 are assumed to be independent, the expected value
of 𝑍𝑖 is:

𝐸(𝑍𝑖) = 𝐸(𝑋𝑖𝑆𝑖) = 𝐸(𝑋𝑖)𝐸(𝑆𝑖) = 𝜇𝑥𝜃 (6)

The variance of 𝑍𝑖 is

Var(𝑍𝑖) =
[
𝜎2
𝑥 +

𝑟2

𝜃2
(𝜎2

𝑥 + 𝜇2
𝑥)
]

(7)

Gupta et. al [16] developed the optional multiplicative method
(MM), a quantitative method where an unknown proportion of respon-
dents scramble their responses if the question is sensitive, while others
give their true responses. Assume that there is random quantity 𝑋𝑖 as
a sensitive characteristic for individual 𝑖 with an unknown mean 𝜇𝑥,
and random quantity 𝑆𝑖 as a scrambling variable with a known mean
𝐸(𝑆𝑖), where 𝑋𝑖 and 𝑆𝑖 are independent, and 𝑆𝑖 can be produced from
any distribution. Assume that there is a random quantity 𝑍𝑖 denoting
the response of a person 𝑖 where 𝑖 = 1, ..., 𝑛. Giving the randomisation
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device which gives a random quantity 𝑆𝑖 that follows a known proba-
bility distribution with the known mean 𝐸(𝑆𝑖) = 1 and known variance
𝛾2, where 𝑆𝑖 and 𝑋𝑖 are independent, and both random variables with
positive values, therefore, 𝐸(𝑆𝑖) is assumed to be 1.

The respondent answers 𝑍𝑖 = 𝑋𝑖 if the question is not sensitive;
if the question is sensitive, the answer is scrambling 𝑍𝑖 = 𝑆𝑖𝑋𝑖. All
respondents have an equal probability of scrambling 𝜓, which is a known
quantity. Therefore, the reported responses 𝑍𝑖 are

𝑍𝑖 =

{
𝑋𝑖 with probability 𝜓
𝑋𝑖𝑆𝑖 with probability 1 − 𝜓

(8)

The expected value of 𝑍𝑖 is

𝜇𝑧 = 𝐸(𝑍𝑖) =𝜓𝐸(𝑋𝑖) + (1 − 𝜓)𝐸(𝑋𝑖)𝐸(𝑆𝑖) = 𝜇𝑥

where 𝑆𝑖 and 𝑋𝑖 are independent. So, it can be noted that the estimator
of scrambled responses �̂�𝑧 equals to the estimator of the true responses
𝜇𝑥. The variance of 𝑍𝑖 [16] is

Var(𝑍𝑖) = 𝜎2
𝑥 + 𝜓𝛾2(𝜎2

𝑥 + 𝜇2
𝑥)

Importantly, RRT techniques must consider efficiency and privacy as
key considerations. Efficiency refers to the accuracy of RRT in esti-
mating sensitive characteristics in a population. Privacy is crucial for
ensuring precise estimates of sensitive characteristics while protecting
respondents’ privacy. Various privacy measures have been proposed for
quantitative RRT techniques, aiming to increase respondents’ accuracy
and reduce bias. When efficiency decreases, privacy degree increases
[11, 17].

Degree of Privacy of quantitative RRT is defined as the expecta-
tion of the square of the difference between the reported response 𝑍𝑖

and true response 𝑋𝑖 of the sensitive question [18]. The privacy of the
quantitative RRT method is

Δ = 𝐸(𝑍𝑖 − 𝑋𝑖)2 (9)

The RRT approach provides better privacy protection with a larger Δ
value, resulting in reduced variance of reported answers 𝑍𝑖 and increased
efficiency. The true responses almost match respondents’ responses 𝑍𝑖

when respondents believe in the RRT technique and fully protect their
privacy. Therefore, privacy degree of the Greenberg method Δ𝐺𝑀 [18] is

Δ𝐺𝑀 = (1 − 𝛾)𝐸(𝑌𝑖 − 𝑋𝑖)2 = (1 − 𝛾)[𝜎2
𝑦 + 𝜎2

𝑥 + (𝜇𝑥 − 𝜇𝑦)2] (10)
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The privacy degree of the EH [12] and the MM [16] method are

Δ𝐸𝐻 = ( 𝑟
𝜃
)2(𝜎2 + 𝜇2) (11)

Δ𝑀𝑀 = 𝜓(𝛾)2(𝜎2
𝑥 + 𝜇2

𝑥) (12)

Overall, the efficiency of a quantitative RRT approach is higher when
it provides less privacy. So, we offer methods based on reproducibil-
ity probability, efficiency and degree of privacy to investigate the
relationship between them.

3 Nonparametric Predictive Inference (NPI)

Nonparametric predictive inference (NPI) [19] provides direct condi-
tional probabilities for a future observable random quantity based on
observed values of related random quantities [4, 20]. It is based on
Hill’s assumption 𝐴(𝑛). Assume that there are 𝑛 + 1 exchangeable real-
valued random quantities, denoted as 𝑌1 , ..., 𝑌𝑛 , 𝑌𝑛+1. Set 𝑦0 = −∞
and 𝑦𝑛+1 = ∞. Assume that the ordered observed values of the ran-
dom quantities 𝑌1 , ..., 𝑌𝑛 are represented by 𝑦1 < 𝑦2 < ... < 𝑦𝑛. With
𝑖 = 1, ..., 𝑛+1, the real-line is divided into 𝑛+1 intervals 𝐼𝑖 = (𝑦𝑖−1 , 𝑦𝑖) by
the 𝑛 observations. For a single future observation 𝑌𝑛+1, the assumption
𝐴(𝑛) [19] is

𝑃(𝑌𝑛+1 ∈ 𝐼𝑖) =
1

𝑛 + 1
for 𝑖 = 1, ..., 𝑛 + 1 (13)

𝐴(𝑛) is a post-data assumption related to exchangeability [21].
Given the probabilities in Equation (13), NPI uses De Finetti’s Fun-
damental Theorem of Probability [21] to find optimal bounds for the
probability of an event of interest involving 𝑌𝑛+1 [4]. In the theory of
imprecise probability [22] and interval probability [23], this theory has
strong consistency properties and yields reliable predictive results [4].

Based on Equation (13) lower and upper probabilities for an event
𝑌𝑛+1 ∈ 𝔅, for any 𝔅 ⊂ ℝ, are [4, 20]:

𝑃(𝑌𝑛+1 ∈ 𝔅) =
𝑛+1∑
𝑖=1

1{𝐼𝑖 ⊆ 𝔅}𝑃(𝑌𝑛+1 ∈ 𝐼𝑖) =
1

𝑛 + 1

𝑛+1∑
𝑖=1

1{𝐼𝑖 ⊆ 𝔅} (14)

𝑃(𝑌𝑛+1 ∈ 𝔅) =
𝑛+1∑
𝑖=1

1{𝐼𝑖 ∩𝔅 ≠ ∅}𝑃(𝑌𝑛+1 ∈ 𝐼𝑖) =
1

𝑛 + 1

𝑛+1∑
𝑖=1

1{𝐼𝑖 ∩𝔅 ≠ ∅}

(15)
where 1{𝐸} is the indicator function which is equal to 1 if event 𝐸 is true
and 0 otherwise. NPI has been introduced for a number of applications,
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including finance [24, 25], trading [26], and statistical process control
[27, 28].

3.1 NPI for multiple future observations

NPI has been also developed for multiple future real-valued observa-
tions 𝑚, where we are interested in 𝑚 > 1. Assume that the ordered
observed values of the random quantities 𝑌1 , ..., 𝑌𝑛 are denoted by
𝑦1 < 𝑦2 < ... < 𝑦𝑛, with the lower bound denoted by 𝑦0 and the upper
bound by 𝑦𝑛+1. It should be noted that 𝑦𝑛+𝑚 is not an observed value
for 𝑌𝑛+𝑚. The 𝑛 observations split the real-line into 𝑛 + 1 intervals
𝐼𝑖 = (𝑦𝑖−1 , 𝑦𝑖), where 𝑖 = 1, ..., 𝑛 + 1.

According to Hill’s assumption 𝐴(𝑛), all the orderings 𝑂 𝑗 of the
future observations 𝑚 among the original observations 𝑛 have equal
probability based on Equation (13), where 𝑗 = 1, 2, ...,

(𝑛+𝑚
𝑛

)
. For

the future observations 𝑌𝑛+𝑖, each ordering can be derived from

𝑆
𝑗

𝑖
= #{𝑌𝑛+𝑖 ∈ 𝐼 𝑗 , 𝑖 = 1, ..., 𝑛, 𝑗 = 1, 2, ...,

(𝑛+𝑚
𝑛

)
}. We link the data and

future observations via Hill’s assumption 𝐴(𝑛) [29], or more precisely,
via consecutive application of 𝐴(𝑛) , 𝐴(𝑛+1) , ..., 𝐴((𝑛+𝑚)−1) which can be
considered as a post-data version of a finite exchangeability assumption
for 𝑛 + 𝑚 random quantities 𝑌𝑛+1 , ..., 𝑌𝑛+𝑚. A practical interpretation
of the 𝐴(𝑛) assumptions is that all possible orderings of data observa-
tions 𝑛 and future observations 𝑚 are equally likely.

Based on the 𝐴(.) assumptions, assume that the random quantity 𝑆
𝑗

𝑖
is the number of 𝑚 future observations in 𝐼 𝑗 = (𝑦 𝑗−1 , 𝑦𝑗) given a specific
ordering 𝑂𝑖, the probability of each ordering [30] is:

𝑃

( 𝑛+1⋂
𝑖=1

{𝑆 𝑗

𝑖
= 𝑠

𝑗

𝑖
}
)
= 𝑃(𝑂 𝑗) =

(
𝑛 + 𝑚

𝑛

)−1
(16)

where the 𝑠
𝑗

𝑖
are non-negative integers with

∑𝑛+1
𝑖=1 𝑠

𝑗

𝑖
= 𝑚, and 𝐴(.)

assumptions indicate that one does not know whether particular values
of close known observations to increase or decrease the probability that
a future observation will fall between them. We can count the number
of such orderings for which an event occurs for any event involving the
m future observations, according to Equation (16).

When there are several orderings among large data observations,
the Sampling of Orderings Method (SOM) is used to generate large

ordering of future observation data 𝑠
𝑗

𝑖
. The method is based on NPI,

ensuring each order has the same probability of selection and is
independent of other selections. If the sample size or the number of
orderings sampled is large, the total number of orderings becomes
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large enough to ignore potential differences between sampling with or
without replacement of these orderings [31].

In this method, we need to choose such vectors at random of the
orderings 𝑟1 , ..., 𝑟𝑛 with 𝑟1 ≥ 1 and 𝑟𝑙−1 < 𝑟𝑙 where 𝑟𝑛 ≤ 2𝑛 for all
𝑙 = 2, ..., 𝑛. Take the rank of the 𝑙-th ordered data observation among
the 2𝑛 combined data and future observations to be 𝑟𝑙. Then, the future

observation data 𝑆
𝑗

𝑙
is specified as 𝑆

𝑗

𝑙
= (𝑟𝑙 − 𝑟𝑙−1)−1 where 𝑙 = 1, ..., 𝑛+

1, such that 𝑟0 = 0 and 𝑟𝑛+1 = 2𝑛 + 1. This method is used in this
paper in reproducibility for an estimate using the representative sample
to generate unlimited orderings for the future observations among the
original data as explained in Section 5.2.

3.2 NPI-bootstrap

Statistical inference depends on quantifying the variability of sample
estimates, which can be challenging in complicated situations. Efron
[32] developed a bootstrap method that makes fewer assumptions but
requires more computations, and it is easy use and accurate approx-
imations. Nonparametric predictive inference bootstrap (NPI-B) is a
computational implementation of NPI used to quantify uncertainty in
statistical inference. The NPI-Bootstrap is used to sample observations
from data sets and intervals, adding them to the data set [3, 33].

Assume that the ordered observed values of the random quantities
𝑌1 , ..., 𝑌𝑛 are denoted by 𝑦1 < 𝑦2 < ... < 𝑦𝑛, with the lower bound
denoted by 𝑦(0) and the upper bound by 𝑦𝑛+1. The 𝑛 observations split
the real-line into 𝑛 + 1 intervals 𝐼𝑖 = (𝑦𝑖−1 , 𝑦𝑖), where 𝑖 = 1, ..., 𝑛 + 1.

The assumption NPI-bootstrap is based on constructing 𝑛+1 inter-
vals from 𝑛 observations. As in 𝐴(𝑛), we create intervals 𝐼𝑖 between the
observations 𝑛 where 𝑖 = 1, ..., 𝑛 + 1, then draw one value from these
intervals and add it to the dataset, and then sampling 𝑚−1 more values
to produce a new sample called an NPI-B sample, which can be applied
on a finite interval is as follows:

1- Assume there is a data set of 𝑛 real-valued.
2- The partitions 𝑛 + 1 created by 𝑛 observations.
3- Choose one of the 𝑛 + 1 intervals at random, with equal probability

for each interval. From this chosen interval, choose one future value
uniformly.

4- Increase 𝑛 to 𝑛 + 1 and add that future value to the data. Steps 2-4
must be repeated with 𝑛 + 1 data to obtain a further future value.

5- Repeat this to produce 𝑚 NPI-B samples 𝑏1 , 𝑏2 , ..., 𝑏𝑚.
6- Repeat all of these steps 𝑛𝐵 times, to obtain a total of 𝑛𝐵 NPI-

Bootstrap samples of size 𝑚.
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4 NPI for reproducibility

An important characteristic of the practical application of experiment
results is a test’s reproducibility of this experiment. An important
characteristic of the practical application of experiment results is a
test’s reproducibility for this experiment. The reproducibility probabil-
ity (RP), which its definition and interpretation as well as its estimate
are studied in the traditional frequentist statistical framework, has
attracted a lot of interest recently. The NPI method of frequentist
statistics explicitly focuses on future observations while making few
assumptions and using lower and upper probabilities to quantify uncer-
tainty. This makes it possible to reach inferences about RP logically
given the explicitly predictive nature of NPI.

NPI for reproducibility of statistical tests was introduced by Coolen
and Bin Himd [5]. It is also known as NPI-RP and is defined as the
probability that the test outcome- that is, whether or not the null
hypothesis is rejected- would have the same if the test were repeated
based on an experiment performed in the same way as the original
experiment. A few basic nonparametric tests were considered for this,
such as the two sample rank sum test, Wilcoxon’s signed rank test,
and the sign test [34]. NPI for reproducibility of statistical tests is used
by NPI for Bernoulli quantities [33] and real-valued data [? ]. This led
to NPI lower and upper reproducibility probabilities, denoted by 𝑅𝑃

and 𝑅𝑃, respectively, rather than precisely determined reproducibility
probabilities.

For more complicated test situations, NPI can be obtained using the
NPI-Bootstrap approach, which Coolen and Bin Himd [6] developed
and proved for the Kolmogorov-Smirnov test. The NPI-RP method is
applied for two basic order statistical tests: quantile and precedence
test to compare data of two populations and a test for a given popula-
tion quantile value. For lifetime data studies, the precedence test tend
to be used when one has to reach a conclusion before all observations
are available. The lower and upper reproducibility probabilities for
quantile and basic precedence test are provided for these inferences
using the NPI for future order statistics [34].

Simkus et al. [35] uses an NPI algorithm to assess the reproducibil-
ity of the pairwise t-test and then use simulations to investigate the
reproducibility both under the null and alternative hypotheses. This
procedure is used to apply NPI reproducibility to real-life applications of
a clinical experiment that involves numerous pairwise comparisons of
test groups and varying drug concentrations for each group [35]. In
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addition, the nonparametric predictive inference approach for repro-
ducibility of likelihood ratio statistic is investigated [31]. The idea of
this research is to investigate tests between two simple hypotheses on
the mean value. The developed approximations’ precision is shown
by the numerical studies. So, in order to analyse the reproducibility
probability of the tests and power, simulations are developed.

Coolen and Marques [36] introduce the sampling of orderings
method. The reproducibility of likelihood ratio tests using the test cri-
terion defined in terms of the sample mean is investigated using NPI to
derive lower and upper probabilities of this test. This is done by taking
into account all orderings of 𝑛 future observations among the 𝑛 data
observations, all of which are equally likely based on an exchangeabil-
ity assumption. However, computing limitations restrict the ability to
determine accurate lower and upper probability to very small values
of 𝑛. In order to approximate the lower and upper repeatability prob-
ability, the main goal of this study is to investigate sampling of the
orderings of the future data among the seen data. The method is used
for both normal and exponential distributions, and the effectiveness of
ordered sampling is examined in order to approximate the NPI lower
and upper reproducibility probability.

5 Reproducibility of estimates

Estimation of population parameters is an essential part of statistical
inference. In this section, we investigate the reproducibility for such
estimates. However, it is clear that for real-valued random quantities,
an estimate of a parameter will not be reproduced precisely. Therefore,
we define reproducibility of an estimate as the probability for the event
that, if the experiment under the same circumstances is repeated, the
estimate based on the future sample will be close to the estimate based
on the original sample.

The objective of this section is to introduce NPI for reproducibility
of estimates using two procedures. The first procedure is reproducibil-
ity of estimates using NPI-Bootstrap method. The second procedure
is reproducibility of estimates using a representative sample of a
population, which introduce different samples without using more
assumptions. In this paper, we investigate the reproducibility of esti-
mates of population parameters such as the mean. In addition, the
reproducibility of estimates of population median, variance, quartiles
and interquartile ranges can be investigated using the representative
sample [9].
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This section is structured as follows. Section 5.1 introduces repro-
ducibility of estimates, in general, using NPI-Bootstrap. In Section 5.2,
the concept of a representative sample of the underlying population dis-
tribution is introduced, together with its use to asses reproducibility of
estimates and a comparison of both technique of NPI-Bootstrap and a
a representative sample.

5.1 Reproducibility of estimates using NPI-Bootstrap

In this section, a new theory of reproducibility of estimates is proposed.
Suppose that there are 𝑛 real-valued random quantities 𝑌1 , 𝑌2 , ..., 𝑌𝑛,
which are assumed to be independent and identically distributed. Let
the ordered observed values of these random quantities be denoted by
𝑦1 < ... < 𝑦𝑛. For simplicity of implementing this theory, we set the
lower and upper limits of these random quantities denoted by 𝑦0 and
𝑦𝑛+1 to avoid possible values of 𝑦0 = −∞ or 𝑦𝑛 = ∞ that could impact
the mean of the future 𝑚 observations where the mean is the most
tendency measure which does not influence the outliers. Therefore, we
assume the assumption that 𝑌𝑖 has finite support (𝑦0 , 𝑦𝑛+1) using

𝑦0 = min
1≤𝑖≤𝑛

(𝑦𝑖) − 𝑑, 𝑦𝑛+1 = max
1≤𝑖≤𝑛

(𝑦𝑖) + 𝑑 (17)

where 𝑑 is the maximum distance between two consecutive observations.
We use those limits in order to simplify the NPI-Bootstrap method.

As can be seen, for each 𝑖 = 1, ..., 𝑛 + 1, the 𝑛 observations partition
the real line into 𝑛 + 1 intervals, denoted as 𝐼𝑖 = (𝑦𝑖−1 , 𝑦𝑖). Now, using
the NPI-Bootstrap as described in Section 3.2, generate 𝑚 real-valued

random quantities 𝑌
𝑓

1 , 𝑌
𝑓

2 , ..., 𝑌
𝑓
𝑛 , where 𝑚 = 𝑛. Then, calculate the

estimate based on the original sample that is �̂� which is of interest,
and calculate the estimate based on the future samples which are �̂� 𝑓

where �̂� 𝑓 = �̂� ± 𝜖 and 𝜖 is the distance between the two estimates and
takes values 𝜖 ≥ 0. Now, we can derive theory 𝜖−reproducibility of
estimates as follows.

The 𝜖−reproducibility of an estimate can be quantified as the proba-
bility of the absolute value of the difference between the estimate based
on the original sample and the estimate based on the future sample
which is equal or less than a small real positive value 𝜖, which can be
written as follows:

𝑅𝑃(𝜖) = 𝑃(|�̂� − �̂� 𝑓 | ≤ 𝜖) (18)

where �̂� is an estimate of a population parameter based on the original

sample, and 𝜃 𝑓 is an estimate of a population parameter based on the
future sample.
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For more clarification, the NPI-Bootstrap method, as described in
Section 3.2, is used to generate a future sample 𝑏1 , ..., 𝑏𝑛 and denote the
estimate based on this bootstrap sample by �̂�𝐵𝑖

. We perform this pro-
cedure 𝑛𝐵 times. Based on these 𝑛𝐵 bootstrap samples, we can estimate
𝜖-reproducibility of �̂� by:

𝑅𝑃(𝜖) =
𝑛𝐵∑
𝑖=1

1

𝑛𝐵
1

{
|�̂� − �̂�𝐵𝑖

| ≤ 𝜖

}
(19)

with 𝜖 ≥ 0, and 1{𝐴} is an indicator function that is equal to 1 if event
𝐴 is true and 0 otherwise. Note that, by using NPI-Bootstrap, we get
a point estimate of 𝑅𝑃(𝜖).

5.2 Reproducibility of estimates using a representative
sample

This section introduces a new method for assessing 𝜖−reproducibility
of estimates of a characteristic population using a representative sam-
ple procedure instead of NPI-Bootstrap. This method helps to avoid
randomness of sampling from the distribution to eliminate sampling
bias. For a population distribution with cumulative distribution func-
tion 𝐹 for real-valued random quantities, we define 𝑦1 , 𝑦2 , ..., 𝑦𝑛 as a
representative sample as follows:

𝑦𝑖 = 𝐹−1
(

𝑖

𝑛 + 1

)
(20)

So, 𝑦𝑖 is the 100( 𝑖
𝑛+1 )-th percentile of 𝐹, for 𝑖 = 1, ..., 𝑛. We call

𝑦1 , 𝑦2 , ..., 𝑦𝑛 as a representative sample of distribution 𝐹 with ordering
𝑦(1) < 𝑦(2) < ... < 𝑦(𝑛). The main idea of this method is to estimate
the variability from random sampling, and focus on different RP for
different methods to estimate the parameter �̂�.

As in Section 5.1, we assume finite support in order to simplify the
NPI method, so we define the lower and upper bounds of the original
sample 𝑦0 and 𝑦𝑛+1 are derived as follows:

𝑦0 = min
1≤𝑖≤𝑛

(𝑦𝑖) − 𝑑, 𝑦𝑛+1 = max
1≤𝑖≤𝑛

(𝑦𝑖) + 𝑑 (21)

with 𝑑 again the maximal distance between two consecutive 𝑦𝑖 values.
We now have 𝑛 + 1 intervals 𝐼𝑖 = (𝑦𝑖−1 , 𝑦𝑖), where 𝑖 = 1, ..., 𝑛 + 1. We
assume that all the orderings 𝑂 𝑗 of the future observations among the
original observations are equally likely as explained in Section 3.1, and

each ordering includes the future observations 𝑆
𝑗

𝑖
= #{𝑌𝑛+𝑖 , 𝑖 = 1, ..., 𝑛}
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where 𝑗 = 1, 2, ...,
(2𝑛
𝑛

)
. We link the data and future observations via

Hill’s assumption 𝐴(𝑛) [29], or more precisely, via consecutive applica-
tion of 𝐴(𝑛) , 𝐴(𝑛+1) , ..., 𝐴(2𝑛−1) which can be considered as a post-data
version of a finite exchangeability assumption for 2𝑛 random quantities
that are 𝑌𝑛+1 , ..., 𝑌2𝑛. The 𝐴(𝑛) assumptions imply that all possible
orderings of 𝑛 data observations and 𝑛 future observations are equally
likely, where the 𝑛 data observations and 𝑛 future observations cannot
be separated from one another.

For a larger sample size, we use simple random sampling (SOM) [36]
to generate the future observations as explained in Section 3.1. Based
on the 𝐴(𝑛) assumptions, Equation (22) derive the probability of each
ordering [30] as follows.

𝑃

( 𝑛+1⋂
𝑖=1

{𝑆 𝑗

𝑖
= 𝑠

𝑗

𝑖
}
)
= 𝑃(𝑂 𝑗) =

(
2𝑛

𝑛

)−1
(22)

where the 𝑠
𝑗

𝑖
are non-negative integers with

∑𝑛
𝑖=1 𝑠

𝑗

𝑖
= 𝑛. For ordering

𝑂 𝑗, the lower and upper estimates denoted by �̂�
𝑓

𝑗 ,𝐿
and �̂�

𝑓

𝑗 ,𝑈
, respectively,

can be calculated by using the minimum and maximum possible values
the future estimates given these orderings. For example, if interested in
the mean, then

�̂�
𝑓

𝑗 ,𝐿
=

1

𝑛

𝑛+1∑
𝑖=1

𝑆
𝑗

𝑖
𝑦𝑖−1 , �̂�

𝑓

𝑗 ,𝑈
=

1

𝑛

𝑛+1∑
𝑖=1

𝑆
𝑗

𝑖
𝑦𝑖 (23)

We now use these lower and upper estimates corresponding to ordering
𝑂 𝑗 to derive the lower and upper probabilities for 𝜖−reproducibility of
the estimates based on a representative sample. This provides a tool
to compare RRT as will be explained in examples. The estimate of �̂� 𝑓

based on the original representative sample is �̂�. To obtain the NPI
lower 𝜖−reproducibility probability for the event that |�̂� 𝑓 − �̂� | ≤ 𝜖,

we need to find all estimates �̂� 𝑓 with [�̂� 𝑓

𝑗 ,𝐿
, �̂�

𝑓

𝑗 ,𝑈
] ⊂ [�̂� − 𝜖, �̂� + 𝜖]. To

obtain the NPI upper 𝜖−reproducibility probability for the event that

|�̂� 𝑓 − �̂� | ≤ 𝜖 with the condition [�̂� 𝑓

𝑗 ,𝐿
, �̂�

𝑓

𝑗 ,𝑈
] ∩ [�̂� − 𝜖, �̂� + 𝜖] ≠ ∅ where

𝑗 = 1, ...,
(2𝑛
𝑛

)
.

This leads to the NPI lower 𝜖−reproducibility probability:

𝑅𝑃(𝜖) = 𝑃(|�̂� 𝑓 − �̂� | ≤ 𝜖) =
(2𝑛𝑛 )∑
𝑗=1

𝑃(𝑂 𝑗) 1

{
max(�̂� − �̂�

𝑓

𝑗 ,𝐿
, �̂�

𝑓

𝑗 ,𝑈
− �̂�) ≤ 𝜖

}
(24)
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and the NPI upper 𝜖−reproducibility probability:

𝑅𝑃(𝜖) = |𝑃(�̂� 𝑓 − �̂� | ≤ 𝜖) =
(2𝑛𝑛 )∑
𝑗=1

𝑃(𝑂 𝑗) 1

{
max(�̂� 𝑓

𝑗 ,𝐿
− �̂�, �̂� − �̂�

𝑓

𝑗 ,𝑈
) ≤ 𝜖

}
(25)

6 Numerical examples of 𝝐-Reproducibility of
estimates based on RRT methods using
NPI-Bootstrap and the representative sample

In this section, we derive the 𝜖−reproducibility of estimates using data
generated by RRT using NPI-Bootstrap and the representative sample;
the approach is detailed in Sections 5.1 and 5.2. We use the simulation to
generate the original sample of responses of the respondent of different
RRT data such as the true response 𝑋, the scrambling response 𝑆, the
response of the unrelated question 𝑌 or the reported response 𝑍. These
random quantities are generated using a simulation of RRT method.

To investigate 𝜖−reproducibility of estimates using NPI-Bootstrap,
we generate all possible responses which are generated from the origi-
nal sample. Then, calculate the original mean �̂�𝑥 and the future mean
�̂�𝐵 and then we use the 𝜖−reproducibility of estimates is explained in
Section 5.1. The next example explains more details about this method.

Example 6.1. This example introduces 𝜖−reproducibility of the esti-
mate based on real-valued random quantities generated from the
Greenberg method [14] and using NBI-B method. Respondents use the
randomisation device to answer one of two questions. One of these
questions is sensitive while the other is nonsensitive. Both answers are
real-valued quantities. Assume the probability of the sensitive ques-
tion is 𝛾 = 0.70. We simulate the responses to the sensitive question
𝑋𝑖 ∼ 𝑁(𝜇𝑥 = 1, 𝜎2

𝑥 = 10) and the responses to the unrelated question
𝑌𝑖 ∼ 𝑁(𝜇𝑦 = 4, 𝜎2

𝑦 = 20).

Suppose that for 𝑛 = 5, we order the 𝑋𝑖 values, which are
2.8516, 3.2435, 0.6544, −0.4341, 2.9160 and order the 𝑌𝑖 values, which
are −4.1301, 6.8179, 2.7649, 2.7292,−0.1113. These values are simulated
from the given distributions. Assume that 𝛾 = 0.70 is the probability
of the question of interest being 𝑋𝑖 for each person in which can they
give 𝑌𝑖 as an answer. Assume that the randomisation device generated
the values {1, 1, 0, 0, 1}. If the value 1, the response is 𝑍𝑖 = 𝑌𝑖. If the
value is 0, the answer is 𝑍𝑖 = 𝑋𝑖.

The reported 𝑍𝑖 responses are −4.1301, 6.8179, 0.6544,−0.4341,
−0.1113. The estimate of the reported responses 𝑍𝑖 based on the original
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sample to the sensitive question �̂�𝑧
𝑥 is

�̂�𝑧
𝑥 =

�̂�𝑧 − (1 − 𝛾)𝜇𝑦

𝛾
= −0.9152 (26)

where �̂�𝑧 =

∑𝑛
𝑖=1 𝑍𝑖

𝑛 = 0.5593.
To apply NPI-Bootstrap for determining the lower and upper bounds

for the support 𝑍𝑖:

𝑧0 = min
1≤𝑖≤𝑛

(𝑧𝑖) − 𝑑 = −10.2937 (27)

𝑧𝑛+1 = max
1≤𝑖≤𝑛

(𝑧𝑖) + 𝑑 = 12.9814 (28)

where 𝑑 = 6.1635 is the maximal distance between two consecutive 𝑧𝑖
values. We generate 𝑛𝐵 = 1000 NPI-Bootstrap samples 𝑏1 , ....𝑏𝑛 size 𝑛
based on the 𝑧𝑖 values.

We calculate the expected value of bootstrap samples 𝑏𝑖 based on
the sample 𝑍𝑖 as �̂�𝐵

𝑧 , and we use the mean of normal distribution of the
unrelated responses 𝜇𝑦 to derive the estimate of each bootstrap sample

�̂�𝐵
𝑥 as follows:

�̂�𝐵
𝑥 =

�̂�𝐵
𝑧 − (1 − 𝛾)𝜇𝑦

𝛾
(29)

where the mean of each bootstrap sample is �̂�𝐵
𝑧 =

∑𝑛
𝑖=1 𝑏𝑖
𝑛 where 𝑛 is

the number of bootstrap observations. Then, we calculate the difference
between �̂�𝑧

𝑥 and bootstrap samples means �̂�𝐵
𝑥 to derive 𝜖−reproducibility

of the mean for 𝑛𝐵 times. Then, find the number of the event that
|�̂�𝑧

𝑥 − �̂�𝐵
𝑥 | ≤ 𝜖 divided by 𝑛𝐵, as follows:

|�̂�𝑧
𝑥 − �̂�𝐵

𝑥 | ≤ 𝜖 =

���� �̂�𝑧 − (1 − 𝛾)𝜇𝑦

𝛾
−
�̂�𝐵
𝑧 − (1 − 𝛾)𝜇𝑦

𝛾

���� ≤ 𝜖 (30)

This leads to derive 𝜖 − reproducibility of the mean as follows:

𝑅𝑃(𝜖) = 𝑃

(
|�̂�𝑧

𝑥 − �̂�𝐵
𝑥 | ≤ 𝜖

)
=

𝑛𝐵∑
𝑖=1

1

𝑛𝐵
1

{���� �̂�𝑧

𝛾
− �̂�𝐵𝑖

𝑥

𝛾

���� ≤ 𝜖

}
(31)

Perform this procedure 𝑛∗ times to get 𝑛∗ original sample to derive 𝑛∗

of 𝜖−reproducibility of estimates. Figure 1 shows the 𝑅𝑃(𝜖) as function
of 𝜖. It can be seen that for larger values of 𝜖, reproducibility increases,
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Fig. 1 The average of 𝑅𝑃(𝜖) of the Greenberg method, 𝑛 = 5, 𝑛𝐵 = 1000, 𝑛∗ = 1000,
𝜇𝑥 = 1, 𝜎2𝑥 = 10, 𝜇𝑦 = 4, 𝜎2𝑦 = 20, 𝛾 = 0.70

because the difference between the estimate based on the original sam-
ple and the estimate based on the future sample is small which leads
to increase the number of the event that |�̂�𝑧

𝑥 − �̂�𝐵
𝑥 | ≤ 𝜖, and then that

leads to increase the 𝑅𝑃(𝜖). The results illustrate clearly that the low-

est value of 𝑅𝑃(𝜖) is for 𝜖 = 0 whereas the highest value of 𝑅𝑃(𝜖) for
𝜖 = 0.8. Therefore, for any two values 𝜖2 > 𝜖1, the 𝑅𝑃(𝜖2) > 𝑅𝑃(𝜖1).

For different original samples, the reproducibility of estimates based
on the GM for each sample is calculated using different 𝛾 ∈ [0, 1],
where the variances of the normal distributions are 𝜎2

𝑥 > 𝜎2
𝑦 as shown

in Table 1. It is shown that reproducibility gets higher as 𝛾 becomes
larger because many people answered the unrelated question. The

𝑅𝑃(1) of the mean takes values between 0.04 and 0.28 and the 𝑅𝑃(1)
of the median takes value between 0.03 and 0.27. The 𝑅𝑃(1) of 𝑞(0.25)
takes values between 0.02 and 0.19 whereas the 𝑅𝑃(1) of 𝑞(0.75) takes
values between 0.05 and 0.33. The 𝑅𝑃(1) of the 𝐼𝑄𝑅 takes values

between 0.02 and 0.14. The 𝑅𝑃(1) of the standard deviation 𝑠𝑑 takes
small values between 0.02 and 0.12. The lower whisker takes the small-
est value which is 0 whereas the highest whisker takes values between
0.08 and 0.55.
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Table 1 𝑅𝑃(𝜖) of the GM method of 𝑛 = 5, 𝑛𝐵 = 100, 𝑛∗ = 100, 𝜇𝑥 = 1, 𝜎2𝑥 = 10,
𝜇𝑦 = 4, 𝜎2𝑦 = 20, 𝜖 = 1

Summary 𝛾 = 0.2 𝛾 = 0.3 𝛾 = 0.4 𝛾 = 0.5 𝛾 = 0.6 𝛾 = 0.7 𝛾 = 0.8 𝛾 = 0.9
𝑞(0.25) 0.0530 0.0760 0.0978 0.1160 0.1360 0.1560 0.1740 0.1950
𝑞(0.75) 0.0940 0.1340 0.1690 0.2040 0.2283 0.2613 0.2965 0.337
median 0.0690 0.1010 0.1280 0.1500 0.1710 0.1950 0.2215 0.2470
mean 0.0797 0.1155 0.1435 0.1711 0.1957 0.2240 0.2539 0.2820
sd 0.0419 0.0657 0.0698 0.0815 0.0970 0.1071 0.1192 0.1271
IQR 0.0410 0.0580 0.0713 0.0880 0.0923 0.1053 0.1225 0.1420

Table 2 𝑅𝑃(𝜖) of the GM method of 𝑛 = 500, 𝑛𝐵 = 100, 𝑛∗ = 100, 𝜇𝑥 = 1, 𝜎2𝑥 = 10,
𝜇𝑦 = 4, 𝜎2𝑦 = 20, 𝜖 = 0.5

Summary 𝛾 = 0.2 𝛾 = 0.3 𝛾 = 0.4 𝛾 = 0.5 𝛾 = 0.6 𝛾 = 0.7 𝛾 = 0.8 𝛾 = 0.9
𝑞(0.25) 0.3000 0.4275 0.5300 0.6300 0.7000 0.7700 0.8300 0.8700
𝑞(0.75) 0.3600 0.4825 0.6000 0.6900 0.7600 0.8200 0.8800 0.9100
median 0.3300 0.4600 0.5600 0.6500 0.7300 0.8000 0.8500 0.9000
mean 0.3301 0.4578 0.5645 0.6551 0.7309 0.7967 0.8496 0.8902
sd 0.0438 0.0440 0.0531 0.0506 0.0446 0.0462 0.04144 0.0335
IQR 0.0600 0.0550 0.0700 0.0600 0.0600 0.0500 0.0500 0.0400

Table 3 𝑅𝑃(𝜖) of the GM method of 𝑛 = 500, 𝑛𝐵 = 100, 𝑛∗ = 100, 𝜇𝑥 = 1, 𝜎2𝑥 = 20,
𝜇𝑦 = 4, 𝜎2𝑦 = 10, 𝜖 = 0.5

Summary 𝛾 = 0.2 𝛾 = 0.3 𝛾 = 0.4 𝛾 = 0.5 𝛾 = 0.6 𝛾 = 0.7 𝛾 = 0.8 𝛾 = 0.9
𝑞(0.25) 0.2400 0.3800 0.500 0.6200 0.7300 0.8200 0.900 0.9500
𝑞(0.75) 0.3000 0.4300 0.5700 0.6900 0.7900 0.8800 0.9400 0.9800
median 0.2750 0.4100 0.5400 0.6600 0.7600 0.8600 0.9200 0.9700
mean 0.2736 0.4077 0.5385 0.6553 0.7595 0.8498 0.9177 0.9602
sd 0.0408 0.0425 0.0526 0.0539 0.0449 0.04192 0.0307 0.0231
IQR 0.0600 0.0500 0.0700 0.0700 0.0600 0.0600 0.0400 0.0300

Table 4 𝑅𝑃(𝜖) of the GM method of 𝑛 = 500, 𝑛𝐵 = 100, 𝑛∗ = 100, 𝜇𝑥 = 4, 𝜎2𝑥 = 20,
𝜇𝑦 = 1, 𝜎2𝑦 = 10, 𝜖 = 0.5

Summary 𝛾 = 0.2 𝛾 = 0.3 𝛾 = 0.4 𝛾 = 0.5 𝛾 = 0.6 𝛾 = 0.7 𝛾 = 0.8 𝛾 = 0.9
𝑞(0.25) 0.3000 0.4400 0.5700 0.6900 0.8000 0.8800 0.9325 0.9725
𝑞(0.75) 0.3000 0.4400 0.5700 0.6900 0.8000 0.8800 0.9325 0.9725
median 0.2750 0.4100 0.5400 0.6600 0.7600 0.8600 0.9200 0.9600
mean 0.2742 0.4102 0.5403 0.6569 0.7616 0.8516 0.9163 0.9593
sd 0.0405 0.0445 0.0502 0.0506 0.0493 0.0449 0.0305 0.0219
IQR 0.0500 0.0600 0.0700 0.0700 0.0800 0.0525 0.0325 0.0250

A large sample size leads to higher reproducibility. However, a
large number of replications 𝑛∗ does not lead to more changes in
the reproducibility because larger replication leads to more accurate
for reproducibility of estimates as shown in Tables 1 and 2. For the
assumptions, 𝜇𝑦 > 𝜇𝑥 and 𝜎2

𝑦 > 𝜎2
𝑥, an increasing the variance of the

distribution of the non-sensitive answers leads to an increase of the
𝜖−reproducibility for the estimates.
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Table 2 shows that the 𝑅𝑃(0.5) of the mean takes values between

0.33 and 0.89 and the 𝑅𝑃(0.5) of the median takes value between 0.33

and 0.90. The 𝑅𝑃(0.5) of 𝑞(0.25) takes values between 0.30 and 0.87

whereas the 𝑅𝑃(0.5) of 𝑞(0.75) takes values between 0.36 and 0.91. The

𝑅𝑃(0.5) of the 𝐼𝑄𝑅 takes values between 0.04 and 0.07. The 𝑅𝑃(0.5) of
the standard deviation 𝑠𝑑 takes small values between 0.03 and 0.05.

Tables 2 shows the 𝜖−reproducibility of estimates are lower than
the 𝜖−reproducibility of estimates as shown in Table 3, and that hap-
pens when the probability of the sensitive question is 𝛾 ≤ 0.5.

Now, we increase the mean of the distribution of the sensitive
responses and investigate the 𝜖−reproducibility of estimates where
𝜇𝑥 > 𝜇𝑦 and 𝜎2

𝑦 < 𝜎2
𝑥. We find that the 𝜖−reproducibility of estimates of

all characteristics increases than the 𝜖−reproducibility of estimates at
𝜇𝑥 < 𝜇𝑦 and 𝜎2

𝑦 < 𝜎2
𝑥 as shown in Table 4. So, the 𝜖−reproducibility of

estimates of the GM gets higher values if the mean and other measures
of the distribution of the sensitive responses of the unrelated response
increase for all the value of 𝛾.

Now, an example of the 𝜖−reproducibility of estimates using the repre-
sentative sample derived from a distribution will be given as discussed
in Section 5.2. Data generated by the RRT method, including the GM
technique. The next example provides additional details for more clarity.

Example 6.2. In this example, we derive the lower and upper
reproducibility of estimates based on the GM method [14] using a rep-
resentative sample with a size of 𝑛 = 3. Assume the probability of the
sensitive question is 𝛾 = 0.70. We simulate the random quantity of the
responses to the sensitive question 𝑋𝑖 ∼ 𝑁(𝜇𝑥 = 4, 𝜎2

𝑥 = 3) and the
responses to the unrelated question 𝑌𝑖 ∼ 𝑁(𝜇𝑦 = 1, 𝜎2

𝑦 = 0.04).

We generate random quantities of the original sample 𝑍𝑖 from the
normal distribution which has the mean and the variance of 𝑍𝑖 of
the GM, where 𝑍𝑖 ∼ 𝑁(𝛾𝜇𝑦 + (1 − 𝛾)𝜇𝑥 ,

1
𝛾2 (𝜎2

𝑦 + 𝛾(𝜎2
𝑥 − 𝜎2

𝑦) + 𝛾(1 −
𝛾)(𝜇𝑥 − 𝜇𝑦)2)) = 𝑁(3.1, 8.1673). The first response is 𝑧1 = 1.1724, the
second response is 𝑧2 = 3.1, and the third one is 𝑧3 = 5.0276, where the
mean of the original sample is �̄� = 3.1. The lower and upper bounds
are 𝑧0 = −0.7552 and 𝑧𝑛+1 = 6.9552, where 𝑑 = 1.9276 is the maximal
distance between two consecutive of 𝑧𝑖 values. Then, find all possible
orderings of the future observations to calculate the lower and upper

future averages 𝑧
𝑓

𝑙
and 𝑧

𝑓
𝑢. Then, calculate the maximum values of the

difference between the lower and upper future averages and the original
mean as 𝜖 𝑗 ,𝑙 and 𝜖 𝑗 ,𝑢, respectively. Then, derive the lower and upper



Springer Nature 2021 LATEX template

Reproducibility of estimates based on randomised response methods 19

Table 5 The 𝑧
𝑓

𝑗 ,𝑙
, 𝑧

𝑓

𝑗 ,𝑢
, 𝜖 𝑗 ,𝑙 , 𝜖 𝑗 ,𝑢 , 𝑅𝑃(𝜖 𝑗 ,𝑙) and 𝑅𝑃(𝜖 𝑗 ,𝑢) of the GM method of 𝑛 = 3,

𝑛𝑜 = 20, 𝜇𝑥 = 4, 𝜇𝑦 = 1, 𝜎2𝑥 = 3, 𝛾 = 0.7, 𝜎2𝑦 = 0.04, �̄� = 3.1

𝑧
𝑓

𝑗 ,𝑙
𝜖 𝑗 ,𝐿 𝑅𝑃(𝜖 𝑗 ,𝑙) 𝑧

𝑓

𝑗 ,𝑢
𝜖 𝑗 ,𝑢 𝑅𝑃(𝜖 𝑗 ,𝑢)

-0.7552 1.2851 0.35 1.1724 0.0000 0.55
2.4575 1.2851 0.35 4.3851 0.0000 0.55
2.4575 1.2851 0.35 4.3851 0.0000 0.55
1.1724 1.2851 0.35 3.1000 0.0000 0.55
3.7425 1.2851 0.35 5.6701 0.6425 0.70
2.4575 1.2851 0.35 4.3851 0.6425 0.70
0.5299 1.2851 0.35 2.4575 0.6425 0.70
2.4575 1.9276 0.55 4.3851 0.6425 0.80
3.1000 1.9276 0.55 5.0276 0.6425 0.80
1.8149 1.9276 0.55 3.7425 1.2851 0.95
1.1724 1.9276 0.55 3.1000 1.2851 0.95
0.5299 2.5701 0.80 2.4575 1.2851 0.95
-0.1127 2.5701 0.80 1.8149 1.9276 1.00
4.3851 2.5701 0.80 6.3127 0.0000 0.55
1.1724 2.5701 0.80 3.1000 0.0000 0.55
3.7425 2.5701 0.80 5.6701 0.0000 0.55
2.4575 3.2127 0.95 4.3851 0.0000 0.55
3.7425 3.2127 0.95 5.6701 0.6425 0.70
-0.1127 3.2127 0.95 1.8149 0.6425 0.70
2.4575 3.8552 1.00 4.3851 0.6425 0.70

𝜖−reproducibility of the difference between the average of the original
sample and the future sample as Table 5 is shown.

It is noted that a larger distance between the original sample means

and lower means 𝑧
𝑓

𝑙
and upper means 𝑧

𝑓
𝑢 leads to larger reproducibility

of the mean. Therefore, largest value of 𝜖 𝑗 ,𝑙 = 3.8552 leads to largest
value of 𝑅𝑃(3.8552) = 1. Similarly, the largest value of 𝜖 𝑗 ,𝑢 = 1.9276

leads to the largest value of 𝑅𝑃(1.9276) = 1 and the lowest value of

𝜖 𝑗 ,𝑢 = 0 leads to the largest value of 𝑅𝑃(0) = 0.55 as Table 5 is shown.

Table 6 shows the lower and upper reproducibility probabilities for
lower quartile 𝑞(0.25), median and 𝑞(0.25), the upper quartile 𝑞(0.75),
the interquartile range 𝐼𝑄𝑅, the mean and the lowest and highest
whiskers of different sample size 𝑛∗ = 100, 500, 1000. The lower
and upper reproducibility probabilities for median does not change
considerably with different 𝑛∗. The lower and upper reproducibility
probabilities for mean takes a value between 0.74 and 0.91 respectively.
The lowest values of the upper reproducibility probabilities is for stan-
dard deviation, and for IQR.

In addition, the results show that the increasing of the replica-
tion numbers 𝑛∗ does not affect considerably on the lower and upper
𝜖−reproducibily of the mean. That means the increasing in 𝑛∗ leads to
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Table 6 Estimates of 𝑅𝑃(1) and 𝑅𝑃(1) using the GM method of 𝑛 = 𝑚 = 30,
𝑛𝑜 = 20, 𝜇𝑥 = 4, 𝜇𝑦 = 1, 𝛾 = 0.7, 𝜎2𝑥 = 3, 𝜎2𝑦 = 0.04

𝑅𝑃(1) 𝑅𝑃(1)
𝑛∗ 100 500 1000 100 500 1000

𝑞(0.25) 0.7000 0.7000 0.7000 0.8500 0.8500 0.900
𝑞(0.75) 0.8000 0.8000 0.8000 0.9500 0.9500 0.9500
Median 0.7500 0.7500 0.7500 0.9000 0.9000 0.9000
Mean 0.7415 0.7506 0.7480 0.9155 0.9181 0.9152
sd 0.0935 0.0871 0.0932 0.0610 0.0595 0.0619
IQR 0.1000 0.1000 0.1000 0.1000 0.1000 0.0500

Table 7 Average of 𝑅𝑃(1) and 𝑅𝑃(1) using the GM method of 𝑛∗ = 100,
𝜇𝑥 = 4, 𝜇𝑦 = 1, 𝛾 = 0.7, 𝜎2𝑥 = 3, 𝜎2𝑦 = 0.04

𝑛 𝑛𝑜 𝑅𝑃(1) 𝑅𝑃(1) 𝑛 𝑛𝑜 𝑅𝑃(1) 𝑅𝑃(1)

5
100 0.1729 0.7920

100
100 0.9807 0.9948

500 0.1682 0.7865 500 0.9799 0.9936
1000 0.1684 0.7853 1000 0.9795 0.9935

30
100 0.7506 0.9181

1000
100 1.0000 1.0000

500 0.7504 0.9176 500 1.0000 1.0000
1000 0.7512 0.9186 1000 1.0000 1.0000

a slight increase in 𝑅𝑃(1) and 𝑅𝑃(1).

For different sample sizes and orderings numbers, Table 7 presents

the 𝑅𝑃(1) and 𝑅𝑃(1) for mean. It shows that increasing sample size
leads to increasing the average of the lower and upper 𝜖−reproducibility.
As a result, it is noted that the sample size and choosing parameters of
the RRT methods have a basic role to obtain high the lower and upper
𝜖−reproducibility of RRT method.

Now, we computed the exact lower and upper 𝜖−reproducibility
probabilities for estiamtes using a sample with a size of 𝑛 = 𝑚,
considering large orderings 𝑛𝑜 and appling the SOM methodology
to compute the lower and upper 𝜖−reproducibility probabilities in
order to assess the precision of the SOM method of the computa-
tion of the lower and upper 𝜖−reproducibility based on GM method.
The Normal distribution is assumed to be the underlying distri-
butions. Then, the number of orderings 𝑛𝑜 are generated equal to
1000, 2000, 5000, 10000, 20000, 50000, 100000 using the SOM approach,
and then the 95% confidence intervals are calculated for both the lower
and upper bounds in each replication as shown on Table 8.

When the number of sampled orderings is larger than or equal 1000,
we calculate the lower confidence interval of exact 𝜖−reproducibility of
estimates, the interval is calculated using the normal approximation for
the ordering number 𝑛𝑜. Therefore, the (1− 𝛼)% confidence intervals of
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Table 8 The lower and upper of CI(95%) of 𝑅𝑃(1) and 𝑅𝑃(1) using the GM method of
𝑛 = 𝑚 = 30, 𝑛∗ = 100, 𝜇𝑥 = 4, 𝜇𝑦 = 1, 𝛾 = 0.7, 𝜎2𝑥 = 3, 𝜎2𝑦 = 0.04

𝑛𝑜 Average 𝑅𝑃(1) 𝐶𝐼(0.95) Average 𝑅𝑃(1) 𝐶𝐼(0.95)
1000 0.7512 (0.7244, 0.7780) 0.9186 (0.9017, 0.9355)
2000 0.7511 (0.7322, 0.7700) 0.9192 (0.9073, 0.9311)
5000 0.7501 (0.7311, 0.7691) 0.9186 (0.9066, 0.9306)
10000 0.7497 (0.7307, 0.7687) 0.9184 (0.9064, 0.9304)
20000 0.7496 (0.7436, 0.7556) 0.9184 (0.9146, 0.9222)
50000 0.7494 (0.7456, 0.7532) 0.9183 (0.9159, 0.9207)
100000 0.7497 (0.7470, 0.7524) 0.9184 (0.9167, 0.9201)

the 𝑅𝑃(𝜖) and 𝑅𝑃(𝜖) are derived by

𝑅𝑃(𝜖) ± 𝑧 𝛼
2

√
𝑅𝑃(𝜖)

(
1 − 𝑅𝑃(𝜖)

)
𝑛𝑜

, 𝑅𝑃(𝜖) ± 𝑧 𝛼
2

√√√
𝑅𝑃(𝜖)

(
1 − 𝑅𝑃(𝜖)

)
𝑛𝑜

(32)

where 𝑧 𝛼
2
is 1 − 𝛼

2 quantile of the standard Normal distribution. Table

8 show that increasing 𝑛𝑜 leads to a slight decreases in the 𝑅𝑃(𝜖) and
𝑅𝑃(𝜖) of the mean of GM method and the confidence intervals 𝐶𝐼(95%)
and 𝐶𝐼(95%).

In general, it is noted that increasing the number of orderings
of future observations leads to an increase in the approximate lower
and upper reproducibility of estimates based on RRT method and a
decrease in the range of lower and upper confidence intervals for the
lower and upper reproducibility probabilities. For further applications,
several RRT methods are used to applying reproducibility of estimates
supported with several examples [9].

Now, it is useful to compare the 𝜖−reproducibility of estimates
derived from RRT techniques to find a link with it and the degree of
privacy and variance change. The following example compare between
those properties.

Example 6.3. This example compares RRT methods for real-valued
quantities based on three properties; variance, privacy degree, and
𝜖−reproducibility of estimates based on GM, EH, and MM data using
simulation with NPI-B and the representative sample, we set parame-
ters values for each method to achieve the same privacy degree, then
assess the variance and reproducibility of each method. To provide more
clarification, the previous RRT techniques are used to 𝜖−reproducibility
of estimates [9].

We first fix some parameters values of RRT methods such as the
sample size 𝑛 = 100, 300, 500, the number of ordering 𝑛𝑜 = 1000,
the number of NPI-Bootstrap samples 𝑛𝐵 = 1000 and 𝜖 = 0.1, 0.7.
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Table 9 Reproducibility of the mean of GM of 𝑛𝐵 = 1000, 𝑛𝑜 = 1000, 𝜇𝑥 = 4, 𝜇𝑦 = 4,

𝜎2𝑥 = 2.5, 𝜎2𝑦 = 1.5780, 𝜖 = 0.1

𝑛 = 𝑚 = 100 300 500 Δ𝐺𝑀 Var(𝑍𝑖)
𝛾 = 0.7 𝑅𝑃(𝜖) 0.3330 0.4730 0.5690 1.2234 3.7849

𝑅𝑃(𝜖) 0.1330 0.3680 0.5020

𝑅𝑃(𝜖) 0.4170 0.5260 0.6170

𝛾 = 0.53 𝑅𝑃(𝜖) 0.2460 0.3680 0.4450 1.9167 7.3573
𝑅𝑃(𝜖) 0.0680 0.2770 0.3840

𝑅𝑃(𝜖) 0.3740 0.4570 0.5280

Table 10 Reproducibility of the mean of MM of 𝑛𝐵 = 1000, 𝑛𝑜 = 1000, 𝜇𝑥 = 2, 𝜃 = 1,
𝜎2𝑥 = 4.8, 𝛾2 = 0.2958, 𝜖 = 0.1

𝑛 = 𝑚 = 100 300 500 Δ𝑀𝑀 Var(𝑍𝑖)
MM(𝜓 = 0.70) 𝑅𝑃(𝜖) 0.2850 0.4220 0.5010 0.7809 6.6221

𝑅𝑃(𝜖) 0.0830 0.2890 0.4170

𝑅𝑃(𝜖) 0.3830 0.4680 0.5410

MM(𝜓 = 0.53) 𝑅𝑃(𝜖) 0.2850 0.4220 0.5010 1.2234 6.1796
𝑅𝑃(𝜖) 0.0900 0.3100 0.4260

𝑅𝑃(𝜖) 0.3900 0.4780 0.5520

Table 11 Reproducibility of the mean of EH of 𝑛𝐵 = 1000, 𝑛𝑜 = 1000, 𝜇 = 2, 𝜃 = 2,
𝜎2𝑥 = 12.543, 𝑟2 = 0.2958, 𝜖 = 0.1

EH 𝑛 = 𝑚 = 100 300 500 Δ𝐸𝐻 Var(𝑍𝑖)
𝑅𝑃(𝜖) 0.1160 0.1900 0.2340 1.2234 13.7664
𝑅𝑃(𝜖) 0.0160 0.1770 0.2750

𝑅𝑃(𝜖) 0.3270 0.3580 0.4140

We set the other parameter values to obtain the same privacy degree
1.2234 of the RRT methods as follows. The parameter values of the
GM methods are 𝜇𝑥 = 4, 𝜇𝑦 = 4, 𝜎2

𝑥 = 2.5, 𝜎2
𝑦 = 1.5780 and 𝛾 = 0.70.

The parameter values of the MM method are 𝜇𝑥 = 2, 𝜃 = 1, 𝜎2
𝑥 = 4.8,

𝛾2 = 0.2958, and 𝜓 = 0.70. The parameter values of the EH methods
are 𝜇𝑥 = 4, 𝜃 = 2, 𝜎2

𝑥 = 12.543, 𝑟2 = 0.2958. Then, we change 𝛾, 𝜓 and
𝜖 to investigate the changes in the RRT method in terms of privacy
degree, the variance and the 𝜖−reproducibility of the mean.

Tables 9, 10 and 11 show that the comparison between GM, MM
and EH methods using the NPI-B and the representative sample. The
results show that the lower and upper 𝜖−reproducibility of the mean
of RRT methods increases if the variance decreases (the efficiency of
the method increases) while the privacy degree decreases. It is also
shown that the 𝜖−reproducibility of the mean based on the GM, MM
and EH method increases if 𝛾 increases or the sample size increases.
The 𝜖−reproducibility for an estimate using NPI-B gets values within
the range of the lower and upper reproducibility of RRT using the
representative sample except for the cases in which the difference
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Table 12 Reproducibility of the mean of GM of 𝑛𝐵 = 1000, 𝑛𝑜 = 1000, 𝜇𝑥 = 4, 𝜇𝑦 = 4,

𝜎2𝑥 = 2.5, 𝜎2𝑦 = 1.5780, 𝜖 = 0.7

𝑛 = 𝑚 = 100 300 500 Δ𝐺𝑀 Var(𝑍𝑖)
𝛾 = 0.7 𝑅𝑃(𝜖) 0.9890 1.0000 1.0000 1.2234 4.5376

𝑅𝑃(𝜖) 0.9750 1.0000 1.0000

𝑅𝑃(𝜖) 0.9900 1.0000 1.0000

𝛾 = 0.53 𝑅𝑃(𝜖) 0.9270 1.0000 1.0000 1.9167 7.35728
𝑅𝑃(𝜖) 0.9150 0.9990 1.0000

𝑅𝑃(𝜖) 0.9670 1.0000 1.0000

Table 13 Reproducibility of the mean of MM of 𝑛𝐵 = 1000, 𝑛𝑜 = 1000, 𝜇𝑥 = 2, 𝜃 = 1,
𝜎2𝑥 = 4.8, 𝛾2 = 0.2958, 𝜖 = 0.7

𝑛 = 𝑚 = 100 300 500 Δ𝑀𝑀 Var(𝑍𝑖)
MM(𝜓 = 0.70) 𝑅𝑃(𝜖) 0.9850 1.0000 1.0000 0.7809 6.6221

𝑅𝑃(𝜖) 0.9270 1.0000 1.0000

𝑅𝑃(𝜖) 0.9740 1.0000 1.0000

MM(𝜓 = 0.53) 𝑅𝑃(𝜖) 0.9850 1.0000 1.0000 1.2234 6.1796
𝑅𝑃(𝜖) 0.9370 1.0000 1.0000

𝑅𝑃(𝜖) 0.9780 1.000 1.0000

Table 14 Reproducibility of the mean of EH of 𝑛𝐵 = 1000, 𝑛𝑜 = 1000, 𝜇 = 2, 𝜃 = 2,
𝜎2𝑥 = 12.543, 𝑟2 = 0.2958, 𝜖 = 0.7

EH 𝑛 = 𝑚 = 100 300 500 Δ𝐸𝐻 Var(𝑍𝑖)
𝑅𝑃(𝜖) 0.6990 0.8970 0.9640 1.2234 13.7664
𝑅𝑃(𝜖) 0.7750 0.9740 0.9940

𝑅𝑃(𝜖) 0.8910 0.9890 0.9970

between the mean �̂�𝑧
𝑥 of original samples of the reproducibility using

the NPI-Bootstrap are large than the mean �̂�𝑧
𝑥 of original samples of

the reproducibility using the representative sample more than 0.2.

In addition, An increasing the sample size leads to higher
𝜖−reproducibility and obtains higher values of lower and
upper 𝜖−reproducibility using the representative sample and
𝜖−reproducibility using NPI-Bootstrap. Tables 10 and 11 show that
𝜖−reproducibility of the mean based on MM is higher than the
RP for estimates based on EH. Increasing 𝜖 leads to an increase of
𝜖−reproducibility as shown in Tables 12, 13 and 14.

Based on the comparisons of the quantitative RRT methods, it
is observed that the GM method has less variability of the reported
responses than the EH and the MM method at the same privacy
degree. Furthermore, the 𝜖−reproducibility of estimates is affected by
the variance of the original sample (the variability in the reported
responses). Therefore, the variance increases (the variability of the
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Fig. 2 𝑅𝑃(𝜖) values for the mean of GM, MM, and EH with the same 𝑛 = 100, 𝑛𝐵 = 1000,
and Δ = 1.223

reported responses becomes large), then the 𝜖−reproducibility of esti-
mates decreases. In addition, higher 𝜖−reproducibility of estimates leads
to lower privacy degree of the RRT methods. Figure 2 illustrates that,
for varying values of 𝜖, the reproducibility for the mean of the GM
method is higher than reproducibility for the mean of the MM and EH
methods. While reproducibility for the mean of the GM and MM meth-
ods at 𝜖 ≥ 0.5 has become the same, reproducibility the mean of all
RRT methods has become the same as well at 𝜖 ≥ 3.

7 Concluding remarks

This paper studies 𝜖−reproducibility of estimates as introduced in
Section 5 based on quantitative RRT methods in two ways; the first
method uses NPI-Bootstrap and the other method uses the repre-
sentative sample. 𝜖−reproducibility of estimates using NPI-Bootstrap
investigates the 𝜖−reproducibility of estimates based on the randomised
response method by using the simulation. The 𝜖−reproducibility of
estimates has different sampled ordering depending on the design
of RRT methods. This design could be the estimate of the reported
response and then the mean of bootstrap samples of the RRT method.

Using NPI-Bootstrap method is an excellent procedure to gen-
erate large possible future observations of the original sample while
SOM method is a helpful technique to generate large number of pos-
sible orderings of future observations. Therefore, for a large sample
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size, if it cannot consider all the orderings of the future observa-
tions, we use sampling of ordering method (SOM) to obtain a large
number of orderings to derive approximation of the lower and upper
𝜖−reproducibility. Using a larger sample size 𝑛 leads to a decrease
in the difference between the lower and upper 𝜖−reproducibility and
gives accurate 𝜖−reproducibility. Additionally, a lower variance of the
reported responses leads to higher 𝜖−reproducibility with the same
privacy degree.

It is noted that 𝜖−reproducibility of an estimate of the GM method
has less variability of the reported responses than the MM and EHmeth-
ods. Therefore, there is a strong relationship between this variability
and higher 𝜖−reproducibility of estimates of RRT method. That means
less variability of the reported responses leads to high 𝜖−reproducibility
of an estimate. In addition,increasing 𝜖 and the sample size 𝑛 leads to
higher 𝜖−reproducibility of an estimate. For further research, this work
can be applied to different RRT methods that have different procedures
or multiple samples. In addition, 𝜖−reproducibility of estimates can be
improved to investigate a unified measure to connect the variability of
the reported responses, respondents’ privacy and 𝜖−reproducibility of
estimates.

Finally, one may also compare the proposed method with other addi-
tive models aimed at enhancing privacy, such as the Warner additive
RRT model (𝑍 = 𝑋 +𝑆) [37] or the Diana and Perri linear combination
model (𝑍 = 𝑇𝑋 + 𝑆) [38]. This is left for future research.
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