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Abstract

Ranked set sampling (RSS) is an important survey technique aimed at efficient
estimation of population characteristics. Various RSS methods can be used to
collect an RSS sample, but the reproducibility of estimates using these meth-
ods remains unexplored. Reproducibility refers to obtaining similar estimates
when the survey is repeated under identical conditions. This study compares the
reproducibility of population mean estimates using four basic RSS methods: clas-
sical RSS (RSS), Median RSS (MRSS), Extreme RSS (ERSS), and Paired RSS
(PRSS). We assess the reproducibility of these methods using Nonparametric
Predictive Inference (NPI) bootstrapping. Simulations are conducted for varying
sample sizes with both perfect and imperfect rankings, and results are compared
for weak and strong associations between the study and concomitant variables.
Additionally, we apply these methods to agricultural data from Punjab, India.
Our findings indicate that MRSS provides the best reproducibility for population
mean estimates, while ERSS performs the worst in this regard.

Keywords: Imprecise probabilities, order statistics, nonparametric predictive
inference, statistical reproducibility



1 Introduction

Estimation of population parameters using sample data is a fundamental aspect of clas-
sical statistical inference. Various sampling techniques are available to select a sample
from a population. Ranked Set Sampling (RSS) is one such method that offers more
precise estimates of population characteristics compared to Simple Random Sampling
(SRS). Mclntyre (1952) introduced the RSS method, and it is considered appropri-
ate when the characteristic under study is time-consuming and costly. This technique
enhances estimation accuracy by reducing sampling error. It requires the utilization of
a closely related concomitant variable to collect data for the study variable; for exam-
ple, the soil fertility level can be used to collect data on crop yield. RSS is especially
useful in the environmental and biological sciences where obtaining a large sample
may be challenging. Takahasi and Wakimoto (1968) developed an unbiased estima-
tor of the population mean under the RSS technique. Muttlak (1998) introduced the
Median RSS (MRSS) method and proposed an unbiased estimator of the population
mean. Lynne Stokes (1977) used ranks of the concomitant variable to order units of
the study variable. The extreme RSS (ERSS) method was suggested by Samawi et al.
(1996), it uses extreme order statistics to estimate the population mean. Muttlak
(1996) suggested a method of paired RSS (PRSS) and showed that it also allows unbi-
ased estimation of population mean. These four methods are regarded as basic RSS
methods; however, other RSS approaches that are modifications of these basic meth-
ods have been provided by Al-Saleh and Al-Kadiri (2000), Abu-Dayyeh et al. (2003),
and Bhushan et al. (2024).

Recently, researchers have shown an increasing interest in the concept of statistical
reproducibility. In estimation theory, it represents the extent to which a statisti-
cal method or technique consistently yields similar estimates when the procedure is
repeated under the same conditions. Reproducing previous estimates enhances the
evidence for any statistical methods. Ensuring the validity and reliability of statistical
procedures and their results is a fundamental component of scientific inquiry. Initially,
the topic of reproducibility was discussed by Goodman (1992) in statistical tests. He
also addressed the misunderstanding between statistical p-value and reproducibility.
Further distinctions between the p-value and reproducibility were discussed by Senn
(2002). Miller (2009) highlighted the challenges in drawing meaningful conclusions
from a single preliminary experiment, particularly when the power of a test is unknown
due to the lack of knowledge about effective sample size.The reproducibility was esti-
mated by Posavac (2002) by comparing the value of a test statistic obtained from
the actual test results with the corresponding critical value. Shao and Chow (2002)
suggested three methods, including the Bayesian approach, to assess reproducibility.
The predictive nature of reproducibility and its association with the effective sample
size was studied by Killeen (2005). De Martini (2008) proposed several definitions of
the reproducibility of statistically significant findings. He also suggested various repro-
ducibility estimators for the Wilcoxon rank sum test and examined their efficiency.
Begley and Ellis (2012) highlighted concerns about experiment reproducibility by
demonstrating that around 25% of significant results in pre-clinical cancer trials could
be reproduced, underscoring the critical issue of reproducibility in scientific research.



Nonparametric Predictive Inference (NPI) is a statistical approach that enables
predictions about future observations without relying on strong assumptions regard-
ing the underlying data distribution. The idea is to make probabilistic predictions
about future observations based on the observed data. One example of NPI is the
construction of predictive probability intervals using the concepts of lower and upper
probabilities, which are based on order statistics and provide a way to express uncer-
tainty without assuming a specific distribution. As a result of using this methodology,
the concept of Reproducibility Probability (RP) was developed by Coolen and Himd
(2020) within the frequentist statistical framework. It is possible to draw logical infer-
ences about RP, given the explicitly predictive nature of NPI. A bootstrap method
based on NPI was developed by Coolen and Bin Himd (2014), they used it to esti-
mate the RP. Recently, Simkus et al. (2022) applied the NPI bootstrapping technique
to examine the RP of the t-test, demonstrating the practical applicability of NPI in
assessing reproducibility.

The current study compares the reproducibility of four basic RSS methods for
estimating the population mean using NPI bootstrapping, following the approach of
Rehman et al. (2024). In line with Coolen and Algifari (2018), we describe repro-
ducibility of an RSS method as the probability that the estimate based on a future
sample will be similar to the estimate based on the initial sample if sampling is done
under the same conditions. We examine the reproducibility of these methods for differ-
ent ranking criteria, different sample sizes, and the correlation coefficient between the
concomitant variable and the study variable using a simulation study. Our objective is
to contribute to the RSS literature by investigating the reproducibility of these meth-
ods, identifying their potential limitations and advantages. In agricultural research,
precise crop yield estimates are essential for efficient farming and food security. Our
study comparing RSS methods offers insights for selecting reliable sampling methods,
aiding farmers and policymakers in decision-making. Similarly, precise evaluation of
the distribution of pollutants and rare species is essential for conservation in environ-
mental studies. Our study guides on choosing more reproducible and reliable sampling
strategies, enhancing environmental monitoring, and conservation planning effective-
ness. This study commences with a review of RSS methods in Section 2, while Section
3 defines NPI reproducibility and explains its significance. Building on this, Section
4 explains the integration of NPI into RSS estimates and presents an algorithm to
investigate it. A detailed simulation study is presented in Section 5 to examine the
RP of the RSS methods for hypothetically generated normal and exponential popu-
lations. The application of this study to real data is presented in Section 6, while the
key findings and conclusions are summarized in Section 7.

2 RSS Methods

This section presents the methodological framework for sample selection under four
basic RSS approaches and provides their respective mean estimators. In addition, the
imperfect RSS method is also explained in this section.



2.1 The Classical Ranked Set Sampling (RSS)

This method was introduced by Mclntyre (1952) and efficiently estimated the mean
pasture yield. This method has proven to be an effective approach for estimating
the mean and various other population characteristics. The procedure for selecting a
sample using this method entails the following steps:

Initially, identify m? units from the population and assign them into m independent
sets of size m. In each set, the units are ranked using some visual judgments or by
using the ranks of any closely related concomitant variable. The lowest order statistic
from the first set is selected, and the second lowest order statistic is selected from
the second set. Continue selecting units in this manner until the m!* order statistic
is selected from the m!" set. The selected units can be represented as {Yi(i)}zl.
This procedure can be repeated r times to obtain a final sample of size n = rm. An
estimator of the population mean based on this method was developed by Takahasi

and Wakimoto (1968) as
1 T m
Yrss = EZZ}/’L(Z)j (1)
=1 =1
where Y;(;); shows it" order statistics in the i*" set of j** cycle. The estimator 7y, is
unbiased and has less variance than the mean estimator under SRS i.e.,

m
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Here, g represents the variance of the mean estimator obtained from an SRSWR
sample of size n, denoted by ¥s,s. The quantity A = p(;) — p highlights the magni-
tude of deviation of the i*" order statistic mean from the overall population mean .
Accordingly, Equation (2) indicates that g,ss provides a more precise estimate than
Usrs Whenever pi;y # fi.

2.2 Median Ranked Set Sampling (MRSS)

This method was proposed by Muttlak (1998). By selecting the median units, the
MRSS reduces the sampling variation and subsequently offers robust, efficient, and
precise estimates of population mean. This method is particularly useful in situations
when dealing with asymmetric populations or outliers. This novel method contributes
to improving the accuracy of population parameter estimation in various fields of
study. The sample selection procedure through MRSS involves examining m? units
of the population. These units are distributed into m independent sets of size m. In
each set, the units are ranked using visual judgments or ranks of a closely related
concomitant variable, and

e If m is even, select (m/2)™" order statistic from first (m/2) sets and ((m + 2)/2)™"

order statistic is selected from the remaining sets. The sample selected by this

. m/2 m
method is represented as {(Yi(m/g))i:/l , (}Q((m+2)/2))i:(m+2)/2}.



e If m is odd, select the middle order statistics i.e., ((m + 1)/2)th unit is selected from

all sets. The selected sample can be represented as (m((m+1)/2))211 .

The mean estimator for odd and even set sizes m is given by

m
2 m

Y. (m Y m if m i
) B li Z i) +i:;+2 i(mg2) i m s even "
Ymrss = n m 5
I X Yi(ma) if m is odd
i=1 2
The estimator #,,.ss is unbiased, whereas its variance is given by
m 9 m )
Ofmy T o if m is even
V(i _ 1 z; (7) =241 (7+1) 4
(Fmrss) = ) m (4)
> 0f i if m is odd

The estimator @,.ss will be more efficient than §,.ss if the condition V (§mrss) <
V (grss) is satisfied by the underlying population; Muttlak (1998) has obtained an
expression for this.

2.3 Extreme Ranked Set Sampling (ERSS)

This method was suggested by Samawi et al. (1996) and it is seen as a valuable
alternative in situations where the underlying population exhibits a fat-tailed distri-
bution. By focusing on extreme observations, it effectively accommodates populations
with high variability, thereby yielding more robust and reliable estimates of popula-
tion characteristics. This method is advantageous in fields like finance, where asset
returns frequently exhibit fat-tailed distributions, and in environmental studies, where
extreme events exert a substantial influence on ecological processes. Sample selection
procedure for this method involves examining m? units from population, assigning
them randomly to m independent sets each of size m. Rank the units within each set
and

¢ If m is even, select the lowest ranked units from the first 5 sets and the high-
est ranked units from the last 2 sets. The selected sample is expressed as

2
m/2 m
{ (Yi(l))izl ) (Yi(m))z':(m-s-z)/z}'
e If m is odd, the lowest ranked units are selected from the first ((m —1)/2) sets, and
the highest ranked units are selected from set 7L to set (m — 1). The median unit,

2
ie., (mTH)th is selected from the last set. The selected sample can be expressed as
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Repetition of this procedure r times yields a final sample of size n = rm. The estimator
of population mean is given by

m
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The estimator ¥e,ss is unbiased whereas its variance is given by

3
B

2 A + A if m is even
(1)
_ o2 1 i=1 . m+2
V (Gerss) = n rm? ) "5 m (6)
> AN+ ) A2 4+ A2, if mis odd
i=1 = m;l ( 2 )

Equation (6) shows that ge,ss is more efficient than gs,.s. Furthermore, if the underlying
data meets specific conditions, as shown by Samawi et al. (1996), then Fe,ss will be
more efficient than ¢,ss and Jprss-

2.4 Paired Ranked Set Sampling (PRSS)

Muttlak (1996) proposed this method, arguing that it draws a sample of size m by
examining fewer population units than the other RSS methods; thus, it is cost- and
time-efficient. PRSS offers a unique advantage by pairing items based on their ranks,
which helps reduce variability and enhance the precision of population parameter
estimates. This approach is particularly valuable in studies where the relationship
between paired observations is important for understanding the underlying population
characteristics. The sampling procedure is described below.

e If m is even, identify %2 units of the population and assign them randomly to %

independent sets, each of size m. Rank the units in each set and select the lowest
and largest ranked units from the first set. Select the second lowest and the second
largest ranked units from the second set and continue selecting paired units in this
manner until (2)" and (Z2)"" ranked units are selected from the last set. Sample
selected through this method can be represented as {(Yi(i))?; , (Y;(m-i-l—i)):il}'

e If m is odd, examine W units from the population, and assign them to 74t

independent sets, each of size m. Rank the units within sets and select the lowest and
the largest units from the first set. Select the second lowest and the second largest
units from the second set. Selection of paired units continues until the (74L)t

ranked unit is selected from the last set. The selected sample through this method

can be expressed as {(Yi(i))f:;rl)p , (Yi(mﬂ,i))f:l_l)/z}.



The mean estimator based on this method is given by

m

NS

r (Yo + Yimt1-9)) if m is even
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Yprss = H Z m;}1 mz—l (7)
=LY Yy + Y Yigmgi— if mis odd
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where r shows number of times a PRSS method is repeated. The estimator gp,ss is
unbiased with variance given as

(A?i) + A?m+17i)) +2 i O (i,m41—4) if m is even

oy oy Tap

Z; AZ) + Z; Al i1os T2 Z; O(i,m41—s) if m is odd.
(8)

Here o(; yn41-4) is the covariance between the ith and (m + 1 —4)'" order statistics.
Equation (8) shows that §,,ss is more efficient than ¢, however, its efficiency com-
parison with @rss, Umrss, and Jerss can be seen from Muttlak (1996) and references
therein.
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2.5 RSS with Perfect and Imperfect Ranking

When the ranking is carried out directly on the basis of the study variable itself,
it is referred to as perfect ranking. This approach can be implemented through the
visual judgement of the surveyor and, despite being simple and cost-effective, is gen-
erally assumed to be error-free. Perfect ranking is typically applied when sampling
units exhibit a natural order or hierarchy. However, when such ranking is not feasi-
ble, Lynne Stokes (1977) introduced an alternative procedure in which the ranking of
study units is performed using a closely associated concomitant variable, provided that
information on the auxiliary variable is available or easily obtainable. This approach,
termed imperfect ranking, has also been described by some researchers as ranking
with errors, since larger units may occasionally be placed before smaller ones due to
observational limitations. Weak correlation between the study and concomitant vari-
ables increases the likelihood of such misplacement, potentially leading to reduced
efficiency in the estimates. This study considers both ranking criteria for comparing
the reproducibility of population mean estimation for basic RSS methods.

3 NPI reproducibility

NPT relies on Hill’s assumption A(,) which is used for prediction when there is no prior
information about an underlying distribution (Hill 1968). It is used to predict direct
conditional probabilities for one or more future values. To explain the assumption A,
we consider n real-valued exchangeable random quantities Y7, ...,Y,. Our aim is to
predict future value Y,, 41 based on n observed values. Let the ordered observed values
be denoted as y(1y, -+, Y(n), With y) = —oo and y(,41) = o0, or using boundaries,



either known or assumed, to support the random variables such as yy = L and
Y(n+1) = R. Thus, for the future observation Y(,,1), the assumption A, derived from
n observed values is

1
P (Yoi1 € (Y—1):Yr))) = o for k=1,2,...,n+1. 9)

A(n) assumes that there are no ties, however, ties in data can be managed by breaking
them by a tiny amount. This post-data assumption and statistical inference based on
it is predictive and nonparametric. It can provide lower and upper bounds for proba-
bilities, known as interval probabilities or imprecise probabilities in probability theory.
Augustin and Coolen (2004) referred to this statistical approach as nonparametric
predictive inference (NPI). Augustin et al. (2014) provide a comprehensive overview
of imprecise probabilities, including both the theoretical foundations and practical
implementations. The lower probability P (A) in NPI is the maximum lower bound for
the probability for A, while the upper probability P (A) is the minimum upper bound
for the probability for A, where 0 < P (A) < P(A) < 1. For the event Y, 11 € B,

where B C IR, the NPI lower and upper probabilities, respectively are

1
P(Yus1 € B) = — |{k: 1. C B (10)
and 1

Coolen and Algifari (2018) used NPT for multiple future observations by consecutively
applying Hill’s assumption A, A¢g1), -5 Anim—1), jointly denoted by A(.. Given
n data observations, an ordering O; represents a potential ordering of the m > 1 future
observations. For n data observations and m future observations, there are (”Zm)
possible orderings, and all orderings have equal probability under A(.). Coolen and
Bin Himd (2014) developed bootstrap method based on NPI, called the Nonparametric
Predictive Inference Bootstrap (NPI-B) which predicts future values from the intervals
between data points, adding it to the data set before drawing another value. We employ
this bootstrapping technique to investigate the reproducibility of mean estimates for
basic RSS methods, thus, we describe the procedure. For n real-valued data in one
dimension on an interval [L, R], the NPI-B algorithm proceeds as:

1. Form n + 1 intervals using the n ordered observations.

2. Select an interval randomly with probability %“1’17 and draw a future value from it
using an assumed probability distribution over the interval.

3. Data is updated by adding the drawn value, increasing the sample size to n + 1
observations.

4. For updated data, Steps 1-3 are repeated to generate another future value, which
is then added to the data.

5. In total, iterate this procedure n times to obtain n future values that form an
NPI-B sample of size n.

The probability distributions in Step 2 of this algorithm are different for finite and
infinite intervals. For finite intervals, a future unit is uniformly selected from any



of the selected intervals. However, in the case of infinite intervals, the future value
is sampled from tail intervals differently. The first and last intervals, that is, I; =
(—oo, y(l)) and I,,4+1 = (y(n), +oo) are assumed to be tails of the Normal distribution
with parameters 1, = (ya) + yn)) /2 and oy = (Yn) — py) /(271 (n/(n + 1))), where
&1 is cumulative distribution function. If the selected interval is I; then a value is
sampled from a normal distribution with parameters (,uy, 05), and accepted if it is less
than y(;). Similarly, accept the sampled value for I,, 41 if it is greater than y,). If the
random quantities are known to be positive, then exponential distribution can be used
in the interval (y(,),00) with rate parameter A = log(n + 1)/y(,). These distributions
are fitted such that the intervals have probability %_H

Recently, the reproducibility of estimates using NPI-B bootstrapping was studied
by Alghamdi (2022). In this study, the sample estimate derived from a sample y1, ..., Yn
is denoted by 6. The NPI-B algorithm is used to create a future sample by, ..., b,, let
05 denote the estimate based on the future sample. On reproducing future samples
many time (say ng), and estimating 0 enables us to assess the e-reproducibility of

estimates as
ng

— 1 A
RP () = — 1{’979.@ } 12
@= 052 n|<e (12
where € > 0. The function RP(g) quantifies the likelihood of deviation between the
two estimates within a specific margin of €. The term 1{A} is an indicator function
such that 1 {A}=1 if event A is true and zero otherwise.

4 NPI reproducibility for RSS estimates

In this section, we describe the mathematical approach designed to evaluate and com-
pare the reproducibility of basic RSS methods within the framework of NPI. Following
Alghamdi (2022), RP (¢) is the probability that the mean estimated from reproduced
samples will fall within the € deviation of the mean estimated based on the original
sample, assuming that the sampling process is repeated under identical conditions.
Consider a set of sampling units obtained using any of the basic RSS methods, where n
original observations y;;¢ = 1,...,n are assumed to be independently and identically
distributed, and their ordered statistics are denoted by y(1) < ... < y(,). We determine
the lower and upper bound [y(o),y(nﬂ)] and make n + 1 intervals on the real line.
Using the steps discussed in Section 3, a set of n NPI-B future values is produced and
replaced with the original set. Repeat this procedure for all sets and obtain the setup
of NPI-B-RSS for reproducing the original sample. We produce a large number of NPI-
B-RSS samples (say M), and compute the mean estimate of the original RSS sample
and its corresponding NPI-B-RSS samples. Let the mean estimate from the original
sample be denoted by 0, and the mean estimates from the reproduced samples using
the NPI-B approach are denoted by Or. The following formulas are used to compute
the Absolute Average Deviation (AAD) and Mean Square Deviation (MSD) between
these estimates.



1L,
AAD = ; Or —6,,|, (13)
and
1,2
MSD:M;@R—GH) . (14)

Let € be any real-valued positive quantity, then RPj(e) is the reproducibility prob-
ability that AAD is equal to or less than e. Similarly, RP»(¢) is the reproducibility
probability that M.SD is equal to or less than €. These probabilities are mathematically
computed as

RP; () =Pr(AAD < ¢) (15)
and

RP, (e) =Pr(MSD < ¢). (16)
It is straightforward to compare the reproducibility of different RSS methods
when RP; (¢) and RP; (g) are plotted across different € values. We define this as
e-reproducibility with regard to AAD and M SD, where ¢ € [0, +00].

4.1 Algorithm for NPI reproducibility of RSS methods

Algorithm 1 outlines the step-by-step procedure for computing the reproducibility
probabilities for the different RSS methods. We employ NPI-B to reproduce the
original samples, which sample future observations from the entire range of possible
observations and extend beyond the bounds of the original samples. In Algorithm 1,
the provided inputs are the values of the study variable and the concomitant vari-
able. Original setups for basic RSS methods are produced, and samples of size n are
drawn using their respective procedures. Each set of RSS methods is then reproduced
using the NPI-B method, and the corresponding NPI-B-RSS sets are created and esti-
mate their corresponding mean. The number of runs for bootstrapped samples is M.
The estimated mean of the NPI-B-RSS samples is then used for calculating the AAD
and M SD. In order to compute reproducibility probabilities RP;(¢) and RP»(¢), this
entire process is repeated D times, where D denotes a population that has changed
while maintaining the same parameters.

5 Simulations

In this section, we compare the e-reproducibility of basic RSS methods through sim-
ulations. The above algorithm 1 is used for computation of e-reproducibility using R
software. The process begins with generating population values for the concomitant
variable, denoted by X;. The standardized normal population Z; is also generated,
which aids in establishing the desired correlation (py,) between the study variable Y

and the concomitant variable X. Using the relationship Y; = p . X; + Z;, /1 — PZm

we produced values for the study variable. The e-reproducibility is evaluated using
two hypothetical populations: (1) a normal distribution with parameters g = 100 and

10



Algorithm 1 Generating NPI-B-RSS samples and computing e-reproducibility

Require: Original samples of size n
Ensure: AAD, MSD, RP (g1) and RP (e3)

1: Draw original samples using procedures of RSS, MRSS, ERSS, and PRSS

2: Calculate original means of these samples

3: for each method of RSS do

4: Apply NPI-B method to generate bootstrapped sets

5: Replace bootstrapped set with original sets

6: Draw NPI-B-RSS samples from bootstrapped data

7: Compute sample means based on NPI-B-RSS samples

8: end for

9: for i < 1 to M do

10: Repeat Steps 3-8 and compute AAD and MSD using Equations (13) and (14)
11: end for

12: for j < 1to D do

13: Repeat Steps 1-12 and compute RP;(g) and RP»(g) using Equations (15) and

(16), respectively
14: end for

02 = 5, and (2) an exponential distribution with rate parameter A = 0.3. Both per-
fect and imperfect ranking criteria are considered, corresponding to weak (p,, = 0.50)
and strong (py; = 0.90) correlations between the study and concomitant variables.
The e-reproducibility is further examined for different sample sizes, with n = 6 and
n = 10 considered. Using the above algorithm, we use M = 1000 to compute AAD
and MSD given in (13) and (14), respectively. Finally, this entire process is repeated
D = 1000 times to compute the respective reproducibility probabilities RP; (¢) and
RP; (). We use different colors on plots to show the e—reproducibility of different
RSS estimates for different methods. The magnitude of ¢ is plotted along the x-axis,
while the y-axis represents the likelihood of its occurrence. The resulting outcomes
are illustrated below.

Perfect ranking - Pyx=0.90 - Py =0.50

RP1(e)
RPy(€)
RP1(e)

— RS 02 — Rss 02 — RS

— MRS — MRSS — MRSS
— ERSS. — ERSS — ERSS
— PRSS — PSS — PRSS

€ 3 €

Fig. 1 RPi(e) of estimates under different ranking criteria for normal distribution when n = 6
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Fig. 4 RPs(e) of estimates under different ranking criteria for normal distribution when n = 10
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Fig. 5 RP;(e) of estimates under different ranking criteria for exponential distribution when n = 6
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Fig. 7 RP;(e) of estimates under different ranking criteria for exponential distribution when n = 10
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Fig. 8 RP>(¢) of estimates under different ranking criteria for exponential distribution when n = 10

Simulation results show the e—reproducibility of mean estimates based on MRSS esti-
mates increases earlier than e—reproducibility of other methods, indicating that it is
the highest reproducible method. Similarly, the e—reproducibility of mean estimates
based on ERSS estimates shows the fluctuation as compared to other methods, indicat-
ing that it is least reproducible method. On other hand, the RSS and PRSS methods
display similar and intermediate levels of e—reproducibility between the MRSS and
ERSS methods. The plots also shows that e—reproducibility is higher for larger sam-
ples as compared to small samples. Furthermore, e—reproducibility for mean estimates
of the MRSS method is higher in the case of the exponential distribution as com-
pared to the normal distribution. The e—reproducibility of MRSS estimates is also
higher than other methods for both ranking criteria. In the case of imperfect ranking,
e—reproducibility for MRSS is higher when the correlation is high as compared to
weak correlation. Generally, the e—reproducibility of the MRSS method is higher than
other RSS methods, while ERSS exhibits the lowest e—reproducibility in all cases.

6 Application to real-life data

For real-life applications, we consider data on agriculture collected by Singh and Man-
gat (2013). The study variable is considered to be the total irrigated area in a village
(Punjab, India), for which mean is estimated based on basic RSS methods. In the case
of imperfect ranking, the concomitant variable is taken as the total number of tube-
wells in village. The simulation procedure is same as described in Algorithm 1, the
graphs below show the results.

14



Perfect ranking, n =6 Perfect ranking, n =10

10 10
08 08
05 06
g g
< <
4 <
04 04
02 =~ RSS 02 — RSS
— MRSS — MRSS
— ERSS — ERSS
— PRSS — PRSS
00 00
0 5 10 15 20 2 EY £ 0 5 10 15 20 2 EY
3 £

Fig. 9 RPi(e) of estimates under perfect ranking
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Fig. 10 RP;(e) of estimates under imperfect ranking
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Fig. 11 RP>(e) of estimates under perfect ranking

15



Imperfect ranking, n=6 Imperfect ranking, n =10

10 10
08 [ 08 [

02 — RSS 02 — RSS

— MRSS — MRSS
— ERSS — ERSS
— PRSS — PRSS

4 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200
3 €

Fig. 12 RP>(e) of estimates under imperfect ranking

7 Conclusions and future directions

This study investigated the reproducibility of four basic Ranked Set Sampling (RSS)
methods: Classical RSS (RSS), Median RSS (MRSS), Extreme RSS (ERSS), and
Paired RSS (PRSS). By employing Nonparametric Predictive Inference (NPI) boot-
strapping, we explored the reproducibility of these methods for varying sample sizes
and correlation coefficients between the study variable and the concomitant variable.
Our analysis included both perfect and imperfect rankings, providing a comprehensive
evaluation of the methods’ performance. The findings of this study showed that MRSS
exhibited the highest level of reproducibility among the four RSS methods considered.
This highlights the importance of selecting the MRSS method for sample selection. In
contrast, ERSS exhibited the lowest reproducibility, highlighting the need for caution
when applying this method, particularly in situations where extreme observations may
introduce variability.

Our work establishes the foundation for future studies in several ways. Firstly,
researchers can build upon our findings to further investigate the factors influencing the
reproducibility of RSS methods, such as sample size and ranking criteria. Additionally,
exploring alternative approaches to improve the reproducibility of ERSS could lead
to advancements in sampling methodology. Additionally, our study can serve as a
foundation for assessing the reproducibility of different mean estimators that involve
the auxiliary variable while designing stages. Furthermore, our study highlights the
importance of considering reproducibility in survey methods, paving the way for the
development of a more robust and reliable measure for comparing various survey
methods and estimators of population parameters.
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