
Optimal Thresholds for Classification Trees using Nonparametric

Predictive Inference

Masad A. Alrasheedia, Tahani Coolen-Maturib,∗, Frank P.A. Coolenb

aDepartment of Management Information Systems, Taibah University, Madinah, Saudi Arabia
bDepartment of Mathematical Sciences, Durham University, Durham, UK

Abstract

In data mining, classification trees are used to assign a new observation to one of a set
of predefined classes based on the attributes of the observation. They are constructed re-
cursively through a top-down approach using repeated splits of the training dataset, which
is a subset of the full data. When the dataset includes continuous-valued attributes, it is
necessary to select appropriate threshold values to determine the classes and split the data.
In recent years, Nonparametric Predictive Inference (NPI) has been introduced for select-
ing optimal thresholds for two- and three-class classification problems, where the inferences
are explicitly based on a given number of future observations and target proportions. The
NPI-based threshold selection method has previously been applied in the context of Receiver
Operating Characteristic (ROC) analysis, but not for building classification trees. Due to
its predictive nature, the NPI-based threshold selection method is well suited to classifica-
tion tree construction, as the primary goal of such trees is prediction. In this paper, we
present new classification algorithms for building classification trees using the NPI approach
for selecting optimal thresholds. We introduce a new procedure for selecting the optimal
target proportions by optimising classification performance on test data. Various measures
are used to evaluate and compare the performance of the NPI2-Tree and NPI3-Tree classi-
fication algorithms with other methods from the literature. Experimental results show that
our proposed algorithms perform well, achieving accuracies of 83.84% for the NPI2-Tree and
82.87% for the NPI3-Tree. These results suggest that the proposed classification algorithms
may serve as viable alternatives to existing methods.

Keywords: Nonparametric predictive inference, Classification, Classification trees, Optimal
Thresholds

1. Introduction

In data mining techniques, classification is used to assign new observations to one of a set
of predefined classes based on the attributes of the observations. The goal of classification is
to predict the unknown class states (or labels) of observations when their attribute variable
values are known. There are several classification methods available in the literature that one

∗Corresponding author
Email addresses: mrshedi@taibahu.edu.sa (Masad A. Alrasheedi), tahani.maturi@durham.ac.uk

(Tahani Coolen-Maturi), frank.coolen@durham.ac.uk (Frank P.A. Coolen)

might use to predict the class states of observations [30, 37]. Classification (or decision) trees
are one of the most commonly used because their rules are easy to understand and interpret
with minimal experience. Classification trees are constructed recursively by a top-down
scheme using repeated splits of the training datasets. When a dataset contains a continuous-
valued attribute, it is necessary to select an appropriate threshold to determine the classes
and split the data accordingly. Consequently, several methods have been developed in the
literature using various approaches to find the optimal threshold value [13, 33, 34]. However,
these methods typically follow similar strategies for threshold selection, primarily aiming to
maximise classification accuracy on the training datasets [22].

In recent years, Nonparametric Predictive Inference (NPI) has been developed as a sta-
tistical methodology based on imprecise probability theory. NPI is a statistical approach
based on Hill’s assumption A(n) [28], with the use of lower and upper probabilities to make
inferences about one or more future observations [9]. Due to the predictive nature of the NPI
approach, it has been introduced for different applications in statistics, finance, operations re-
search, survival analysis and reliability [10, 16, 17, 18]. Alabdulhadi [6] and Coolen-Maturi
et al.[19] introduced NPI for selecting optimal thresholds for two- and three-class in the
context of Receiver Operating Characteristic (ROC) applications, where the inferences are
explicitly in terms of a given number of future observations from each class. They present a
direct criterion that enables one to choose target proportions that reflect the relative impor-
tance of one class over another in ROC applications. For example, if giving medication to
people with a disease is critical, and this medication has no serious harmful effects for people
without the disease, one can give more weight to the correctly classified for the diseased class
than for the healthy class. It would be expected that this will increase the proportion of
correctly classified people with the disease while decreasing the proportion of correctly clas-
sified people without it. The NPI-based threshold selection method has been implemented
in the context of ROC analysis [6, 19], but not for building classification trees.

In this paper, we present new classification algorithms for building classification trees
using the NPI approach for selecting the optimal thresholds [6, 19]. We first present a
new classification algorithm, which we call the NPI2-Tree algorithm, for building binary
classification trees; we then extend it to build classification trees with three ordered classes,
which we call the NPI3-Tree algorithm. The method of building classification trees using
the NPI2-Tree and NPI3-Tree algorithms is novel in that it builds classification trees by
employing the NPI approach for selecting the thresholds for data with two and three classes
using predictive inference. In order to build a classification tree using our algorithms, we
introduce a new procedure for selecting the optimal values of target proportions by choosing
that to maximise classification performance on unseen data (testing data sets). We carry out
experimental analysis on different data sets to evaluate and compare the performance of the
NPI2-Tree and the NPI3-Tree algorithms with other classification algorithms using several
evaluation measures.

The rest of the paper is organised as follows: Section 2 presents a general overview of
classification trees and some classical methods for selecting the thresholds in classification
trees. This is followed by background information about the NPI approach. Section 3
introduces the NPI method for selecting the optimal threshold for real-valued data and for the
two-class classification scenario and provides an example to explain the overall methodology.
In this section, a new classification algorithm, which we call the NPI2-Tree algorithm, for

2

building binary classification trees using the NPI method for selecting the optimal threshold,
is introduced. A new procedure for selecting the target proportions is presented to be used
with the NPI2-Tree algorithm for building the binary classification tree. Section 4 extends
the method of building the classification tree from two classes to three ordered classes. A new
classification algorithm, which we call the NPI3-Tree algorithm, for building classification
trees with three ordered classes, is introduced. Section 5 evaluates the performance of the
NPI2-Tree and the NPI3-Tree algorithm on several data sets and compares the results with
some other classification algorithms. Finally, Section 6 provides the conclusions and some
interesting future works.

2. Preliminaries

2.1. Classification trees

A classification tree is a predictive model that provides a visual representation of the
relationship between the attribute variables and the class variable. In general, a classification
tree is built in the form of a tree structure that contains three main parts: a root node,
internal nodes and leaf nodes [33, 34]. A root node is the topmost node in the tree with
no incoming edges. An internal node has exactly one incoming edge and two or more
outgoing edges. Finally, a leaf node has one incoming edge and no outgoing edges. In a
classification tree, the internal nodes and the root node contain an attribute variable, each
branch represents an outcome of the attribute variable, and each leaf node represents a class
label. The paths from the root node to the leaf nodes denote the classification algorithm.

2.1.1. Split criteria

During the process of building the classification tree, a classification algorithm requires a
split criterion, which is used to test all available attribute variables at each node of the tree
and select the most useful one to split the data upon. The most commonly used classic split
criteria are Information Gain (IG) and Information Gain Ratio (IGR), which were introduced
by Quinlan [33, 34]. These split criteria are used to implement the ID3 [33] and the C4.5
[34] algorithms, respectively.

The IG is an impurity-based approach which uses entropy as an impurity measure. The
formula of entropy [38], also called the Shannon Entropy, for a training data set S with a
class variable C, is given by

H(C) = −
K∑
i=1

pi log2(pi) (1)

where pi is the proportion of the training data set S belonging to class Ci, for i = 1, . . . , K.
So, K is the total number of classes. The IG of an attribute variable X with different values
{x1, . . . , xr}, relative to the training set S and the class variable C is given by

IG(C,X) = H(C)−H(C|X) (2)

where H(C|X) is the entropy of class C given attribute variable X, and is defined as

H(C|X) =
r∑

i=1

P (X = xi)H(C|X = xi) (3)

3

In order to choose the best attribute variable for splitting the data at each node of the
tree, the IG is used as a split criterion by the ID3 algorithm. It assigns the attribute variable
for which the IG is maximum for the root node. Then, it splits the training set into two or
more subsets based on the values of the chosen attribute, and then for each subset, it repeats
the process. It has been proved that the IG split criterion is biased to attribute variables
that have a large number of states, which could negatively affect the performance of the ID3
algorithm [33]. Therefore, the Information Gain Ratio (IGR) was introduced by Quinlan
in 1993 [34] to overcome this weakness by using a normalisation of the IG. The IGR of an
attribute X and a class variable C is given by:

IGR(C,X) =
IG(C,X)

SI(X)
(4)

where IG(C,X) is given by Equation (2), and SI(X) is called the split Information, which
is the entropy of the variable which does not depend on C, it is given by:

SI(X) = −
r∑

i=1

P (X = xi) log2 P (X = xi) (5)

Unlike the ID3, the C4.5 can also handle numerical attributes. For a training data
set S and a continuous-valued attribute X with n distinct values in the ordinal sequence
{v1, . . . , vn}. The C4.5 algorithm uses a binary split on X to evaluate each midpoint between
adjacent values vi and vi+1 (for i = 1, . . . , n−1), by computing the IGR, as given by Equation
(4). A threshold value that maximises the IGR criterion is selected as the optimal threshold
for attribute X. After selecting the threshold value, the training data set is partitioned
into two subsets based on the threshold value. The C4.5 algorithm continues recursively
by evaluating each midpoint between adjacent values for each new subset and selecting new
thresholds for each branch.

Another split criterion is the Gini Index (GI) was introduced by Breiman [13] as a split
criterion for the Classification And Regression Tree (CART) algorithm. The CART al-
gorithm uses a binary split when building trees, meaning that each internal node in the
classification tree can have only two branches. Finally, there is an imprecise split criterion,
which is Imprecise Information Gain (IIG), and introduced by Abellán and Moral [2]. It is
similar to the IG split criterion that is used in the ID3 algorithm, but the precise probabilities
and entropy function have been replaced with imprecise probabilities and maximum entropy
function. The IIG split criterion can use the maximum entropy distributions from the credal
set obtained from the Imprecise Dirichlet Model (IDM) [1] or from Nonparametric Predictive
Inference for Multinomial data (NPI-M) [3, 5]. In this paper, we refer to a classification tree
created with the IIG and the IDM by the IDM algorithm, and with the IIG and the NPI-M
by the NPI-M algorithm. Further details and explanations of these models are given in [1, 3]

2.2. NPI for real-valued observations

Nonparametric Predictive Inference (NPI) is a statistical methodology based on Hill’s
assumption A(n) [28], which gives direct probabilities for one or more future observations

4

based on n observed values of related random quantities. Inference based on A(n) is non-
parametric and predictive. It was introduced particularly for situations where there is no
prior information about the probability distribution for a random quantity of interest, or in
cases where one explicitly does not want to use any such information. Let X1, . . . , Xn, Xn+1

be exchangeable real-valued random quantities. Suppose that the ordered observed values of
X1, X2, . . . Xn are denoted by x1 < x2 . . . < xn, where the assumption is made that there are
no ties between observations. For ease of notation, let x0 = −∞ and xn+1 = ∞. Note that
xn+1 = ∞ is not an observation of the variable Xn+1. These n ordered observations divide
the real-line into n+1 open intervals Ij = (xj−1, xj), for j = 1, 2, . . . , n+1. The assumption
A(n) states that the future observation Xn+1 falls equally likely in any interval (xj−1, xj), for
each j = 1, 2, . . . , n+ 1,

P (Xn+1 ∈ Ij) =
1

n+ 1
(6)

It is important to emphasise that Hill’s assumption A(n) does not make any further as-
sumptions on the distribution of probability 1

n+1
within an interval Ij. NPI uses A(n) for

predictive inferences about future observations in the form of lower and upper probabili-
ties, also known as imprecise probabilities. Augustin and Coolen [9] introduced predictive
lower and upper probabilities for events of interest based on assumption A(n), which is es-
sentially an application of De Finetti’s fundamental theorem of probability [20]. The lower
and upper probabilities for the event Xn+1 ∈ B, with B ⊂ R, based on the intervals Ij,
j = 1, 2, . . . , n+ 1, and Hill’s assumption A(n), are given by

P (Xn+1 ∈ B) =
1

n+ 1

n+1∑
j=1

1{Ij ⊆ B} (7)

P (Xn+1 ∈ B) =
1

n+ 1

n+1∑
j=1

1{Ij ∩B ̸= ∅} (8)

where 1{A} is equal to 1 if A is true and equal to 0 else. The NPI lower probability (7) is
obtained by taking only probability mass into account that is necessary within B, which is
only the case for the probability mass 1

n+1
per interval Ij if this interval is totally contained

within B. The NPI upper probability (8) is obtained by taking all probability mass into
account that could possibly be within B, which is the case for the probability mass 1

n+1
per

interval Ij if the intersection of Ij and B is non-empty.
We are interested in m ≥ 1 future observations, Xn+i for i = 1, . . . ,m [14]. The data

and future observations are linked by consecutive application of A(n), A(n+1), . . . , A(n+m−1)

[28]. These together are referred to as the A(.) assumptions, which can be considered a
post-data version of a finite exchangeability assumption for n +m random quantities. The
A(.) assumptions imply that all possible orderings of n data observations and m future
observations are equally likely, where the n data observations are not distinguished among
each other and neither is the m future observations. Let Sj = #{Xn+i ∈ Ij, i = 1, . . . ,m},
then assuming A(.) we have [14]

P (
n+1⋂
j=1

{Sj = sj}) =
(
n+m

n

)−1

(9)

5

where sj are non-negative integers with
∑n+1

j=1 sj = m. Equation (9) implies that all
(
n+m
n

)
orderings of m future observations among the n observations are equally likely. Let X(r), for
r = 1, . . . ,m, be the r-th ordered future observation, so X(r) = Xn+i for one i = 1, . . . ,m
and X(1) < X(2) < · · · < X(m). The probabilities given in Equation (10) are based on
Equation (9) and derived by counting the relevant orderings, and hold for j = 1, . . . , n + 1,
and r = 1, . . . ,m [14],

P (X(r) ∈ Ij) =

(
j + r − 2

j − 1

)(
n− j + 1 +m− r

n− j + 1

)(
n+m

n

)−1

(10)

For thisX(r) ∈ Ij, NPI gives a precise probability, as each of the
(
n+m
n

)
equally likely orderings

of n past and m future observations has the r-th ordered future observation in precisely one
interval Ij [15]. The event that the number of future observations in an interval (xα, xβ),
with 1 ≤ α < β ≤ n+ 1, and denoted by Sm

α,β, is greater than or equal to a particular value
v ∈ N, has the following precise probability [7],

P (Sm
α,β ≥ v) =

m∑
i=v

(
n+m

n

)−1(
β − α− 1 + i

i

)(
n− β + α +m− i

m− i

)
(11)

We will make use of these results in Sections 3 and 4 for selecting the optimal thresholds.

3. NPI-based binary classification trees

In this section, we first present the NPI method for selecting the optimal threshold
for the two-class classification problem, and then illustrate the method with an example.
Then, we introduce a new procedure for choosing the optimal values of target proportions
in classification trees. Finally, we present our classification tree algorithm, which we call the
NPI2-Tree algorithm, and illustrate the method with an example.

3.1. NPI-based threshold selection for two classes

The NPI method for selecting the optimal threshold t for a real-valued random quantity
and for a two-class classification scenario has been introduced by Alabdulhadi [6] and Coolen-
Maturi et al. [19]. This method is different from the classical methods as it selects the optimal
threshold value, which focuses on a number of future observations to which the threshold
will be applied. Assume that we have a continuous random variable X whose values belong
to two classes, C1 and C2, and small values of X are more likely to belong to class C1, i.e.
X ≤ t, and large values of X are more likely to belong to class C2, i.e. X > t. Let n1

denote the number of observations for class C1 and n2 the number of observations for class
C2. It is assumed that there is full independence between the two classes, meaning that
any information about the observations in one class does not contain information about the
observations in the other class. In other words, any information about random quantities
from one class does not affect any (lower and upper) probabilities for events involving only
random quantities of the other class. Let x1

1 < x1
2 < · · · < x1

n1
denote the ordered data

from class C1 and x2
1 < x2

2 < · · · < x2
n2

denote the ordered data from class C2. For ease of

6

notation, let x1
0 = x2

0 = −∞ and x1
n1+1 = x2

n2+1 = ∞. The data for C1 partition the real-line
into n1 + 1 intervals I1i = (x1

i−1, x
1
i), for i = 1, 2, . . . , n1 + 1, and the data for C2 partition

the real-line into n2 + 1 intervals, for I2j = (x2
j−1, x

2
j), for j = 1, . . . , n2 + 1. Throughout

this paper, it is assumed that there are no ties between the data observations, which occur
when two or more observations have the same value. We can break the ties by adding a
small amount to the tied observations, which tend to be zero. This is a popular method for
breaking ties in statistics [27].

As the NPI inferences are based on multiple future observations, we consider m1 future
observations from class C1, with data values denoted by X1

n1+r, where r = 1, . . . ,m1, and m2

future observations from class C2, with data values denoted by X2
n2+s, where s = 1, . . . ,m2.

Let the m1 ordered future observations from classes C1 be denoted by X1
(1) < X1

(2) < · · · <
X1

(m1)
, and the m2 ordered future observations from class C2 be denoted by X2

(1) < X2
(2) <

· · · < X2
(m2)

. As the NPI-based inferences are in terms of multiple future observations,

Alabdulhadi [6] and Coolen-Maturi et al. [19] have selected the threshold value t that gives
the best classification based on the m1 and m2 future observations. To this end, the result
of NPI for multiple future observations presented in Section 2.2 is used, but we need first to
introduce further notation.

For a particular value of t, we denote the number of correctly classified future observations
from class C1 by L1

t , that is those with data values X1
n1+r ≤ t, for r = 1, . . . ,m1, and we

denote the number of correctly classified future observations from class C2 by L2
t , that is

those with data values X2
n2+s > t, for s = 1, . . . ,m2. Let a and b be any two values in the

range (0, 1] that are chosen to represent the relative importance of the correct classification
of each one of the classes. We consider the general event of interest that the number of
correctly classified future observations from class C1 is at least am1 and the number of
correctly classified future observations from class C2 is at least bm2, that is L

1
t ≥ am1 and

L2
t ≥ bm2. Note that the choice of a and b depends on a person’s beliefs of which class

may be more important to be correctly classified than another; hence, the values of these
proportions are not constrained except that they must be in (0, 1). Of course, one can choose
a and b to be equal if one gives the same importance of correct classifications to both classes,
but choosing large or small values for a and b may not change classification performance, as
shown in Example 3.1.1.

Due to the independence assumption of the two classes, the joint NPI lower and upper
probabilities are derived as the products of the NPI corresponding lower and upper proba-
bilities for the events that involve L1

t or L2
t as follows [6, 19]

P
(
L1
t ≥ am1, L

2
t ≥ bm2

)
= P

(
L1
t ≥ am1

)
× P

(
L2
t ≥ bm2

)
(12)

P
(
L1
t ≥ am1, L

2
t ≥ bm2

)
= P

(
L1
t ≥ am1

)
× P

(
L2
t ≥ bm2

)
(13)

The NPI lower and upper probabilities in Equations (12) and (13) are derived using NPI
for multiple future observations as given in Section 2.2, in particular Equation (10), as shown
below. It is noticed that the event L1

t ≥ am1 is equal to X1
(⌈am1⌉) ≤ t, where ⌈am1⌉ denotes

the smallest integer greater than or equal am1. Similarly, the event L2
t ≥ bm2 is equal to

X2
(m2−⌈bm2⌉+1) > t. To show how to use the Equation (10) of the NPI results for multiple

future observations, we first consider class C1 and then class C2.

7

For I1i = (x1
i−1, x

1
i), i = 1, . . . , n1 + 1, and t ∈ I1it=(x1

it−1, x
1
it), where it = 2, . . . , n1 is

defined as that interval I1it which contains t, the NPI lower and upper probabilities for the
event L1

t ≥ am1 are given as follow [6, 19]:

P (L1
t ≥ am1) = P (X1

(⌈am1⌉) ≤ t) =
it−1∑
i=1

P (X1
(⌈am1⌉) ∈ I1i) (14)

P (L1
t ≥ am1) = P (X1

(⌈am1⌉) ≤ t) =
it∑
i=1

P (X1
(⌈am1⌉) ∈ I1i) (15)

where the precise probabilities on the right-hand sides of Equations (14) and (15) are
obtained from Equation (10). For it = 1, we have P (L1

t ≥ am1) = 0 and P (L1
t ≥

am1) = P (X1
(⌈am1⌉) ∈ I11), and for it = n1 + 1, we have P (L1

t ≥ am1) = 1 − P (X1
(⌈am1⌉) ∈

I1n1+1) and P (L1
t ≥ am1) = 1. If t is equal to one of the observations x1

i , i.e. t = x1
it , then

this event has precise probability,

P (L1
t ≥ am1) = P (X1

(⌈am1⌉) ≤ t) =
it∑
i=1

P (X1
(⌈am1⌉) ∈ I1i) (16)

Of course, this implies that we have for such a value of t that P (L1
t ≥ am1) = P (L1

t ≥ am1) =
P (L1

t ≥ am1), in this case. Similarly, the NPI lower and upper probabilities for the event
L2
t ≥ bm2 are derived. For I2j = (x2

j−1, x
2
j), j = 1, . . . , n2 + 1, and t ∈ I2jt=(x2

jt−1, x
2
jt), jt =

2, . . . , n2, the NPI lower and upper probabilities for the event L2
t ≥ bm2 are

P (L2
t ≥ bm2) = P (X2

(m2−⌈bm2⌉+1) > t) =

n2+1∑
i=jt+1

P (X2
(m2−⌈bm2⌉+1) ∈ I2j) (17)

P (L2
t ≥ bm2) = P (X2

(m2−⌈bm2⌉+1) > t) =

n2+1∑
i=jt

P (X2
(m2−⌈bm2⌉+1) ∈ I2j) (18)

For jt = 1, we have

P (L2
t ≥ bm2) = 1− P (X2

(m2−⌈bm2⌉+1) ∈ I21) and P (L2
t ≥ bm2) = 1.

While for jt = n2 + 1, we have

P (L2
t ≥ bm2) = 0 and P (L2

t ≥ bm2) = P (X2
(m2−⌈bm2⌉+1) ∈ I2n2+1)

Furthermore, when t = x2
jt

P (L2
t ≥ bm2) = P (X2

(m2−⌈bm2⌉+1) > t) =

n2+1∑
i=jt+1

P (X2
(m2−⌈bm2⌉+1) ∈ I2j) (19)

so
P (X2

(m2−⌈bm2⌉+1) > t) = P (X2
(m2−⌈bm2⌉+1) > t) = P (X2

(m2−⌈bm2⌉+1) > t), if t = x2
jt .

8

Now, we can obtain the optimal threshold t for the two classes by maximising either Equa-
tion (12) for the lower probability or Equation (13) for the upper probability. To search for
the optimal threshold value t, one does not need to go through each of the n1 + n2 + 1
intervals produced by the data observations. The optimal threshold t can be only in inter-
vals where the left-end point of the interval is an observation that belongs to class C1, and
the right-end point of the interval is an observation that belongs to class C2 [6, 19]. It is
important to clarify that the NPI lower and NPI upper probabilities, Equations (12) and
(13), may lead to different optimal thresholds because they are different criteria. In this
paper, we consider only the optimal threshold value based on the NPI lower probability,
Equation (12), for building classification trees. This is because the NPI lower probabilities
are based on evidence in favour of events while the NPI upper probabilities are based on evi-
dence against events. Next, we provide an example illustrating the NPI method for selecting
the optimal threshold. For more details, examples and discussions of NPI for selecting the
optimal thresholds, we refer to [6, 19].

3.1.1. Example

Assume that we have a data set of 20 people, where 10 people from class C1, i.e. n1 = 10,
and 10 people from class C2, i.e. n2 = 10. Suppose the data set that belongs to class C1 are
{25, 27, 28, 29, 30, 36, 37, 40, 63, 68 } and the data set that belongs to class C2 are {48,
53, 67, 70, 73, 75, 82, 86, 89, 90}. In order to illustrate the NPI method for selecting the
threshold values, we have presented the NPI method for m1 = m2 and for m1 ̸= m2, and
we have considered four different scenarios for target proportions a and b. Note that these
target proportions were previously chosen to represent the relative importance of the correct
classification of one class over another.

To select the optimal threshold t, we need to search within each of the n1+n2+1 intervals
created by the data observations, and then we choose the value t that maximises the NPI
lower probabilities method, Equation (12), or the NPI upper probabilities method, Equation
(13). Note that as shown in [6, 19], the optimal threshold value t can only be found in
intervals in where the left-end point of the interval is an observation that belongs to class
C1, and the right-end point is an observation that belongs to class C2. The first and last
intervals should also be considered. Thus, we just consider the intervals as shown in [6, 19].
Table 1 presents the optimal threshold value t obtained from the NPI lower probabilities
method, Equation (12), and the NPI upper probabilities method, Equation (13), along with
the corresponding lower and upper probabilities, for m1 ̸= m2, while Table 2 presents the
optimal threshold value t obtained from the NPI lower and upper probabilities method along
with the corresponding lower and upper probabilities, for m1 = m2.

As shown in Table 1, the optimal threshold value t differs for different values of a and
b. In Scenario 1, for a = b = 0.25, the optimal threshold value is t = 40. In this scenario,
the values of lower and upper probabilities for the NPI method are quite high because the
required proportions seem easy to achieve. In Scenario 2, we put more emphasis on the
number of correctly classified future observations from class C1 than from class C2, that is,
a = 0.50 and b = 0.25. As we can see from Table 1, the optimal threshold value increased to

9

Scenario Target proportions NPI lower method NPI upper method
a b t value t value

m1 = 4, m2 = 6
1 0.25 0.25 40 0.98 40 0.99
2 0.50 0.25 63 0.93 63 0.98
3 0.85 0.20 68 0.67 68 0.97
4 0.70 0.70 40 0.28 40 0.51

m1 = 100, m2 = 80
1 0.25 0.25 40 0.99 40 1.00
2 0.50 0.25 68 0.99 68 1.00
3 0.85 0.20 68 0.80 68 0.99
4 0.70 0.70 40 0.60 40 0.84

Table 1: Optimal threshold t and corresponding value of the NPI lower and upper probabilities, for m1 ̸= m2.

t = 63 in order to optimise the lower and upper probabilities, compared to Scenario 1. For
Scenario 3, for a = 0.85 and b = 0.20, we again need this scenario to give a higher proportion
of correctly classified future observations from class C1 than from class C2. The optimal
threshold value has increased to t = 68 compared to Scenario 2, while the corresponding
NPI lower probability is smaller than the one in Scenario 2. This indicates that achieving
these proportions a and b jointly is more difficult. In Scenario 4, for a = b = 0.70, the
optimal threshold value is the same as for Scenario 1, where we have large values of a = b.
Of course, the corresponding values of the NPI lower and upper probabilities are lower than
those in Scenario 1 as a and b here are larger. For m1 = 100 and m2 = 80, with respect to
the optimal threshold, the optimal thresholds are found to be the same as for m1 = 4 and
m2 = 6 regardless of the values of a and b, except for a = 0.50 and b = 0.25, the optimal
threshold is t = 68. The corresponding lower and upper probabilities are very high compared
to m1 = 4 and m2 = 6.

The results of the NPI method for selecting the optimal threshold value t, as well as their
corresponding NPI lower and upper probabilities for m1 = m2, are presented in Table 2. We
have used the same scenarios as in Table 1. For m1 = m2 = 8, the results are quite similar
to the results in Table 1. With respect to the optimal threshold, we found that the optimal
threshold for a = b = 0.25, a = 0.85, b = 0.20, and a = b = 0.70 are the same in both tables.
The corresponding NPI lower and upper probabilities in Table 2 are slightly larger than in
Table 1. A change in the NPI lower and upper probabilities is here due to the nature of the
event we consider; for example, for m2 = 6 and m2 = 8, and b = 0.25, we need at least 2
good classifications in both cases, which is easier for m2 = 8 than for m2 = 6, so then for the
latter, the lower and upper are probabilities smaller. We can also note from Tables 1 and 2
that the NPI lower and the upper methods provide the same optimal threshold regardless
of the a and b values considered, which is likely because the data sets used in Example
3.1.1 are small with little overlapping. For m1 = m2 = 100, the results are the same as for
m1 = 100,m2 = 80, given in Table 1, for all scenarios of a and b.

10

Scenario Target proportions NPI lower method NPI upper method
a b t value t value

m1 = 8, m2 = 8
1 0.25 0.25 40 0.99 40 1.00
2 0.50 0.25 68 0.97 68 0.99
3 0.85 0.20 68 0.79 68 0.99
4 0.70 0.70 40 0.31 40 0.58

m1 = m2 = 100
1 0.25 0.25 40 0.99 40 1.00
2 0.50 0.25 68 0.99 68 1.00
3 0.85 0.20 68 0.80 68 0.99
4 0.70 0.70 40 0.60 40 0.84

Table 2: Optimal threshold t and corresponding value of the NPI lower and upper probabilities, for m1 = m2.

3.2. Selecting the target proportions for two classes

Instead of prefixing the target proportions a and b, as in Example 3.1.1, we introduce a
data-driven approach for selecting a and b, which aims to improve the classification perfor-
mance. Consider the NPI method for selecting the optimal threshold which is based on the
NPI lower probability, Equation (12),

P (L1
t ≥ am1, L

2
t ≥ bm2) = P (L1

t ≥ am1)× P (L2
t ≥ bm2)

where P (L1
t ≥ am1) and P (L2

t ≥ bm2) are given in Equations (14) and (17), respectively, and
a, b ∈ (0, 1]. We now consider a and b as parameters instead of desirable target proportions,
and we aim to choose values for a and b that maximise classification performance. Note that
there is no conflict between saying these values represent one’s beliefs of which class may
be important to classify correctly, and choosing these by optimisation. The first approach
is useful if one would prefer to give one class more importance than another, whereas the
second approach works if one aims to maximise the total classification accuracy. The main
questions are how to find or select these values a and b and how to validate their performance
in classification trees. To this end, we suggest using two stages of the k-fold cross-validation
(k-fold CV) procedure, also known as double k-fold cross-validation [39]. In k-fold CV pro-
cedure, the classification algorithm is trained and evaluated using several different subsets
of the data set instead of one. The data sets are randomly divided into k subsets of approxi-
mately equal size, called folds. Each fold of the k folds is used as a testing set to evaluate the
performance of the classification algorithm, and the k−1 remaining folds are mixed together
to use as a training set. This method is performed k times so that training and testing are
performed k times. In the end, the classification accuracy is computed by taking the average
of the k classification accuracies attained from the k test sets. This procedure enables us
to train our classification method in which the values of a and b also need to be optimised.
Without this procedure, one can use the same data for finding the optimal values of a and
b and simultaneously evaluate their performance, which may result in a biased evaluation of
the algorithm [39].

Figure 1 presents the diagram of the proposed procedure, which is the two stages of the
k-fold cross-validation procedure, where k = 5. We have chosen k = 5 because it reduces

11

the required computation as done in [11]. As shown in Figure 1, there is an outer 5-fold
cross-validation loop, which is used to validate our method of selecting the parameters a
and b. In addition to the outer loop, there is an inner 5-fold cross-validation loop that is
used to optimise the parameters a and b. The outer loop is repeated 5 times, producing five
different training and testing sets resulting from the entire dataset. Each fold of the outer
training set is again divided into 5 folds, and the inner loop is repeated 5 times as well. The
inner loop will return only the model with the most optimal values for a and b to the outer
loop, which will use its testing set to evaluate the model’s quality. In the outer loop, we
will get 5 different performances that can be averaged to obtain the final performance. We
then extract the optimal parameters a and b from the outer folds and use them as target
proportions for the data set.

For more explanation, we present the method step by step as follows. First, we randomly
divide the data into five folds, k = 5, each containing a training and testing set. Secondly,
each outer training fold (starting with outer training fold 1, as in the red box in A) is again
divided into five inner folds, each containing training and testing set as in B. In the inner
folds, as in B, we discover possible optimal values of a and b using optimisation techniques.
So, we have five possible values of parameters a and b. After that, we choose the values for
the parameters a and b from the inner folds that give the best classification accuracy on inner
testing folds to test on the outer test fold in A (for example, test fold 1). There are many
optimisation methods in the literature that can be used to discover these optimal values,
where a Genetic Algorithm (GA) [25, 26] is one of the most commonly used optimisation
methods in the literature. The GA is a search-based optimisation technique based on the
rules of genetics and natural selection to provide solutions to problems. We use the GA as
additional tuning in order to discover the best values of a and b in the inner stage. More de-
tails about how the GA method works to tune the values of a and b are given in [8]. Thirdly,
as in C, we record the result of this outer fold, including the values of a and b and the
classification accuracy. Then, we repeat this process for the remaining outer folds. Finally,
as in D, we choose the best values of a and b that give the highest classification accuracy; we
then use these values as the optimal values for the data set. Note that we build the whole
classification tree in this process using all the available attributes, not based on a single
attribute. So this is a joint optimisation problem, where at each stage we build a full tree.
If the number of such attributes increases, then we probably have an exponential increase
in the computation time for the optimisation. Therefore, it would be of interest to investi-
gate the use of suitable fast optimisation techniques; this is left as a topic for future research.

3.3. NPI2-Tree algorithm

Having explained the process of choosing the values of a and b, we now present a new
algorithm, which we call the Nonparametric Predictive Inference for Binary Classification
Trees (NPI2-Tree) algorithm. This algorithm is used for building binary classification trees
using the NPI approach for selecting the optimal thresholds and the proposed method for
choosing a and b. Note that this algorithm can only be used to build trees with two classes.
For this reason, we added the number 2 to the abbreviation. The procedure for building
classification trees using the NPI2-Tree algorithm is quite similar to Quinlan’s C4.5 algorithm

12

data set

A. Outer fold

 C. Results of outer folds

1!" outer fold

2#$ outer fold

3%$ outer fold

4"& outer fold

5"& outer fold

B. Inner fold

1!" inner fold

2!" inner fold

3%$ inner fold D. Choose the best result

4"& inner fold

5"& inner fold

 Outer training fold 1

Test fold 1

Inner training fold 1

Test fold 1

1!" outer fold accuracy and
parameters

2#$ outer fold

3%$ outer fold

4"& outer fold

5"& outer fold

5"& outer fold accuracy

Choose the best outer fold
result with its parameters a
and b, and train on full data to
create final result

Figure 1: A diagram of a two-stage 5-fold cross-validation procedure to find the optimal values of the target
proportions a and b.

13

[34], given in Section 2.1.1. The main difference is that we use the NPI method presented
in Section 3.1 as a criterion for selecting the optimal threshold for each continuous-valued
attribute with our proposed method of choosing the values of a and b presented in Section
2.1.1. Note that the NPI2-Tree algorithm uses the information gain ratio as a split criterion
to select the attribute variable at each node.

Suppose that we have a data set, D, which has continuous-valued attributes {X1, . . . , Xf},
and a binary class variable, C ∈ {C1, C2}. As a first step, we divide the data set, D, into
two subsets: training data set, S, with n observations and testing data set, T , with m ob-
servations. Let n1 represent the total number of observations that belong to class C1, and
n2 represent the total number of observations that belong to class C2. We set the number
of future observations, m1 and m2, based on the T data distribution; that is, we choose the
value of m1 equal to the number of observations that belong to class C1 in T and the value
of m2 equal to the number of observations that belong to class C2 in T . As a starting point,
we set the initial values of the a and b equal to the data proportion, meaning that we choose
the value of a equal to the proportion of the training data S belonging to class C1 and the
value of b equal to the proportion of S belonging to class C2. For the training data set S,
we find the optimal threshold values for each of the continuous-valued attributes, Xi, for
i = 1, . . . , f , by maximising the NPI lower probability given in Equation (12). As shown in
[6, 19], the optimal threshold value t can only be found in intervals in where the left-end
point of the interval is an observation that belongs to class C1 and the right-end point is
an observation that belongs to class C2 [6, 19]. The first and last intervals should also be
considered. This property is useful when building classification trees because it speeds up
the process of determining the optimal thresholds.

After selecting the optimal threshold t for Xi, we compute the IGR value for all attributes
Xi, for i = 1, . . . , f , to find the best attribute variable for the root node. Once the IGR values
are computed for all attributes, the attribute variable with the highest IGR value is chosen
as the best attribute for the root node. Then, based on the chosen attribute’s threshold, we
split the training data set S into two disjoint subsets, S1 and S2, where S1 ∪ S2 = S and
S1 ∩ S2 = ∅. For example, the IGR for attribute variable Xi can be defined as follows:

IGR(S,Xi) =
IG(S,Xi)

H(S,Xi)
(20)

where

IG(S,Xi) = H(S)−
(
|S1|
|S|

H(S1) +
|S2|
|S|

H(S2)

)
(21)

and

H(S,Xi) = −
(
|S1|
|S|

log2
|S1|
|S|

+
|S2|
|S|

log2
|S2|
|S|

)
(22)

where S1 is the subset of the training data set S with Xi ≤ t, and S2 is the subset of the
data with Xi > t. It is important to say that during the process of building the classifica-
tion trees by the NPI2-Tree algorithm, we assume that small data values are more likely to
be from C1 and large data values from C2, i.e. Xi ≤ t from class C1 and Xi > t from class C2.

14

After selecting the best attribute variable at the root node and splitting the training
data set into two subsets, we then again find the optimal thresholds and the IGR values for
both subsets S1 and S2. The NPI2-Tree algorithm continues recursively by selecting further
splitting the data, and hence, the algorithm creates new subtrees for each branch. The tree
branching is stopped when all observations in the subset belong to a single class, or if there
is no attribute left, or when the number of observations per leaf node reaches the minimum
split value. A minimum split number is a value that must exist before splitting the data.
Algorithm 1, given in Appendix A, summarises the process of building binary classification
trees using the NPI2-Tree classification algorithm.

4. NPI-based classification trees with three ordered classes

This section extends the method for building binary classification trees, presented in
Section 3, to build classification trees with three classes. Throughout this section, we assume
that there is a natural ordering of the three classes, where observations from class C1 tend to
be smaller than observations from class C2, which in turn tend to be smaller than observations
from class C3. Therefore, in order to determine the classes and split the data, there is a need
to select two optimal thresholds, t1 < t2, for continuous-valued data. We first present the
NPI method for selecting the optimal thresholds for data with three ordered classes, and we
provide an example to illustrate this method. We then extend the procedure of choosing the
target proportions for cases of two-class setting, presented in Section 3.2, to cases of three-
class setting. Finally, we present a new classification algorithm, which we call the NPI3-Tree
algorithm, for building classification trees with three ordered classes.

4.1. NPI-based thresholds selection for three ordered classes

In Section 3.1, we have presented the results of the NPI method for selecting the op-
timal threshold for two classes. In this section, we present the results of the NPI method
for selecting the optimal thresholds for three ordered classes, introduced in [6, 19], with an
illustrative example. As explained in [6, 19], one could naively use the NPI method, pre-
sented in Section 3.1, twice, to find the optimal thresholds t1 and t2 for the three classes,
i.e. one can find t1 using C1 and C2 and then find t2 using C2 and C3. However, because
of the assumed ordering of the three classes, selecting the two thresholds in this way may
not satisfy the condition that t1 < t2. Therefore, we will not do that; instead, we will use
the NPI method for selecting the optimal thresholds for three ordered classes, which finds
the optimal thresholds t1 and t2 simultaneously. First, we summarise the results of [6, 19]
using the same notation as presented in Section 3.1, but with additional notation for class C3.

Let n3 denote the number of observations in class C3, the ordered data from this class are
denoted by x3

1 < x3
2 < · · · < x3

n3
. For ease of notation, we define x3

0 = −∞ and x3
n3+1 = ∞.

Again, the n3 observations divide the real-line into n3 + 1 intervals I3l = (x3
l−1, x

3
l), for

l = 1, 2, . . . , n3 + 1. Let m3 denote the number of future observations in class C3, with
random variable X3

n3+d, for d = 1, . . . ,m3. Let the m3 ordered future observations from class
C3 be denoted by X3

(1) < X3
(2) < · · · < X3

(m3)
. To classify observations into one of the classes,

C1, C2 or C3, we want to find the two optimal thresholds t1 and t2, where t1 < t2, such that

15

observations less than or equal to t1 are classified as belonging to C1, observations greater
than t1 and less than or equal to t2 are classified as belonging to C2 and observations greater
than t2 are classified as belonging to C3. For particular values of t1 and t2, we denote the
number of correctly classified future observations from class C1, C2 and C3 by L1

t1
, L2

(t1,t2)

and L3
t2
, respectively. Let denote the target proportions chosen to reflect the desired im-

portance of the three classes by a, b and c, respectively. Selecting these values will depend
on a person’s beliefs of which class is more important to be correctly classified than others.
There is no constraint on these values except to be in (0, 1]. One can choose a, b and c to be
equal if one gives the same importance of correct classification to all three classes. In Section
4.2, we present a strategy to optimise these values through some automated algorithm. The
general event of interest which we consider for the three classes C1, C2 and C3 is that the
number of correctly classified future observations from class C1 is at least am1, the number
of correctly classified future observations from class C2 is at least bm2, and the number of
correctly classified future observations from class C3 is at least cm3, that is L1

t1
≥ am1,

L2
(t1,t2)

≥ bm2 and L3
t2
≥ cm3.

Using the assumption of independence between the three ordered classes, the NPI lower
probability for the event of interest is

P (L1
t1
≥ am1, L

2
(t1,t2)

≥ bm2, L
3
t2
≥ cm3) =

P (L1
t1
≥ am1)× P (L2

(t1,t2)
≥ bm2)× P (L3

t2
≥ cm3)

(23)

and the corresponding NPI upper probability is

P (L1
t1
≥ am1, L

2
(t1,t2)

≥ bm2, L
3
t2
≥ cm3) =

P (L1
t1
≥ am1)× P (L2

(t1,t2)
≥ bm2)× P (L3

t2
≥ cm3)

(24)

For I1i = (x1
i−1, x

1
i), i = 1, . . . , n1+1, and t1 ∈ I1it1 = (x1

it1−1, x
1
it1
), where it1 ∈ {2, 3, . . . , n1}

is defined as that interval I1it1 which contains t1, the NPI lower and upper probabilities for

the event L1
t1
≥ am1 are [6, 19]

P (L1
t1
≥ am1) = P (X1

⌈am1⌉ ≤ t1) =

it1−1∑
i=1

P (X1
⌈am1⌉ ∈ I1i) (25)

P (L1
t1
≥ am1) = P (X1

⌈am1⌉ ≤ t1) =

it1∑
i=1

P (X1
⌈am1⌉ ∈ I1i) (26)

For it1 = 1, these NPI lower and upper probabilities are P (L1
t1

≥ am1) = 0 and P (L1
t1

≥
am1) = P (X1

⌈am1⌉ ∈ I11), and for it1 = n1 + 1, they are P (L1
t1

≥ am1) = 1 − P (X1
⌈am1⌉ ∈

I1n1+1) and P (L1
t1
≥ am1) = 1.

For I2j = (x2
j−1, x

2
j) with j = 1, . . . , n2 + 1 and t1 ∈ I2jt1 = (x2

jt1−1, x
2
jt1
), and t2 ∈ I2jt2 =

(x2
jt2−1, x

2
jt2
), with jt1 ∈ {1, 2, . . . , n1+1} and jt2 ∈ {1, 2, . . . , n2+1}, with t2 ≥ t1 so jt2 ≥ jt1 ,

the NPI lower and upper probabilities for the event L2
(t1,t2)

≥ bm2 are [6, 19]

P (L2
(t1,t2)

≥ bm2) = P (L2
(x2

jt1
,x2

jt2
−1)

≥ bm2) (27)

16

P (L2
(t1,t2)

≥ bm2) = P (L2
(x2

jt1
−1,x

2
jt2

) ≥ bm2) (28)

For jt1 = 1 and jt2 = 2, these NPI lower and upper probabiliites are P (L2
(t1,t2)

≥ bm2) =

0 and P (L2
(t1,t2)

≥ bm2) = P (L2
(−∞,x2

jt2
)
≥ bm2).

For I3l = (x3
l−1, x

3
l), l = 1, . . . , n3+1, and t2 ∈ I3lt2 = (x3

lt2−1, x
3
lt2
) where lt2 ∈ {1, 2, . . . , n3},

the NPI lower and upper probabilities for the event L3
t2
≥ cm3 are [6, 19]

P (L3
t2
≥ cm3) = P (X3

(m3−⌈cm3⌉+1) > t2) =

n3+1∑
l=lt2+1

P (X3
(m3−⌈cm3⌉+1) ∈ I3l) (29)

P (L3
t2
≥ cm3) = P (X3

(m3−⌈cm3⌉+1) > t2) =

n3+1∑
l=lt2

P (X3
(m3−⌈cm3⌉+1) ∈ I3l) (30)

where ⌈cm3⌉ is the smallest integer greater than or equal cm3. For lt2 = 1, these NPI lower
and upper probabilites are P (L3

t2
≥ cm3) = 1−P (X3

(m3−⌈cm3⌉+1) ∈ I31) and P (L3
t2
≥ cm3) =

1, and for lt2 = n3+1, they are P
(
L3
t2
≥ cm3

)
= 0 and P

(
L3
t2
≥ cm3

)
= P

(
X3

(m3−⌈cm3⌉+1) ∈ I3n3+1

)
.

We obtain the two optimal thresholds, t1 and t2, for the three ordered classes C1, C2

and C3 by maximising either the NPI lower probability, Equation (23), or the NPI upper
probability, Equation (24). One needs to search for the values t1 and t2 that maximise the
lower or the upper probability within each of the n1 + n2 + n3 + 1 intervals created by the
data observations. In the following, we provide an example to illustrate the NPI method for
selecting the optimal thresholds for three classes, as presented above. For further explana-
tions, examples and discussions of this method, we refer to [6, 19].

4.1.1. Example

Assume that we have a real-valued data set from three ordered classes C1, C2 and C3,
with 22 observations, where n1 = 8 and n2 = n3 = 7, consisting of the data {0.58, 0.59,
0.69, 0.80, 0.83, 1.22, 1.25, 2.29} for C1, {0.92, 1.46, 2.11, 2.41, 2.43, 2.65, 3.03} for C2 and
{2.14,2.45, 2.52, 2.63, 3.04, 3.15, 3.32} for C3. Table 3 presents the results of the optimal
threshold values t1 and t2 obtained from the NPI method along with their corresponding
lower and upper probabilities, form1 = 8,m2 = 7 andm3 = 6. To illustrate the NPI method,
we have considered four different scenarios for the target proportions a, b and c. For the first
scenario, we have chosen small values for the target proportions, a = b = c = 0.30, leading
to optimal threshold values t1 = 0.83 and t2 = 2.43. As the required target proportions are
quite easy to achieve, the corresponding NPI lower and upper probabilities are high. The
second scenario has a = b = c = 0.7, which are quite high, so the NPI method attempts
to make a balance between the three classes to meet the required target proportions and
to find the optimal thresholds that maximise the NPI lower probability, given in Equation
(23), and the NPI upper probability, given in Equation (24). The corresponding NPI lower
and upper probabilities are smaller than for the first scenario, which is due to the fact that
the required target proportions are larger. The third scenario has a = b = 0.70, c = 0.20, so

17

Scenario Target proportions NPI lower method NPI upper method
a b c t1 t2 value t1 t2 value
1 0.30 0.30 0.30 0.83 2.43 0.53 0.83 2.43 0.84
2 0.70 0.70 0.70 1.25 2.43 0.07 1.25 2.43 0.38
3 0.70 0.70 0.20 1.25 3.03 0.24 1.25 3.03 0.65
4 0.50 0.75 0.50 0.83 2.43 0.21 0.83 2.43 0.59

Table 3: Optimal thresholds (t1, t2) using NPI-based method, and corresponding values of the NPI lower
and upper probabilities, for m1 = 8,m2 = 7 and m3 = 6

Scenario Target proportions NPI lower mathod NPI upper method
a b c t1 t2 value t1 t2 value
1 0.30 0.30 0.30 0.83 2.43 0.89 0.83 2.43 0.98
2 0.70 0.70 0.70 0.83 2.43 0.06 0.83 2.43 0.41
3 0.70 0.70 0.20 1.25 3.03 0.31 1.25 3.03 0.79
4 0.50 0.75 0.50 0.83 3.03 0.65 0.83 3.03 0.93

Table 4: Optimal thresholds (t1, t2) using NPI-based method, and corresponding values of the NPI lower
and upper probabilities, for m1 = m2 = m3 = 10

there is an emphasis on the number of correctly classified future observations from class C1

and class C2 than from class C3. This leads to t2 being larger than in the other scenarios.
The final scenario has a = 0.50, b = 0.75, c = 0.50, so it puts more emphasis on the number
of correctly classified future observations from class C2 than the numbers of correctly classi-
fied observations from classes C1 and C3. It is noticed that the optimal threshold values and
the NPI lower and upper probabilities changed again in order to meet the target proportions.

To further illustrate the results of the NPI method for selecting the optimal threshold
values, we present in Table 4 the optimal threshold values along with the corresponding NPI
lower and upper probabilities for m1 = m2 = m3 = 10, using the same target proportions
presented in Table 3. The results are similar to those with m1 = 8,m2 = 7 and m3 = 6
in Table 3. For a = b = c = 0.30 and a = b = 0.70, c = 0.20, the optimal thresholds
are the same in both tables, but the corresponding NPI lower and upper probabilities are
greater than those in Table 3. It should be clarified that the change in the NPI lower and
upper probabilities here is due to the discrete nature of the event we consider, but it is not
a direct effect of larger m, as larger m still needs the same proportion to be achieved. For
example, for m1 = 8, m1 = 10 and a = 0.3, we need at least 3 good classifications in both
cases, which is easier for m1 = 10 than for m1 = 8, so then for the latter the NPI lower and
upper probabilities are probably smaller. For a = b = c = 0.70, the NPI method provides
the same optimal threshold for t2, but the optimal threshold for t1 is different, while the
values of the NPI lower and upper probabilities for both tables are quite similar. Finally, for
a = 0.50, b = 0.75 and c = 0.50, the optimal threshold t1 is the same in both tables, but the
optimal threshold t2 is different, and the corresponding NPI lower and upper probabilities
in Table 4 are high compared with those for the same scenario in Table 3.

4.2. Selecting the target proportions for three ordered classes

Following the proposed method of choosing the values of a and b, presented in Section
3.2, we also focus here on choosing the values of a, b and c based on the data set used in

18

classification tasks, not setting them in advance. We will choose the values that improve
classification performance. Consider the NPI method for selecting the optimal thresholds,
t1 and t2, which is based on the NPI lower probability, Equation (23),

P (L1
t1
≥ am1, L

2
(t1,t2)

≥ bm2, L
3
t2
≥ cm3) =

P (L1
t1
≥ am1)× P (L2

(t1,t2)
≥ bm2)× P (L3

t2
≥ cm3)

(31)

where P (L1
t1
≥ am1), P (L2

(t1,t2)
≥ bm2) and P (L3

t2
≥ cm3) are given by Equations (25), (27)

and (29), respectively, and a, b, c are any values in (0, 1]. Note that we now consider a, b
and c as parameters instead of achieved target proportions. As these parameters play an
important role in the total classification accuracy, we propose to choose these parameters
that maximise the classification accuracy on the testing sets. This raises the question of how
one can choose the target proportions that maximise the classification accuracy and how to
validate their performance in classification trees. Similar to the previous method, presented
in Section 3.2, we suggest using a double cross-validation procedure in order to train our
classification algorithm and tune the parameters a, b and c.

The process of choosing the values of a, b, and c using the two levels of the k-fold cross-
validation procedure, where k = 5, is presented in Figure 2. As we see from the figure,
the data set is divided into two levels of the 5-fold cross-validation procedure. In the first
level, which is the outer level, we validate our method with optimal parameters of a, b and
c, while in the second level, which is the inner fold, we use a search function, the Genetic
Algorithm (GA) [25, 26], to tune the parameters a, b and c. In other words, the inner folds
will return only the algorithm with the best values for a and b to the outer folds, while the
outer folds will to validate the algorithm’s quality. During the outer folds, we obtain five
different performances with varying values of the parameters a, b, and c. However, since
we aim to find the best values of a, b, and c for a given data set, we extract the optimal
parameters from the outer folds. These optimal values are then used as target proportions
for the data set, as in D. Further details on how the GA method works to fine-tune the
values of a, b, and c in the inner level are provided in [8].

4.3. NPI3-Tree algorithm

In this section, we present a new classification algorithm for building classification trees
with data containing three ordered classes, which we call Nonparametric Predictive Infer-
ence for building classification trees with three ordered classes (NPI3-Tree) algorithm. It is
similar to the NPI2-Tree algorithm, presented in Section 3.3, for building classification trees
with data containing binary classes, but the main difference is that the NPI3-Tree algorithm
works with data that contains three classes. In the NPI3-Tree algorithm, we use the NPI
method for selecting the optimal thresholds, t1 and t2, presented in Section 4.1, to find the
optimal threshold values, and the method of choosing the values of a, b and c, presented
in Section 4.2. The procedure of building classification trees by the NPI3-Tree algorithm
is similar to the well-known C4.5 algorithm, but we use the NPI-based thresholds method,
presented in Section 4.1, and the method of choosing the values of a, b and c, presented
in Section 4.2. The procedure for building the NPI3-Tree classification tree is described in
Algorithm 2 (given in Appendix B).

19

data set

A. Outer fold

 C. Results of outer folds

1!" outer fold

2#$ outer fold

3%$ outer fold

4"& outer fold

5"& outer fold

B. Inner fold

1!" inner fold

2!" inner fold

3%$ inner fold D. Choose the best result

4"& inner fold

5"& inner fold

 Outer training fold 1

Test fold 1

Inner training fold 1

Test fold 1

1!" outer fold accuracy and
parameters

2#$ outer fold

3%$ outer fold

4"& outer fold

5"& outer fold

5"& outer fold accuracy

Choose the best outer fold
result with its parameters a , b
and c, and train on full data to
create final result

Figure 2: A diagram of two-levels 5-fold cross-validation procedure to find the optimal values of the target
proportions a, b and c.

20

Data set N Attr Pro of class 1 Pro of class 2
Breast Cancer 116 9 0.45 0.55
Blood Transfusion 748 3 0.76 0.24
Liver Patients 583 9 0.28 0.72
Haberman’s Survival 306 3 0.73 0.27
Cryotherapy 90 5 0.53 0.47
QSAR Biodeg 1055 14 0.66 0.34

Table 5: A brief description of the data sets used with the NPI2-Tree algorithm.

5. Experimental Analysis

In this section, we carry out an experimental analysis to examine the performance of the
NPI2-Tree and the NPI3-Tree algorithm, and to compare their performance with other classi-
fication algorithms on several data sets obtained from the UCI Machine Learning Repository
[21]. We compare their performance with the most commonly used classical algorithm, the
C4.5 algorithm and the CART algorithm, and with some classification algorithms based on
imprecise probabilities, namely the NPI-M and the IDM1 algorithms. More information
about these algorithms has been given in Section 2.1.1. Note that as the IDM algorithm
depends on the value of the parameter s̃, we use one recommended value of s̃, which is s̃ = 1.
We refer to the IDM with s̃ = 1, by the IDM1 algorithm.

5.1. Experimental setup

We have used six data sets for the NPI2-Tree algorithm and five data sets for the NPI3-
Tree algorithm. We have only used these data sets because the NPI2-Tree and the NPI3-Tree
algorithms are suitable for continuous attribute variables with a two or three-class variable,
and such data sets are uncommon in public databases. However, it would be interesting to
fully automate the NPI2-Tree algorithm to enable us to analyse more data sets, including
categorical attributes. A brief description of the main properties of data sets used for the
NPI2-Tree and the NPI2-Tree algorithm is given in Tables 5 and 6, respectively. Column ’N’
gives the number of observations in the data set, column ’Attr’ gives the number of attribute
variables, column ’Pro of class 1’ gives the data proportion in class 1, column ’Pro of class
2’ gives the data proportion in class 2 and column ’Pro of class 3’ gives the data proportion
in class 3. Further details about these data sets can be found in [21]. It is important to
note that, as we only work with continuous-valued attributes, the categorical attributes in
the data sets were ignored. So, the number of attributes in the ’Attr’ column is only the
number of continuous-valued attributes. Therefore, we may not be surprised if the results
found in the literature are different from our results. For example, the Liver Patients data
set, given in Table 5, has ten attribute variables; nine are continuous, and one is categorical.
The classification accuracy obtained in our experiment using the C4.5 algorithm is 77.25%,
but in [36], the classification accuracy result using the C4.5 algorithm, is 84.86%, where the
categorical attribute, which is the gender of the patient, was used.

As a first step, we use the NPI2-Tree and the NPI3-Tree algorithms to build a classifica-
tion tree for each data set. This was done using the tree-building process presented in Section
3.3 for the NPI2-Tree algorithm and in Section 4.3 for the NPI3-Tree algorithm, with the

21

Data set N Attr Pro of class 1 Pro of class 2 Pro of class 3
Iris 150 4 0.33 0.33 0.33
Seeds 210 7 0.33 0.33 0.33
Wine 178 3 0.34 0.39 0.27
CMC 1473 2 0.42 0.24 0.34
Fitness 8020 10 0.36 0.41 0.23

Table 6: A brief description of the data sets used with the NPI3-Tree algorithm.

proposed method of choosing the values of a and b and the values of a, b and c as presented
in Sections 3.2 and 4.2, respectively. We compare the performance of our classification al-
gorithms with the most commonly used classical classification trees, which are the C4.5 and
the CART algorithms, and with two imprecise algorithms, which are the NPI-M and the
IDM algorithms. More details about these algorithms have been presented in Section 2.1.1.

The R software [35] has been used to carry out this experiment. We used the RWeka

package [29, 41] to implement the C4.5 algorithm, the rpart package [40] to implement
the CART algorithm and the imptree package [24] to implement both the NPI-M and
IDM1 algorithms. Some pre-processing steps in our data sets have been carried out. The
missing values for continuous attributes were replaced with mean values using the missing
value filter in R. In addition, some of the data sets contain tied observations; we dealt
with these by adding a small amount to the tied observations. We also tested our method
without breaking the tied observations and observed that the results were close. Furthermore,
for the NPI-M and the IDM1 algorithms, as they can only handle categorical attributes,
therefore, we discretised the continuous variables presented in Tables 5 and 6 using the
mdlp package in R and the ‘discretisation’ function. This function converts a continuous
variable into a categorical variable using the Fayyad and Irani method [22, 23], which finds a
threshold value using only the average class entropy to evaluate the partitions created by each
candidate threshold. These pre-processing steps are essential, and they were carried out at
the beginning of the analysis for all algorithms to ensure a fair comparison for all algorithms.
After that, we applied all classification algorithms to all data sets and the results were
compared in several ways. The following measures were used to evaluate the performance
of the classification algorithms: classification accuracy, in-sample accuracy and tree size.
The classification accuracy is the ratio of the number of correctly classified observations
to the total number of observations in the test data set, while the in-sample accuracy is
the classification accuracy for the training set. The tree size is the number of leaf nodes
in the tree [12]. All results given in this experiment were obtained using the average of
a 10-fold cross-validation scheme, as given in Section 3.2. With respect to the NPI2-Tree
and the NPI3-Tree algorithms, we first found the optimal values of target proportions using
the proposed method, and then we used the 10-fold cross-validation scheme to report the
final result. Below, we provide the outcomes of the experiment concerning our algorithms,
presented separately.

5.2. Performance of the NPI2-Tree algorithm

Table 7 presents the results of classification accuracies of the NPI2-Tree algorithm and
other algorithms for each data set, including the optimal values of a and b that correspond

22

Data set a b NPI2-Tree C4.5 CART NPI-M IDM1
Breast Cancer 0.57 0.73 87.10 86.89 86.90 87.65 87.86
Blood Transfusion 0.79 0.64 89.48 75.43 74.76 79.56 79.56
Liver Patients 0.32 0.65 80.70 77.25 76.43 80.28 80.28
Haberman’s Survival 0.84 0.42 75.19 75.62 73.18 76.39 76.39
Cryotherapy 0.56 0.50 79.38 80.11 83.48 81.45 80.18
QSAR Biodeg 0.65 0.82 91.22 73.13 77.86 82.16 82.16
Average - - 83.84 78.07 78.72 81.24 81.07

Table 7: Average result of classification accuracy of different classification algorithms and the optimal values
of a and b for the NPI2-Tree algorithm.

Data set a b NPI2-Tree C4.5 CART NPI-M IDM1
Breast Cancer 0.57 0.73 88.12 88.22 88.22 88.22 88.22
Blood Transfusion 0.79 0.64 82.78 84.58 84.58 84.40 84.40
Liver Patients 0.32 0.65 89.80 83.93 83.20 81.96 81.62
Haberman’s Survival 0.84 0.42 75.40 76.99 76.99 76.23 76.23
Cryotherapy 0.56 0.50 82.87 82.64 80.34 82.16 82.28
QSAR Biodeg 0.65 0.82 87.39 87.50 88.86 85.96 85.96
Average - - 82.72 83.97 83.71 83.16 83.11

Table 8: Average result of the in-sample accuracy of the different classification algorithms and the optimal
values of a and b for the NPI2-Tree algorithm.

to the NPI2-Tree algorithm. Table 8 shows the results of in-sample accuracy for all classifi-
cation algorithms. The tree sizes of classification algorithms are presented in Table 9. In all
tables, the best results are presented in bold font.

As shown in Table 7, the classification accuracies indicate that the NPI2-Tree algorithm
outperforms other classification algorithms for most data sets, and it has the highest average
classification accuracy, followed by the NPI-M, the IDM1, the CART and the C4.5. For the
Breast Cancer data set, all classification algorithms obtained similar results, with the NPI-M
algorithm performing slightly better than the other algorithms. For the Blood Transfusion
and QSAR Biodeg data sets, there is a noticeable difference in classification accuracies be-
tween the classification algorithms, with the NPI2-Tree algorithm clearly outperforming the
other classification algorithms. We have investigated the characteristics of these data sets in
order to gain insight into reasons that may cause this clear difference in the performance of
the NPI2-Tree algorithm, and we found that these data sets are large compared to other data
sets and have less overlap between their data classes, which could be a reason why the NPI2-
Tree algorithm is superior to the other algorithms on these data sets. The worst-performing
algorithms are the CART and C4.5 algorithms. The NPI-M and IDM1 algorithms obtained
very similar classification accuracies. For the Liver Patients data set, we can see that the
NPI2-Tree, the NPI-M and the IDM1 algorithms perform better than the classical algorithms.
For Haberman’s Survival data set, the NPI-M and the IDM1 perform slightly better than
the other algorithms, obtaining the same classification accuracy of 76.39%. Finally, for the
Cryotherapy data set, the NPI2-Tree algorithm obtained the worst result, which is 79.38%.
For this data set, the NPI2-Tree algorithm built smaller trees than the ones built by the other
algorithms, which might be the reason why it performs a little less than the other algorithms.

23

Algorithm NPI2-Tree C4.5 CART NPI-M IDM1
Average 4.20 4.72 4.46 4.33 4.39

Table 9: Average result of the tree size of the different classification algorithms.

Table 8 presents the results of the in-sample accuracy of all classification algorithms. The
in-sample accuracy, which is the classification accuracy on the training set, is not widely used
to evaluate classification algorithms, but it gives insight into how the classification algorithm
works on the training set. It is well known that if the classification algorithm works very
well on the training set but does not work very well on the testing set, it likely indicates
overfitting. Therefore, it is useful to show the classification algorithms’ performance on both
training and testing sets and, hence, to check the overfitting as well, as was done in [12, 32].
As we can see from Table 8, the C4.5 algorithm performs slightly better than the other
classification algorithms, followed by the CART, the NPI-M, the IDM1 and the NPI2-Tree.
Note that the C4.5, the CART, the NPI-M and the IDM1 algorithms have better in-sample
accuracy than classification accuracy, but the performance of the NPI2-Tree algorithm on
the training sets is slightly worse than its performance on the testing sets. It is possible that
these results are due to the fact that the NPI2-Tree algorithm selects the optimal thresh-
olds by focusing on prediction, unlike the other algorithms, which focus on maximising the
correct classification on the training sets. We see from the results that the C4.5 and the
CART algorithms clearly perform better on the training sets than on the testing sets, which
indicates that these algorithms may be suffering from overfitting. According to the average
results of classification accuracy and in-sample accuracy, we can state that the NPI2-Tree
algorithm works well on both data sets, training and testing sets, which might indicate that
the NPI2-Tree algorithm does not suffer from overfitting.

Finally, Table 9 shows the average results of the tree sizes for all the classification al-
gorithms. Note that it is referred to the tree size as the total number of leaf nodes in the
tree, as was done by Bertsimas and Dunn [12], and by Murthy and Salzberg [32]. However,
some researchers may refer to the tree size as the total number of all nodes in the tree. Of
course, one can use any method to refer to the size of the tree. Table 9 shows that the
NPI2-Tree algorithm creates slightly smaller trees than the other algorithms, followed by
the NPI-M algorithm. The C4.5 algorithm creates the largest trees with an average tree
size of 4.72, which could be the reason for its good performance on the training sets. The
CART algorithm mostly creates similar trees to the C4.5 algorithm, but in Liver Patients
and Cryotherapy data sets, the CART algorithm has the smallest tree size compared to the
C4.5 algorithm, and hence, it gives a smaller average tree size than the C4.5 algorithm. This
study shows that the NPI2-Tree algorithm tends to create smaller trees than the C4.5, the
CART, the NPI-M and the IDM1 algorithms.

5.3. Performance of the NPI3-Tree algorithm

Tables 10 present the results of the classification accuracies of the NPI3-Tree algorithm
and all the other classification algorithms for each data set. It also presents the target
proportions a, b and c that correspond to the NPI3-Tree algorithms. As shown in Table

24

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1
Iris 0.77 0.75 0.80 94.61 94.22 94.38 94.69 94.52
Seeds 0.81 0.79 0.78 93.43 89.72 90.42 92.63 92.38
Wine 0.94 0.68 0.87 96.54 93.12 91.14 95.19 94.64
CMC 0.43 0.36 0.52 49.96 50.10 48.40 49.81 49.81
Fitness 0.53 0.64 0.49 79.81 77.31 72.19 77.60 77.82
Average - - - 82.87 80.89 79.30 81.98 81.83

Table 10: Average result of the classification accuracy of all algorithms and the optimal values of a, b and c
for the NPI3-Tree algorithm.

10, the NPI3-Tree algorithm performs better than the other algorithms for most data sets,
and it achieves the highest average classification accuracy, followed by NPI-M, IDM1, C4.5
and CART, respectively. For the Iris data set, all classification algorithms, including the
NPI3-Tree, have similar results. This similarity between all algorithms’ performance could
be because the Iris data set has 150 observations distributed equally across the three classes,
and there is less overlap between their data classes. For this data set, the values of a, b and
c are also similar. For the Seeds and Wine data sets, the NPI3-Tree algorithm clearly out-
performs the classical algorithms, the C4.5 and the CART algorithms, and slightly performs
better than the NPI-M and the IDM1 algorithms. For these data sets, the NPI3-Tree clas-
sification algorithm built larger trees than the other classification algorithms, which might
be the reason why the NPI3-Tree algorithm performs better than the other algorithms. For
the CMC data set, all the classification algorithms, including the NPI3-Tree algorithm, have
not achieved good results, with the C4.5 algorithm slightly performing better than the other
algorithms, which obtained classification accuracy of 50.10%. For this data set, the values
of a, b and c are also low. We have analysed this data in-depth in order to give an insight
into the characteristics of this data set that could be causing these results. The CMC data
set has 1473 observations and two continuous attribute variables. However, this data set has
overlaps between their data observations’ classes of more than half of the data. This could
be the reason for these results, which also match those observed in earlier studies, e.g. [4, 31].
Finally, for the Fitness data set, the NPI3-Tree algorithm obtained the highest classification
accuracy of 79.81%, whereas the C4.5, the NPI-M and the IDM1 algorithms have similar
results. On the other hand, the CART obtained the worst result. Overall, according to the
average classification accuracy, we can say that the NPI3-Tree algorithm tends to perform
better than the C4.5 and the CART algorithms, and it tends to perform slightly better than
the NPI-M and the IDM1 algorithms.

Following [32, 12], we have evaluated the performance of the NPI3-Tree algorithm on the
training data set and compared it with the other classification algorithms. The in-sample ac-
curacy measure, which is the performance of algorithms on the training set, is not commonly
used to indicate classification accuracy, but it would be useful to give insight into how the
classification algorithm works on the training set. It is well known that if the classification
algorithm works very well on the training set but does not work very well on the testing set,
it likely indicates overfitting. Therefore, it is useful to show the classification algorithms’
performance on both training and testing sets and, hence, to check the overfitting as well.
Table 11 presents the results of the in-sample accuracy of the NPI3-Tree algorithm and the

25

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1
Iris 0.77 0.75 0.80 94.82 94.82 94.82 94.82 94.82
Seeds 0.81 0.79 0.78 90.66 92.53 92.11 91.16 91.98
Wine 0.94 0.68 0.87 93.54 94.56 94.93 92.40 92.40
CMC 0.43 0.36 0.52 51.68 52.39 51.68 52.78 52.78
Fitness 0.53 0.64 0.49 79.96 80.77 79.61 80.22 80.28
Average - - - 82.13 83.04 82.63 82.27 82.45

Table 11: Average result of the in-sample accuracy for all classificaton algorithms and the optimal values for
a, b and c to the NPI3-Tree algorithm.

Algorithm NPI3-Tree C4.5 CART NPI-M IDM1
Average 3.66 5.80 4.48 5.92 5.94

Table 12: Average result of the tree size of all classification algorithms.

other classification algorithms. All classification algorithms perform better on the training
data sets than on the testing data sets, except the NPI3-Tree algorithm, whose performance
on the training sets is slightly less than its performance on the test sets. This is due to the
fact that the NPI3-Tree algorithm selects the optimal thresholds by focusing on prediction,
unlike the other classification algorithms, which focus on maximising the correct classifica-
tion of the training sets. The C4.5 algorithm has the highest average result of in-sample
accuracy, followed by the CART, the IDM1, the NPI-M and the NPI3-Tree algorithms. For
the Iris data set, although all classification algorithms do not give the same trees, they have
obtained the same result, which is 94.82%. In this experimental analysis, it is noticed that
the classical algorithm, the C4.5 and the CART, clearly perform better on the training data
sets compared to their performance on the testing sets, which could be an indication they
suffer from overfitting. From the results presented in Table 11, we can explain that the
NPI3-Tree has good results on both the training and testing data sets, which may indicate
that the NPI3-Tree algorithm does not overfit the data sets.

Finally, the average tree size for all the classification algorithms is given in Table 12.
As we can see from the table, the NPI3-Tree algorithm creates the smallest trees, which
has obtained the smallest result of the average tree size, followed by the CART, the C4.5,
the NPI-M and the IDM1 algorithms. The use of a multiple split on continuous attributes,
which is used by the NPI3-Tree algorithm, could be one of the main reasons for creating
the smallest trees by the NPI3-Tree algorithm. The use of a multiple split on an attribute
variable usually makes a classification tree smaller, easier to understand and faster to build.
Unlike the binary split, which makes the trees larger because it allows an attribute variable
to appear many times in the paths from the root of the tree to its leaf. For more clarification,
we illustrate in Figure 3 two classification trees created by the C4.5 and the NPI3-Tree algo-
rithms for one attribute variable, X1, of the Iris data. Figure 3(a) presents the classification
tree created by the C4.5, which uses a binary split, e.g. two branches, while Figure 3(b)
presents the classification tree created by the NPI3-Tree algorithm, which uses a multiple
split, e.g. three branches. As we can see from the two trees, the classification tree built by
the NPI3-Tree algorithm is smaller than the classification tree built by the C4.5 algorithm
for the same data set.

26

X1

X1

C3C2

≤ 5.8 > 5.8

X1

C2C1

≤ 5.4 > 5.4

≤ 5.5 > 5.5

1

(a) Tree with a binary split

X1

C3C2C1

≤ 5.1
5.1 < X1 ≤ 6.2

> 6.2

1

(b) Tree with a multiple split

Figure 3: Classification trees with binary and multiple split.

6. Conclusions and related future research

In this paper, we introduced a new method to build classification trees based on Nonpara-
metric Predictive Inference (NPI). We built classification trees using the NPI approach for
selecting optimal thresholds for data sets that involve continuous-valued attributes. This ap-
proach selects the optimal threshold values using predictive inference that considers specific
numbers of future observations and the target proportions. As a first step, we presented our
method for binary classification trees, where the attribute variables are continuous, and the
class variable is binary. A new classification algorithm, which we called the NPI2-Tree algo-
rithm, was presented for building binary classification trees. We then extended our method
to classification trees with three classes, where the attribute variables are continuous, and
a class variable has three ordered classes. A new classification algorithm for building clas-
sification trees with three classes was presented, which we called the NPI3-Tree algorithm.
We introduced a new procedure for selecting the target proportions by choosing to maximise
classification performance on the testing datasets. We carried out an experimental analysis
on several data sets to evaluate the performance of the NPI2-Tree and NPI3-Tree classifica-
tion algorithms and compare their performance with other classification algorithms from the
literature. Classification accuracy, in-sample accuracy, and tree size were used to measure
the performance of all the classification algorithms. The results of the experimental analysis
have indicated that the NPI2-Tree and NPI3-Tree classification methods perform well and
better than the other classification algorithms.

27

The work presented in this paper provides many possible topics for future research. As a
first step in building classification trees based on our methods, we started with two classes;
we then extended our method to build classification trees with three classes. Now, it would
be of interest to extend this method further to involve more than three classes. This can be
achieved by first developing the NPI method for selecting the optimal threshold to include
more than three classes. In this work, we have restricted attention to using only continuous-
valued attributes; it is of interest to investigate the performance of the NPI2-Tree and the
NPI3-Tree algorithms on data sets that include categorical attributes. Finally, one important
topic for future work is to develop the NPI2-Tree and the NPI3-Tree algorithms with consid-
eration for the misclassification cost. In many practical applications, classification aims to
minimise misclassification costs instead of maximising the total classification accuracy. In
this paper, we have chosen the values of target proportions that maximise the total classifi-
cation accuracy. However, it would be useful to develop the process of choosing these target
proportions while also considering the misclassification cost.

Acknowledgements

Masad Alrasheedi would like to thank Taibah University and the Saudi government for
their invaluable support, which has made it possible for me to complete my PhD studies.

28

Appendix A. NPI2-Tree algorithm

Algorithm 1 Pseudocode NPI2-Tree algorithm

1. Input:(D, C, Ω)

D: Data set

C: Binary class variable C = {C1, C2}
Ω: Set of continuous attributes Ω = {X1, . . . , Xf}

2. Procedure NPI2-Tree(D, C, Ω)

3. Create a Root node for the tree

4. If all observations in D have the same class C, then

5. Return the single-node tree with class C

6. If Ω is empty (i.e. there are no attributes available), then

7. Return the single-node tree with most common class C in D
8. Otherwise

9. The data set D is divided into two subsets:

S: training set

T : testing set

10. Select the values of a, b and mi for i = 1, 2

Make the initial values of a and b equal to the class proportion in S,

i.e. make a = n1
n and b = n2

n

Make the values of mi equal to the number of observations in class Ci in T

11. For each attribute, Xi in Ω do

Find the optimal threshold values that maximise the NPI lower probability,
given in Equation (12)

Compute the IGR value, given in Equation (20)

12. Choose attribute X from Ω, with the highest IGR value

13. Assign the attribute X for the Root node

14. Add a branch below the Root node, corresponding to X ≤ t and X > t

15. Let Si, for i = 1, 2 be the subset of S that has X ≤ t and X > t, respectively

16. If Si, for i = 1, 2 is empty (one of them), then

17. Add a leaf node below the branch with the most common class in S

18. Check the stopping criteria mentioned above

19. Else

20. Add the subset created by NPI2-Tree (Si, C, Ω− {X})
21. Return Root

29

Appendix B. NPI3-Tree algorithm

Algorithm 2 Pseudocode NPI3-Tree algorithm

1. Input:(S, C, Ω)

2. S: Training data set

3. C: A class variable C = {C1, C2, C3}
4. Ω: Set of continuous attributes Ω = {X1, . . . , Xf}
5. Procedure NPI3-Tree(S, C, Ω)

6. Create a Root node for the tree

7. if all observations in S have the same class C, then

8. Return the single-node tree with class C

9. if Ω is empty (i.e. there are no attributes available), then

10. Return the single-node tree with most common class C in S
11. Otherwise

12. Select the values of a, b, c and mi for i = 1, 2, 3

13. Make the initial values of a, b and c equal to the class proportion in S,

14. i.e. make a = n1
n , b = n2

n and c = n3
n

15. Make the values of mi equal to the number of observations in class Ci in S,

16. i.e. make m1 = n1, m2 = n2 and m3 = n3

17. for each attribute, Xi in Ω, do

18. Find the threshold values t1 and t2 that maximise the NPI lower probability,
given in Equation (23)

19. Compute the IGR value using Equation (4)

20. Choose attribute variable X from Ω, with the highest IGR value

21. Assign the attribute X for the Root node

22. Add a branch below Root, corresponding to X ≤ t1, t1 < X ≤ t2 and X > t2,

23. Let Si, for i = 1, 2, 3, be the subset of S that has X ≤ t1, t1 < X ≤ t2 and
X > t2, respectively

24. if Si is not empty, then

25. Add the subset created by NPI3-Tree (Si, C, Ω− {X})
26. return Root

30

References

[1] Abellán J. (2006). Uncertainty measures on probability intervals from the imprecise
Dirichlet model. International Journal of General Systems, 35, 509–528.

[2] Abellán J. and Moral S. (2003). Building classification trees using the total uncertainty
criterion. International Journal of Intelligent Systems, 18, 1215–1225.

[3] Abellán, J., Baker, R. and Coolen, F.P.A. (2011). Maximising entropy on the nonpara-
metric predictive inference model for multinomial data. European Journal of Operational
Research, 212, 112–122.

[4] Abellán, J., Baker, R., Coolen, F.P.A., Crossman, R. and Masegosa, R. (2014). Clas-
sification with decision trees from a nonparametric predictive inference perspective.
Computational Statistics and Data Analysis, 71, 789–802.

[5] Abellán J. (2013). An application of Non-Parametric Predictive Inference on multi-
class classification high-level-noise problems. Expert Systems with Applications, 40(11),
4585–4592.

[6] Alabdulhadi, M. (2018). Nonparametric predictive inference for diagnostic test thresh-
olds. Ph.D. thesis, Durham University.

[7] Alqifari, H. (2017). Nonparametric predictive inference for future order statistics. Ph.D.
thesis, Durham University.

[8] Alrasheedi, M. (2023). Optimal Thresholds for Classification Trees using Nonparametric
Predictive Inference. Ph.D. thesis, Durham University.

[9] Augustin T. and Coolen F.P.A. (2004). Nonparametric predictive inference and interval
probability. Journal of Statistical Planning and Inference, 124, 251–272.

[10] Baker, R. (2010). Multinomial nonparametric predictive inference: selection, classifica-
tion and subcategory data. Ph.D. thesis, Durham University.

[11] Battineni, G., Sagaro, G., Nalini, C., Amenta, F. and Tayebati, S. (2019). Comparative
machine-learning approach: a follow-up study on type 2 diabetes predictions by cross-
validation methods. Machines, 7, 74.

[12] Bertsimas, D. and Dunn, J. (2017). Optimal classification trees. Machine Learning,
106, 1039–1082.

[13] Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regres-
sion Trees. Wadsworth International Group, Belmont.

[14] Coolen F.P.A., Coolen-Maturi T. and Alqifari H. (2018). Nonparametric predictive
inference for future order statistics. Communications in Statistics: Theory and Methods,
47, 2527–2548.

31

[15] Coolen F.P.A. and Maturi T. (2010). Nonparametric predictive inference for order
statistics of future observations. In: Combining Soft Computing and Statistical Methods
in Data Analysis, pp. 97–104.

[16] Coolen, F.P.A. (2011). Nonparametric predictive inference. Springer, Berlin.

[17] Coolen, F.P.A. and Yan, K. (2004). Nonparametric predictive inference with right-
censored data. Journal of Statistical Planning and Inference, 126, 25–54.

[18] Coolen, F.P.A., Coolen-Schrijner, P. and Yan, K. (2002). Nonparametric predictive
inference in reliability. Reliability Engineering & System Safety, 78, 185–193.

[19] Coolen-Maturi T., Coolen F.P.A. and Alabdulhadi M. (2020). Nonparametric predic-
tive inference for diagnostic test thresholds. Communications in Statistics-Theory and
Methods, 49, 697–725.

[20] De Finetti, B. (1974). Theory of Probability. Wiley, London.

[21] Dua, D. and Graff, C. (2019). UCI machine learning repository. University of California,
Irvine, School of Information and Computer Science. Http://archive.ics.uci.edu/ml.

[22] Fayyad, U. and Irani, K. (1992). On the handling in decision tree of continuous-valued
attributes generation. Machine Learning, 8, 87–102.

[23] Fayyad, U. and Irani, K. (1993). Multi-interval discretization of continuous-valued
attributes for classification learing. In: Proceeding of the 13th International Joint Con-
ference on Artificial Inteligence, pp. 1022–1027.

[24] Fink P. (2018). imptree: Classification Trees with Imprecise Probabilities. R package
version 0.5.1.

[25] Genlin, J. (2004). Survey on genetic algorithm. Computer Applications and Software,
2, 69–73.

[26] Haldurai L., Madhubala T. and Rajalakshmi R. (2016). A study on genetic algorithm
and its applications. International Journal of Computer Sciences and Engineering, 4,
139.

[27] Hill B. (1988). De Finetti’s theorem, induction, and A(n) or Bayesian nonparametric
predictive inference (with discussion). Bayesian Statistics, 3, 211–241.

[28] Hill, M. (1968). Posterior distribution of percentiles: Bayes’ theorem for sampling from
a population. Journal of the American Statistical Association, 63, 677–691.

[29] Hornik, K. and Buchta, C. and Zeileis, A. (2009). Open-source machine learning: R
meets Weka. Computational Statistics, 24, 225–232.

[30] Kotsiantis, S., Zaharakis, I. and Pintelas, P. (2007). Supervised machine learning:
A review of classification techniques. Emerging Artificial Intelligence Applications in
Computer Engineering, 160, 3–24.

32

[31] Mantas, C., Abellán, J. and Castellano, J. (2016). Analysis of Credal-C4. 5 for classifi-
cation in noisy domains. Expert Systems with Applications, 61, 314–326.

[32] Murthy, S. and Salzberg, S. (1995). Decision Tree Induction: How Effective Is the
Greedy Heuristic? Proceedings of the First International Conference on Knowledge
Discovery and Data Mining, pp. 222–227.

[33] Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1, 81–106.

[34] Quinlan, J. (1993). C4.5: Program for machine learning. Morgan Kaufmann.

[35] R Core Team (2013). R: A Language and Environment for Statistical Computing.

[36] Rabbi, M., Hasan, S., Champa, A., AsifZaman, M. and Hasan, Md. (2020). Prediction
of liver disorders using machine learning algorithms: a comparative study. In 2020 2nd
International Conference on Advanced Information and Communication Technology, pp.
111–116. IEEE, Dhaka (Bangladesh).

[37] Rokach, L. and Maimon, O. (2008). Data Mining with Decision Trees: Theory and
Applications. World Scientific.

[38] Shannon, C. (1948). A mathematical theory of communication. Bell System Technical
Journal, 27, 379–423.

[39] Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society: Series B, 36, 111–133.

[40] Therneau T., Atkinson B. and Ripley B. (2015). rpart: Recursive Partitioning and
Regression Trees. R package version 4.1.16.

[41] Witten, I. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, San Francisco.

33

