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Abstract

Bootstrap methods are widely used statistical techniques known for their
simplicity and good properties. This paper introduces a novel bootstrap
method called the parametric predictive bootstrap (PP-B), which relies on
parametric models and is designed for predictive inference. The PP-B method
is evaluated in various scenarios typically used with other bootstrap meth-
ods to assess its performance in estimation and prediction inference. Com-
parisons of PP-B with other bootstrap methods are made in terms of the
coverage probabilities of confidence and prediction intervals. Simulation re-
sults indicate that PP-B excels in predictive inference due to its explicitly
predictive nature.

Keywords: Bootstrap, Confidence intervals, Prediction intervals,
Prediction regions, Nonparametric predictive inference bootstrap

1. Introduction

Measuring the uncertainty of a sample estimate is an important aspect
of statistical inference. Bootstrap methods are sampling techniques used to
quantify the uncertainty of sample estimates [10]. They have been applied to
a wide range of statistical problems due to their simplicity of implementation
and the ability to provide good approximate results for sample estimates. A
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researcher may use the bootstrap method to avoid performing complicated
mathematical derivations or, in some instances, to offer a solution where no
analytical answer is possible [25]. The bootstrap method has contributed to
resolving problems such as the estimation of the standard error for statistical
estimators. The standard error can be used to evaluate the accuracy of an
estimator, but for the majority of statistical estimators, there are no math-
ematical formulas to estimate the standard error. The bootstrap exploits
the power of computers to assess the statistical accuracy of complicated pro-
cedures. Additionally, the bootstrap method is capable of efficiently deter-
mining the confidence interval for a parameter of interest. The use of the
bootstrap method has been extended to many problems, including hypothesis
testing, because of its simplicity of implementation and good performance.

The first presentation of the bootstrap method was in a Stanford Uni-
versity technical report by Bradley Efron in 1977, followed by his famous
paper in the Annals of Statistics in 1979 [10, 20]. Many efforts have been
made to popularise the bootstrap method in the statistical community, such
as Diaconis and Efron [19], Efron [21], and Efron and Gong [23]. There are
many modifications to Efron’s bootstrap, such as double bootstrap, smooth
bootstrap, and Bayesian bootstrap that have been presented in the literature;
see e.g. [6, 18, 39]. Bootstrap methods have been introduced for different
types of data, e.g. real data [27], right-censored data [1], and ordinal data
[8]. Chernick [9] described bootstrap methods along with examples and ap-
plications such as hypothesis testing, confidence intervals, regression, and
time series. As a result, the importance of the bootstrap approach has been
widely recognised.

This paper presents a new bootstrap method, the parametric predictive
bootstrap, which we denote as PP-B. It relies entirely on parametric models
and aims to predict future observations. The proposed bootstrap methods
will be evaluated in a range of scenarios that have been used with other
bootstrap methods. This will enable us to investigate the performance of
PP-B in estimation and prediction inference. In Section 2, we introduce
several bootstrap methods from the literature for later comparison with our
PP-B method. In Section 3, the concept of the parametric predictive boot-
strap is introduced, clarifying how it differs from other bootstrap methods
described in Section 2. In Section 4, the performance of PP-B for estimation
is compared with different bootstrap methods using percentile confidence in-
tervals. In Section 5, we consider the percentile prediction interval to predict
the future sample statistic in order to investigate the performance of PP-B
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in prediction inference. Section 6 provides further investigation to evaluate
the performance of PP-B as a prediction approach using prediction regions
for the bootstrap prediction interval. In the last section, we present some
concluding remarks of this paper.

2. Bootstrap methods

In this section, we describe three different bootstrap methods: Efron’s
bootstrap (EB), parametric bootstrap (PB), and nonparametric predictive
inference bootstrap (NPI-B). These bootstrap methods will be compared
with the parametric predictive bootstrap (PP-B) introduced in this paper.
The classical Efron bootstrap is a nonparametric sampling technique that
does not make any assumptions about how observations are distributed. In
contrast, the parametric bootstrap requires assumptions regarding the dis-
tribution of the data. The nonparametric predictive inference bootstrap is
formulated for predictive inference and does not use an assumed parametric
model. The PP-B is similar to NPI-B in terms of focusing on prediction, but
it requires assumptions about data distribution.

2.1. Efron’s bootstrap

The bootstrap method has become an essential technique for researchers
because of its good properties and general applicability to a variety of statis-
tical situations. The standard version of the bootstrap method is introduced
by Efron [25], which is a resampling technique from the original data set.
This bootstrap method employs the empirical distribution to quantify the
uncertainty of sample estimates. The basic idea of Efron’s bootstrap (EB)
is to resample with replacement from the original observations repeatedly,
where each observation has an equal probability of being selected during the
resampling process [31]. It has been widely used in applied statistics as it
relies on few mathematical assumptions and can be easily implemented using
statistical software. It is important to note that EB makes no assumptions
regarding the distribution of observations [26, 36].

Suppose that there is a random sample x1, x2, . . . , xn from an unknown
distribution F , and we want to estimate the parameter of interest θ(F ), e.g.
the mean or variance by the statistic T . The bootstrap method can be used
to construct the sampling distribution of any statistic. A bootstrap sample is
denoted by X∗ = (x∗

1, x
∗
2, . . . , x

∗
n), which consists of members of the original

data set X = (x1, x2, . . . , xn). It is obtained by randomly sampling n times
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with replacement from the original sample. The size of a bootstrap sample
can be chosen differently from the original sample size. The basic bootstrap
method generates an empirical estimate of the sampling distribution of the
statistic (bootstrap distribution). The procedure involves drawing a large
number of samples from the observations and determining the statistics for
each sample. The statistic’s sampling distribution can be estimated by the
relative frequency distribution of these statistics. The bootstrap distribution
typically mirrors the shape of the actual sampling distribution resulting from
the sampling process.

A point worth noting here is that some of the observations will be re-
peated once or more in a bootstrap sample, which makes them different from
the original sample. Also, specific observations may not appear at all in a
particular bootstrap sample. Consequently, there will be a variation of the
values for the parameter of interest. We should draw large numbers of boot-
strap samples to approximate the variation of a sampling distribution. The
EB method is described in many references with examples and applications,
e.g. Berrar [7], Davison and Hinkley [18], and Efron [22]. The idea of boot-
strap has been applied to a variety of statistical inferences. For example,
Rosenkranz [37] estimated the bias of treatment effect estimators using the
bootstrap method.

2.2. Parametric bootstrap

The parametric bootstrap (PB) method assumes that the data come from
a known distribution with unknown parameters. In this method, samples are
drawn from the assumed distribution with the estimated parameters instead
of resampling with replacement from the original data. The idea of the
PB method is to estimate the parameters of the assumed distribution using
available data and to generate a number of PB samples from the assumed
distribution with the estimated parameters [26, 33]. The PB method requires
knowledge of the data distribution and can contain observations that were
not included in the original sample, but this method may produce misleading
results if the assumed model is wrong. Conversely, the EB method does
not assume a distribution for the data; all observations are included in the
original sample, and tied observations occur. The PB method can be used in
situations where some knowledge about the form of the underlying population
is available.
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2.3. Nonparametric predictive inference bootstrap

The nonparametric predictive inference (NPI) method has been developed
over the past two decades for a wide range of applications and problems in
statistics, along with various data types. NPI is a statistical technique based
on Hill’s assumption A(n) that makes inferences on a future observation based
on past data observations [11, 12]. Hill [28, 29, 30] introduced the assump-
tion A(n) for the prediction of one future observation Xn+1 with no prior
knowledge about the underlying distribution. Suppose that x1, . . . , xn are
the observed data corresponding to real-valued and exchangeable random
quantities X1, . . . , Xn. Let x(1) < x(2) < . . . < x(n) be the ordered observa-
tions and define x(0) = −∞ and x(n+1) = +∞ for ease of notation. For one
future observation Xn+1, the assumption A(n) is:

P (Xn+1 ∈ Ii) =
1

n+ 1
(1)

where Ii = (x(i−1), x(i)) and i = 1, . . . , n+1. The assumption A(n) states that
the future observation Xn+1 is equally likely to fall within any open interval
(x(i−1), x(i)). These intervals were created by the previous n observations be-
tween consecutive order statistics of the given sample. The assumption A(n)

itself is not sufficient to derive precise probabilities for any event of inter-
est, but it can be used to derive bounds (lower and upper) of probabilities,
which are called imprecise probabilities. The NPI approach is introduced
by Coolen and Augustin [4, 5], which uses lower and upper probabilities for
events of interest considering future observations based on Hill’s assumption.
The lower probability is the maximum lower bound for the precise probability
for the event and is denoted by P (·). The upper probability is the minimum
upper bound for the event and is denoted by P (·). The NPI lower and up-
per probabilities become precise probability if they are equal P (·) = P (·),
0 ≤ P (·) ≤ P (·) ≤ 1. The NPI lower and upper probabilities for the event
Xn+1 ∈ B, where B ⊂ R are:

P (Xn+1 ∈ B) =
1

n+ 1
|{i : Ii ⊆ B}| (2)

P (Xn+1 ∈ B) =
1

n+ 1
|{i : Ii ∩B ̸= ∅}| (3)

The lower probability (2) is the total probability mass assigned to intervals
Ii that are completely contained within B, and the upper probability (3) is
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taking into account all probability masses assigned to intervals that can be
in B.

Sequential application of the assumptions A(n), . . . , A(n+m−1) can be used
to generalise NPI for (m ≥ 1) future real-valued observations based on n real
data observations. These assumptions imply that all

(
n+m
n

)
possible different

orderings of the m future observations among the n data observations are
equally likely to appear, with no further assumptions made on where future
observations will be within any of these intervals Ii [15]. The NPI approach is
considered for statistical inference, e.g. acceptance sampling [13], precedence
testing for two groups [17], and the accuracy of diagnostic tests [16].

Coolen and Binhimd [14] introduced a predictive bootstrap method based
on NPI, called nonparametric predictive inference bootstrap (NPI-B). The
NPI-B method involves creating n+1 intervals between the n ordered obser-
vations of the original data, then selecting one of these intervals randomly.
The first observation is drawn uniformly from the selected interval and then
this observation is added to the original data, resulting in n + 1 observa-
tions. This leads to the creation of a partition consisting of n + 2 intervals,
from which the second observation is sampled. The process continues until
m observations are drawn, where m is predefined. These m observations
constitute one NPI-B sample (which, of course, does not include the n orig-
inal observations). In NPI-B, all possible orderings of the new observations
among the past observations are equally likely to occur. NPI-B’s sampling
method, which involves drawing each observation from the intervals in the
partition created by combining the n original observations with all previ-
ously drawn observations belonging to the same bootstrap sample, leads to
greater variation in bootstrap samples than Efron’s and parametric bootstrap
samples. It is worth mentioning that one observation is sampled uniformly
from each chosen interval when applying NPI-B. However, it cannot be sam-
pled uniformly from an open-ended interval; e.g., data defined on the whole
real line lead to the first and last intervals in the form of (−∞, x(1)) and
(x(n),+∞). Coolen and Binhimd [14] suggest using the tail of a Normal dis-
tribution for real-valued data, and the tail of an Exponential distribution for
non-negative real-valued data. It is important to note that the conditional
tail distribution is only used to sample an observation from open-ended in-
tervals; otherwise, the observation is sampled uniformly from finite intervals.
The NPI-B algorithm for real-valued data on finite and infinite intervals is
as follows:

6



1. Create n + 1 intervals between the n ordered observations
(x(0), x(1)), (x(1), x(2)), . . . , (x(n−1), x(n)), (x(n), x(n+1)), where x(0) and
x(n+1) are the end points of the possible data range.

2. Select one of the n+1 intervals randomly, each with equal probability,
and sample one future observation uniformly from this selected interval.

(a) We sample the future value uniformly for any finite interval.
(b) For the case with data on the whole real line (−∞,+∞): If the

chosen interval is (−∞, x(1)) or (x(n),+∞), we sample the future

value from the tail of Normal distribution with mean µ =
x(1)+x(n)

2

and standard deviation σ =
x(n)−µ

Φ−1( n
n+1

)
, where Φ−1 indicates the in-

verse function of a standard normal cumulative distribution func-
tion.

(c) For the case with data on the (0,+∞): If the chosen interval is
(x(n),+∞), we sample the future value from the tail of Exponen-

tial distribution with rate λ = ln(n+1)
x(n)

.

3. Add this sampled observation x∗
1 to the data; increase n to n+ 1.

4. Repeat Steps 1-3, now with n+1 data, to obtain a further future value.
This is continued to sample m future observations from the intervals
in the partition created by combining the n original observations with
all previously drawn observations that belong to the bootstrap sample.
These m drawn observations (x∗

1, x
∗
2, . . . , x

∗
m) form one NPI-B sample

of size m.

5. Repeat Steps 2-4 to obtain B of NPI-B samples of size m.

3. The general idea of parametric predictive bootstrap

In this section, we present the main idea of PP-B for real-valued data,
followed by a brief comparison with other bootstrap methods described in
Section 2. In the PP-B method, a single observation is sampled from an
assumed distribution with estimated parameters based on an original data
set of size n. Then, this observation is added to the data and the process
is repeated, now with n + 1 observations. We re-estimate the distribution
parameters with the new observation added to the data in order to sample
the second observation. This process continues to sample m further values
in the same way, each observation adding to the data and re-estimating the
parameters before sampling the next one. The PP-B sample consists of these

7



m sampled observations, excluding the n original data observations. The PP-
B algorithm for one-dimensional real-valued data is as follows:

1. We have a random sample consisting of n observations x1, x2, . . . , xn

from a known distribution F (x; θ), with parameter θ.
2. The parameter θ of the assumed distribution is estimated by θ̂ from

the available data, using maximum likelihood estimation (MLE) or any
other estimation method.

3. Sample one future observation x∗
1 randomly from the fitted distribution

F (x; θ̂).
4. Add x∗

1 to the data results in the data set (x1, x2, . . . , xn, x
∗
1); increase

n to n+ 1.
5. Repeat Steps 2-4, now with n + 1 data, to obtain a further future

value. This is continued to sample m observations in total, with each
one added to the data and the parameter re-estimated before sampling
the next observation. These sampled observations x∗

1, x
∗
2, . . . , x

∗
m are a

PP-B sample of size m.
6. Repeat Steps 2-5 to obtain B of PP-B samples of size m.

As a consequence of the method of sampling observations in PP-B, with
sampled observation added to the data set and the parameter estimated
before sampling the next one, the bootstrap samples show more variation
than the EB and PB samples. The method for sampling observations in
NPI-B, with each observation drawn from the intervals created by combining
the n original observations with all previously drawn observations belonging
to the same bootstrap sample, also causes more variation in the bootstrap
samples than the EB and PB samples. In the EB and PB methods, all
observations are sampled based on the original data only. EB depends on
resampling with replacement from the original data, where each value of the
original data set has the same probability of being chosen by random selection
during the resampling process [24]. The PB method assumes the data to come
from a known distribution with unknown parameters. The parameters of the
assumed distribution are estimated from the available data, then observations
are sampled from the assumed distribution with the estimated parameters in
order to obtain PB sample [26]. The bootstrap samples in PP-B, NPI-B, and
PB are not restricted to already observed values, whereas all observations in
EB samples are in the original sample.

We give a brief comparison of variations in bootstrap samples for each
bootstrap method and leave a more detailed comparison for the following
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sections. We compute the variance for a statistic of interest T using the
bootstrap technique to measure the spread of these statistic values based
on the bootstrap samples. The bootstrap estimate of variance σ̂2

boot can be
computed by generating B bootstrap samples, then calculate the statistic of
interest T for each bootstrap sample to obtain T ∗

1 , . . . , T
∗
B. The value of σ̂

2
boot

is given by:

σ̂2
boot =

∑B
j=1[T

∗
j − (

∑B
j=1 T

∗
j /B)]2

B − 1
(4)

To conduct the simulation study, we begin by generating one original sample
of size n from each of the two distributions: N(0,1) and Exp(0.5). Then, we
apply different bootstrap methods B = 1000 times for each generated sample.
The mean and variance of each bootstrap sample are computed, and then we
estimate the variance based on different bootstrap methods. This procedure
is repeated for various original sample sizes n = 5, 25, 100, 200, 500 drawn
from each of the two distributions: N(0,1) and Exp(0.5). For consistency,
the same original data sets for each distribution and sample size are used
across all bootstrap methods. It is important to note that, for each method,
the bootstrap samples are generated with the same size as the corresponding
original sample.

Table 1 shows the estimate of variance using different bootstrap methods
for the mean and variance. The results were approximated to four decimal
digits, but we used additional digits with some values to make the results
more informative and to avoid the inclusion of zeros ”0.0000”. PP-B and
NPI-B have the largest estimated variance values for the mean and variance
among these bootstrap methods, as expected due to the method of sampling
observations in both methods. The results for N(0,1) show that the NPI-
B method has the largest variance in all cases except for the mean when
n = 500, in which the PP-B method has a larger variance. Also, the NPI-
B method provides the largest variance in most cases of the mean and all
cases of the variance for Exp(0.5), followed by the PP-B method. The NPI-B
method has a larger variance in most cases compared to the PP-B method
due to the assumption of a parametric model in the PP-B method.

We observe that the PP-B and NPI-B methods give the largest variance
for the statistics compared to the other methods. However, this is actually
a good point because their variances are the closest to the variance of the
underlying distribution. For example, with the normal distribution N(0,1),
which has a variance of 1, the variance of the statistics using PP-B and NPI-
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(a) N(0,1)

method statistics n = 5 n = 25 n = 100 n = 200 n = 500

PP-B
mean 0.3320 0.0606 0.0146 0.0083 0.0041

variance 0.5491 0.1201 0.0249 0.0151 0.0084

NPI-B
mean 0.6067 0.0892 0.0165 0.0085 0.0040

variance 2.9020 0.3624 0.0444 0.0172 0.0112

PB
mean 0.1981 0.0316 0.0075 0.0042 0.0020

variance 0.0009 0.0001 0.00002 0.00001 0.000004

EB
mean 0.1515 0.0359 0.0074 0.0043 0.0021

variance 0.1743 0.0735 0.0133 0.0071 0.0047

(b) Exp(0.5)

method statistics n = 5 n = 25 n = 100 n = 200 n = 500

PP-B
mean 0.4517 0.1764 0.0789 0.0386 0.0149

variance 4.3163 2.0995 1.9951 0.8993 0.3314

NPI-B
mean 0.6725 0.2146 0.0839 0.0321 0.0140

variance 11.7162 9.6144 4.5507 1.1390 0.5424

PB
mean 0.2385 0.0887 0.0396 0.0194 0.0075

variance 2.6386 1.5059 1.3511 0.5997 0.2195

EB
mean 0.1211 0.0717 0.0352 0.0143 0.0070

variance 0.1063 0.3657 0.6540 0.2132 0.1408

Table 1: The bootstrap estimate of variance for the mean and variance when the original
sample was from N(0,1) and Exp(0.5).

B is the largest, but they are also the closest to 1, except that the statistic
variance obtained using the NPI-B method is overestimated when n = 5.
Similarly, for the exponential distribution with λ = 0.5, which has a variance
of 4, the variance of the statistics derived from PP-B and NPI-B are again the
largest and the closest to 4, but for the statistic variance the NPI-B method
is overestimated when n = 5, 25, 100.

4. Confidence intervals

In this section, we consider the comparison of PP-B among bootstrap
methods using confidence intervals to investigate its performance in estima-
tion inference. First, we give a general review of confidence intervals and
describe how a bootstrap technique can be used to construct confidence in-
tervals. A 100(1−2α)% confidence interval for the parameter θ is an interval
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constructed from a random sample, such that if we were to repeat the ex-
periment a large number of times, the interval would contain the true value
of θ in 100(1 − 2α)% of the cases. It is important to note that the interval
will depend on the value of the estimate θ̂ and the sampling distribution
of the estimator F̂ . The sample size, confidence level, and the variability
in the sample are all factors that influence the width of the interval. The
larger samples produce narrower confidence intervals when all other factors
are equal, while a higher confidence level or greater variability in the sam-
ple produces wider confidence intervals when all other factors are equal. In
one-sample case, we have a random sample observations x1, x2, ..., xn from
distribution F . Assume the parameter of interest θ, e.g. the mean or vari-
ance, which can be estimated by the statistic T . We need to determine the
sampling distribution of the estimator θ̂. The bootstrap method can be used
to estimate the sampling distribution of the statistic.

Efron and Tibshirani [25] introduced different ways to construct confi-
dence intervals based on bootstrap technique. In this paper, we will use the
percentile confidence interval which depend on the percentiles of the boot-
strap distribution of a statistic. The 100(1−2α)% percentile interval is giving
by:

θ̂
∗(α)
B < θ < θ̂

∗(1−α)
B

T
∗(α)
B < θ < T

∗(1−α)
B

(5)

where T ∗
j , j = 1, . . . , B is the computed statistic of interest T for each boot-

strap sample. So, T
∗(α)
j is the 100·αth percentile of the T ∗

j values, that means
the B ·αth of the ordered list of the B replications of T ∗ and it is likewise for
T

∗(1−α)
j indicate the 100 ·(1−α)th percentile of the T ∗

j values. For example, if

B = 1000 and α = 0.05, then lower endpoint of the percentile interval T
∗(α)
j

is the 50th ordered value of replications and upper endpoint of the percentile
interval T

∗(1−α)
j is the 950th ordered value of replications. If B · α is not an

integer, we assuming α ≤ 0.5 and let k = ⌊(B + 1)α⌋ is the largest integer
≤ (B+1)α, then we define α and 1−α by the kth largest and (B+1− k)th
largest value of T ∗

j , respectively.
The simulation study is conducted to find the coverage proportion and

average width of confidence intervals for the mean and variance. In this study,
we use Beta(8,2) with a different original sample size n = 50, 100, 200, 400
and confidence level 95% and 90%. We generate an original sample of size n
from Beta(8,2) and then apply different bootstrap methods B = 1000 times.
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(a) mean

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9850 0.9910 0.9930 0.9910 0.9670 0.9750 0.9820 0.9700

AL 0.0933 0.0665 0.0471 0.0333 0.0780 0.0558 0.0396 0.0280

NPI-B
CP 0.9970 0.9970 0.9950 0.9930 0.9860 0.9850 0.9840 0.9690

AL 0.1089 0.0724 0.0492 0.0341 0.0901 0.0605 0.0412 0.0286

PB
CP 0.9430 0.9410 0.9540 0.9440 0.8800 0.8980 0.9080 0.9050

AL 0.0664 0.0472 0.0334 0.0236 0.0558 0.0397 0.0281 0.0198

EB
CP 0.9350 0.9430 0.9580 0.9460 0.8800 0.9030 0.9090 0.9040

AL 0.0656 0.0469 0.0332 0.0235 0.0552 0.0395 0.0279 0.0198

(b) variance

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9820 0.9900 0.9930 0.9940 0.9590 0.9770 0.9800 0.9740

AL 0.0175 0.0126 0.0090 0.0063 0.0144 0.0105 0.0075 0.0053

NPI-B
CP 0.9980 0.9960 0.9960 0.9950 0.9920 0.9860 0.9870 0.9870

AL 0.0390 0.0227 0.0134 0.0082 0.0308 0.0181 0.0108 0.0067

PB
CP 0.9450 0.9410 0.9520 0.9520 0.9000 0.9020 0.9020 0.9000

AL 0.0128 0.0091 0.0064 0.0045 0.0108 0.0076 0.0054 0.0038

EB
CP 0.8820 0.9320 0.9380 0.9450 0.8310 0.8750 0.8880 0.8870

AL 0.0117 0.0087 0.0063 0.0045 0.0099 0.0074 0.0053 0.0037

Table 2: Coverage of (1− 2α)% confidence interval using percentile method for mean and
variance parameters when the original sample from Beta(8, 2).

It is important to note that the bootstrap samples for each method are the
same size as the original samples. The statistics are computed for each
bootstrap sample to construct percentile intervals using Equation (5). Then,
we discover which percentile confidence intervals include the true statistics
of the Beta(8,2) distribution. This procedure is repeated N = 1000 times in
order to find the coverage proportions of different bootstrap methods. The
performance assessment of each bootstrap method is based on two criteria:
coverage proportion and the average width of the intervals. It is desirable
to have a proportion of coverage that is close to these advertised confidence
levels with a smaller average width of intervals.

Table 2 presents the coverage proportions and average interval widths
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for the mean and variance based on the four bootstrap procedures. The
notation CP and AW refer to the coverage proportion and average interval
widths, respectively. The NPI-B method produces the largest average width
of confidence intervals in all cases for these two statistics, followed by the
PP-B method. As a result, over-coverage occurs in all cases of the NPI-
B and PP-B methods. The sampling methods in PP-B and NPI-B, which
add a sampled observation to the data set before sampling the next one,
leads to more variation in the bootstrap samples, as discussed in Section 3.
The greater variability in the sample produces wider intervals, so as a result
PP-B and NPI-B lead to wider confidence intervals than other bootstrap
methods. The NPI-B method produces a wider average width of intervals
than the PP-B method when the sample size and confidence level of both
methods are equal. We conclude that the NPI-B method has more variation
than the PP-B method, as we had expected, due to the assumption of a
parametric model in the PP-B method. The NPI-B method does not use an
assumed parametric model, leading to greater variability compared to the
PP-B method.

The method that has a coverage proportions closer to nominal coverage
probability is the preferred one. PB and EB have coverage that is closer
to the presumed coverage probabilities with narrower intervals on average
than NPI-B and PP-B. For the variance, the PB method achieved the best
coverage proportion of all cases and it has the nominal coverage probability
0.90% when n = 50, 400. The EB method shows almost 7% under-coverage
result below their 95% and 90% nominal confidence level when n = 50,
but it is improved when the sample size gets large. The PP-B and NPI-B
methods have an over-coverage tendency due to wider intervals arising from
greater variability. The PP-B method does not perform well in confidence
intervals, as it is not developed for estimating population characteristics, but
for predictive inference. It is explicitly aimed at predictive inference, with
variability in different bootstrap samples reflecting uncertainty in prediction
in line with the NPI-B method.

5. Prediction intervals

We begin this section by providing an overview of prediction intervals
and explaining how to construct prediction intervals using the bootstrap
technique. Lu and Chang [32] used the bootstrap method to construct a
prediction interval for one or more future values from a Birnbaum-Saunders
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distribution. They constructed the prediction interval using the bootstrap
percentile method with bootstrap calibration. The Birnbaum-Saunders dis-
tribution is used in reliability applications to model failure times. They
assumed that a random sample x1, . . . , xn, is taken from Birnbaum-Saunders
distribution function F with parameters α and β. The density of F is defined
by

f(x;α, β) =
1

2αβ
√
2π

[(
x

β

)− 1
2

+

(
x

β

)− 3
2

]
exp

[
− 1

2α2

(
x

β
− 2 +

β

x

)]
,

where x > 0 and the two parameters of Birnbaum–Saunders distribution
α, β > 0.

A bootstrap sample of size n, x∗
1, . . . , x

∗
n is n random values drawn with

replacement from x1, . . . , xn, each with a probability of 1/n, to construct the
estimated distribution F ∗. In this case, the bootstrap sample is considered
as a sample of the unknown distribution. Then, generate y∗1, . . . , y

∗
m from

the estimated distribution F ∗, where m is the number of future observa-
tions. Thereafter, the mean of y∗1, . . . , y

∗
m is obtained and denoted by ȳ∗m.

Repeat the previous procedure B times to obtain B values of ȳ∗m, denoted by
ȳ∗m(1), . . . , ȳ

∗
m(B). Then, construct 100(1− 2α)% prediction interval for the

mean of future observations x̄m as:(
ȳ
(α)
m,B, ȳ

(1−α)
m,B

)
(6)

where the lower endpoint ȳ
(α)
m,B is the B × αth value in the ordered list of

the B replications of ȳ∗m and the upper endpoint ȳ
(1−α)
m,B is the B × (1− α)th

value in this ordered list. If B × α is not an integer, the same procedure of
bootstrap-t interval is used as discussed in previous section (use the largest
integer).

Lu and Chang [32] investigate the performance of the bootstrap predic-
tion intervals for a single future observation and for the mean of five future
observations through simulations. They draw a sample of size n+m from the
Birnbaum-Saunders distribution x1, . . . , xn, xn+1, . . . , xn+m, where x1, . . . , xn

represents the past sample and xn+1, . . . , xn+m represents the future sample.
Then, find the observed mean of m future observations xn+1, . . . , xn+m, x̄m.
The prediction interval for the mean of future observations is constructed
by drawing the bootstrap sample x∗

1, . . . , x
∗
n, then generating from them

y∗1, . . . , y
∗
m and finding ȳ∗m. Repeat this B = 1000 times to have the list
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of B values ȳ∗m(1), . . . , ȳ
∗
m(B) in order to construct the prediction interval for

x̄m as described earlier. In the case of prediction for a single future observa-
tion, we draw the bootstrap sample x∗

1, . . . , x
∗
n, then generate y∗1 from them

and repeat this B = 1000 times to have the list of B values y∗1(1), . . . , y
∗
1(B)

and construct the prediction interval for xn+1. The 90% and 95% prediction
intervals for a single future observation xn+1 and the mean of m future obser-
vations x̄m are computed in the Lu and Chang study [32]. They conducted
a Monte-Carlo simulation to determine the coverage probability by counting
how many intervals contain xn+1 and x̄m. A percentile prediction interval
used by Lu and Chang [32] is defined as the LC method.

Mojirsheibani and Tibshirani [35] introduced different ways to construct
prediction intervals such as bootstrap-t, percentile and BCa prediction inter-
vals. The percentile prediction interval is used in this paper because the BCa
prediction interval cannot be constructed for a single future observation and
the bootstrap-t prediction interval is not transformation respecting. They
assumed that a random sample X = (x1, . . . , xn) represent past sample and
Y = (y1, . . . , ym) represent a future sample, where X and Y are independent
and identically distributed with a common distribution F and θ̂ = T is the
estimator of scalar parameter θ. Let Fn and Fm are the CDF’s of θ̂n = Tn

and θ̂m = Tm, which are the estimators of a scalar parameter θ from the
past sample and future sample respectively. Let F̂n and F̂m are the CDF’s
of θ̂∗n = T ∗

n and θ̂∗m = T ∗
m, the bootstrap version of θ̂n = Tn and θ̂m = Tm.

The bootstrap samples X∗ and Y ∗ are drawn with replacement from the past
sample X. The 100(1− 2α)% percentile prediction interval for θ̂m = Tm is:

(θ̂lo, θ̂up) =
(
F̂−1
m

[
Φ(z(α)(1 +m/n)1/2)

]
, F̂−1

m

[
Φ(z(1−α)(1 +m/n)1/2)

])
(7)

where F̂m is the bootstrap distribution of θ̂∗m = T ∗
m, and z(α) = Φ−1(α).

Mojirsheibani [34] studies the effects of bootstrap iteration (calibration)
as a method to improve the coverage accuracy. They generated X∗ and Y ∗

from the past sample X and then resample Y ∗∗ from X∗. All previous studies
of constructing prediction intervals were based on Efron’s bootstrap method.
We refer to the percentile prediction interval recommended by Mojirsheibani
and Tibshirani [35] as the MT method. In this paper, we focus on the per-
centile prediction interval using MT and LC methods, but without iterated
bootstrap.

A comparison of PP-B with other bootstrap methods is carried out using
prediction intervals in order to investigate their performance in prediction
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inference. The percentile prediction intervals are constructed based on the
LC and MT methods but without bootstrap iteration. Here we will draw the
past and future samples separately as done by Mojirsheibani and Tibshirani
[35], where both samples are independent and identically distributed. The
percentile prediction interval based on the bootstrap method can be generl-
ized to a large class of statistics and is not restricted to sample means. We
extend studies to investigate the performance of the percentile prediction
with LC and MT methods for future sample variance. The following pro-
cesses are used to find the coverage proportion and average interval widths
for the percentile prediction interval of a statistic:

1. Draw an original sample of size n from specific distribution X =
(x1, . . . , xn) to be the past sample and then draw another original sam-
ple of size m from the same distribution Y = (y1, . . . , ym) to be the
future sample, where the two samples are independent and identically
distributed.

2. Compute the statistic of the future sample Tm using Y = (y1, . . . , ym).

3. Draw B bootstrap samples of sizem from x1, . . . , xn and find the statis-
tic for each bootstrap sample T ∗

mj, where j = 1, . . . , B.

4. Construct an 100(1 − 2α)% prediction interval of Tm by LC method
and MT method:

(a) Lu and Chang (LC) method: lower bound is the α · Bth value in
the ordered list of T ∗

mj and the upper bound is the (1 − α) · Bth
value in this list (use the largest integer if these values are not
integer).

(b) Mojirsheibani and Tibshirani (MT) method:
Lower bound: F−1

m

[
Φ(zα(1 +

m
n
)1/2)

]
= F−1

m [α1] is the α1 · Bth
value in the ordered list of T ∗

mj.

Upper bound: F−1
m

[
Φ(z1−α(1 +

m
n
)1/2)

]
= F−1

m [α2] is the α2 · Bth
value in the ordered list of T ∗

mj.
If α1 ·B or α2 ·B are not integer, use the largest integer.

5. Determine if this interval contains the statistic of the future sample Tm

in Step 2 and compute the width of the prediction interval for both
methods.

6. Steps 1-5 are repeated N times to find the coverage proportion (number
of times out of N that interval captures its corresponding future sample
mean) and the average interval widths.
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Bootstrap measures
Confidence level

95% 90%
n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B

CPLC 0.9510 0.9390 0.9600 0.9480 0.8950 0.8910 0.9080 0.9040
CPMT 0.9900 0.9890 0.9940 0.9940 0.9710 0.9740 0.9830 0.9750
AWLC 0.1493 0.1063 0.0755 0.0534 0.1252 0.0892 0.0634 0.0449
AWMT 0.2091 0.1484 0.1054 0.0742 0.1770 0.1256 0.0894 0.0632

NPI-B

CPLC 0.9600 0.9470 0.9660 0.9450 0.9220 0.8990 0.9180 0.9020
CPMT 0.9930 0.9920 0.9940 0.9950 0.9800 0.9810 0.9840 0.9800
AWLC 0.1574 0.1090 0.0763 0.0537 0.1317 0.0915 0.0641 0.0451
AWMT 0.2211 0.1524 0.1071 0.0750 0.1868 0.1292 0.0905 0.0635

PB

CPLC 0.8390 0.8220 0.8360 0.8300 0.7760 0.7440 0.7450 0.7510
CPMT 0.9460 0.9380 0.9540 0.9420 0.9030 0.8870 0.9120 0.9050
AWLC 0.1066 0.0753 0.0535 0.0378 0.0896 0.0634 0.0450 0.0318
AWMT 0.1478 0.1048 0.0744 0.0525 0.1258 0.0890 0.0632 0.0447

EB

CPLC 0.8380 0.8150 0.8380 0.8380 0.7630 0.7410 0.7420 0.7450
CPMT 0.9490 0.9350 0.9510 0.9420 0.8950 0.8850 0.9110 0.9030
AWLC 0.1054 0.0749 0.0533 0.0377 0.0885 0.0630 0.0449 0.0317
AWMT 0.1461 0.1041 0.0742 0.0525 0.1245 0.0884 0.0631 0.0446

Table 3: Coverage of 100(1−2α)% prediction interval for the mean ofm future observations
from Beta(3,1), when m = n.

We conduct a simulation study as shown in the steps above to investigate
the coverage performance and average width of intervals for each bootstrap
method. The number of simulations is set equal to N = 1000 and the
bootstrap methods are applied to each past sample B = 1000 times. The
percentile prediction intervals are constructed for the mean of m = n future
observations with various original sample sizes n = 50, 100, 200, 400 from
Beta(3,1) and Gamma(6,3) at confidence levels 90% and 95%. Table 3 and
Table 4 show the coverage proportions and average width of intervals for LC
and MT methods using different bootstrap methods. The notation CPLC and
AWLC refer to the coverage proportion and average interval widths for the
LC prediction interval, respectively. In the MT prediction interval, CPMT

and AWMT represent coverage proportion and average interval widths, re-
spectively.

First, we compare the performance of different bootstrap methods with
the LC prediction interval. In all future sample sizes and confidence levels,
the PP-B and NPI-B methods provide coverage that is close to the coverage
probability. Conversely, the coverage of PB and EB is considerably below
the nominal coverage probability for all cases irrespective of sample size and
confidence level. In comparison to their nominal coverage probabilities, the
observed coverage is at least 12% lower than the nominal coverage probability
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of 0.95, and at least 14.5% below the nominal coverage probability of 0.90 for
the Gamma(6,3) distribution. Similarly, for the Beta(3,1) distribution, the
coverage proportions are at least 11% lower than the corresponding nominal
coverage probabilities. Bootstrap methods with a predictive nature, such as
PB-B and NPI-B, perform well and provide good coverage for LC prediction
intervals. PP-B has the advantage of achieving good coverage with a narrower
interval, where the average interval widths for PP-B are smaller than those
for NPI-B in all cases.

We also compare different bootstrap methods in terms of their perfor-
mance based on MT prediction intervals. The PP-B and NPI-B methods
have over-coverage in all cases as a result of the large average interval width
in both methods. The PB and EB methods provide coverage that is closer
to the presumed coverage probabilities. Although the MT method improves
coverage for PB and EB, it is still possible to obtain coverage closer to the
coverage probability using PP-B and NPI-B with the LC method. For ex-
ample, the coverage of PP-B and NPI-B with the LC method is closer to the
nominal coverage probabilities when m = 100 compared to PB and EB with
the MT method for the Beta(3,1) distribution. Similarly, for the Gamma(6,3)
distribution, PP-B and NPI-B with the LC method achieve coverage that is
closer to the nominal probabilities at m = 400 than PB and EB with the
MT method.

Mojsheibani [34] investigated prediction intervals using a future sample of
sizem with a different size from the past sample n. The simulation studies are
conducted using various bootstrap methods, incorporating different statistics
and sample sizes m, to evaluate their performance in terms of coverage pro-
portion and the average width of intervals. In our study, we construct per-
centile prediction intervals for the variance of m = n/2 future observations.
In this study, we use different original samples sizes n = 50, 100, 200, 400 with
confidence level 95% and 90% from Beta(3,1) and Gamma(6,3). The results
of coverage proportions and interval average widths of the future sample vari-
ance using LC and MT methods for Beta(3,1) and Gamma(6,3) are presented
in Tables 5 and 6, respectively. The notation CPLC and AWLC refer to the
coverage proportion and average interval widths for the LC prediction inter-
val, respectively. In the MT prediction interval, CPMT and AWMT represent
coverage proportion and average interval widths, respectively.

The performance of different bootstrap procedures is first compared with
the LC prediction interval. PP-B and NPI-B have good coverage in all cases
of future sample sizes m = n/2 at confidence levels 95% and 90%. The
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Bootstrap measures
Confidence level

95% 90%
n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B

CPLC 0.9270 0.9330 0.9330 0.9420 0.8770 0.8790 0.8810 0.8890
CPMT 0.9830 0.9860 0.9870 0.9920 0.9630 0.9660 0.9720 0.9740
AWLC 0.6289 0.4469 0.3172 0.2243 0.5245 0.3748 0.2663 0.1884
AWMT 0.8947 0.6314 0.4438 0.3135 0.7506 0.5321 0.3757 0.2657

NPI-B

CPLC 0.9580 0.9440 0.9380 0.9510 0.9050 0.9050 0.8990 0.8950
CPMT 0.9930 0.9940 0.9890 0.9930 0.9820 0.9730 0.9760 0.9790
AWLC 0.7416 0.4927 0.3344 0.2312 0.6087 0.4089 0.2797 0.1940
AWMT 1.1587 0.7270 0.4786 0.3257 0.9137 0.5933 0.3994 0.2743

PB

CPLC 0.8030 0.8160 0.8240 0.8280 0.7270 0.7460 0.7520 0.7460
CPMT 0.9240 0.9250 0.9310 0.9390 0.8840 0.8820 0.8790 0.8830
AWLC 0.4473 0.3176 0.2243 0.1589 0.3759 0.2668 0.1886 0.1337
AWMT 0.6219 0.4422 0.3118 0.2211 0.5288 0.3754 0.2653 0.1877

EB

CPLC 0.8100 0.8100 0.8300 0.8290 0.7270 0.7450 0.7470 0.7550
CPMT 0.9180 0.9180 0.9290 0.9380 0.8730 0.8720 0.8870 0.8860
AWLC 0.4431 0.3150 0.2237 0.1587 0.3724 0.2648 0.1882 0.1334
AWMT 0.6152 0.4387 0.3116 0.2210 0.5225 0.3726 0.2647 0.1875

Table 4: Coverage of 100(1−2α)% prediction interval for the mean ofm future observations
from Gamma(6,3), when m = n.

superiority of PP-B is that it achieves good coverage with shorter intervals,
where the average interval widths of PP-B are smaller than NPI-B in all cases.
Additionally, its coverage proportions are closer to the coverage probabilities
than those of NPI-B in most cases. In contrast, PB and EB show worse under-
coverage results for all cases of Beta(3,1) and Gamma(6,2). Their coverage
proportions with Beta(3,1) are at least 7% lower than 0.95 and 0.90 nominal
coverage probabilities. Also, they provide coverage proportions that are at
least 5.2% below their nominal coverage probabilities with Gamma(6,3).

The performance of different bootstrap methods is also compared based
on MT prediction intervals. The wide average width of intervals in both PP-
B and NPI-B leads to over-coverage for all cases. The MT method improves
the coverage proportions of PB and EB, but PB is at least 4.4% below their
nominal coverage probabilities with Beta(3,1) when n = 50, 100, 200 as shown
in Table 5. Also, the EB method gives a result of 5.4% under-coverage below
the nominal level of 95% and 6.6% lower than the nominal level of 90% with
Gamma(6,3) when n = 50 as shown in Table 6. We observe that the MT
method improves the coverage probability of PB and EB, however we can
obtain a coverage proportion that is close to the nominal coverage probability
using PP-B and NPI-B with the LC method. For example, the coverage of
PP-B and NPI-B with Beta(3,1) based on LC method is closer to the nominal
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Bootstrap measures
Confidence level

95% 90%
n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B

CPLC 0.9510 0.9460 0.9490 0.9410 0.8990 0.8800 0.9020 0.8760
CPMT 0.9800 0.9770 0.9810 0.9760 0.9560 0.9500 0.9550 0.9490
AWLC 0.0506 0.0361 0.0258 0.0183 0.0425 0.0303 0.0217 0.0154
AWMT 0.0618 0.0440 0.0315 0.0223 0.0520 0.0371 0.0265 0.0188

NPI-B

CPLC 0.9660 0.9610 0.9570 0.9530 0.9320 0.9230 0.9070 0.8950
CPMT 0.9960 0.9880 0.9890 0.9880 0.9690 0.9660 0.9620 0.9570
AWLC 0.0629 0.0416 0.0279 0.0191 0.0522 0.0346 0.0233 0.0160
AWMT 0.0782 0.0514 0.0343 0.0233 0.0648 0.0428 0.0287 0.0196

PB

CPLC 0.8110 0.8430 0.8310 0.8590 0.7250 0.7650 0.7600 0.7860
CPMT 0.8920 0.9060 0.9050 0.9240 0.8230 0.8520 0.8440 0.8730
AWLC 0.0417 0.0299 0.0211 0.0150 0.0353 0.0252 0.0178 0.0126
AWMT 0.0504 0.0363 0.0257 0.0183 0.0428 0.0307 0.0217 0.0154

EB

CPLC 0.8700 0.8620 0.8800 0.8560 0.8050 0.7980 0.8050 0.7850
CPMT 0.9230 0.9170 0.9390 0.9350 0.8780 0.8750 0.8940 0.8710
AWLC 0.0405 0.0293 0.0210 0.0149 0.0344 0.0248 0.0177 0.0125
AWMT 0.0485 0.0355 0.0255 0.0181 0.0415 0.0301 0.0216 0.0153

Table 5: Coverage of 100(1− 2α)% prediction interval for the variance of m future obser-
vations from Beta(3,1), when m = n/2.

coverage probabilities when n = 50 than PB and EB with MT method. The
MT method enhances the coverage proportions of PB and EB by expanding
the prediction interval width, but it provides under-coverage results in some
cases. It is obvious that the PP-B method performs best for LC prediction
intervals, as it is developed for predictive inference in line with the NPI-B
method.

6. Prediction regions

In this section, we consider Banks’ comparison method for prediction in-
tervals to explore the performance of different bootstrap methods in predic-
tive inference. Here, we intend to investigate the global measure of coverage
accuracy for prediction intervals, which are called prediction regions. The
main requirement for predection regions is that the nominal coverage proba-
bility closely resembles the actual coverage probability. This has motivated
several simulations with accuracy at particular customary confidence levels,
such as 0.99, 0.95 and 0.90. Banks [6] investigated the global measure of cov-
erage accuracy to compare different bootstrap methods. The 20 prediction
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Bootstrap measures
Confidence level

95% 90%
n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B

CPLC 0.9300 0.9480 0.9450 0.9420 0.8670 0.8910 0.8980 0.8830
CPMT 0.9750 0.9840 0.9840 0.9770 0.9390 0.9530 0.9530 0.9490
AWLC 1.0694 0.7646 0.5456 0.3875 0.8631 0.6272 0.4520 0.3228
AWMT 1.3956 0.9715 0.6804 0.4787 1.1071 0.7890 0.5621 0.3989

NPI-B

CPLC 0.9630 0.9750 0.9650 0.9660 0.9200 0.9410 0.9310 0.9250
CPMT 0.9900 0.9930 0.9960 0.9900 0.9680 0.9780 0.9720 0.9700
AWLC 2.2296 1.3233 0.8047 0.5070 1.5779 0.9800 0.6180 0.4025
AWMT 3.6831 2.0642 1.1798 0.6992 2.3717 1.3936 0.8430 0.5272

PB

CPLC 0.8810 0.8980 0.8920 0.8800 0.8180 0.8320 0.8320 0.8110
CPMT 0.9510 0.9560 0.9480 0.9440 0.8920 0.9090 0.9030 0.8890
AWLC 0.9109 0.6378 0.4500 0.3176 0.7517 0.5302 0.3755 0.2664
AWMT 1.1492 0.7909 0.5526 0.3890 0.9399 0.6564 0.4630 0.3264

EB

CPLC 0.8310 0.8640 0.8730 0.8730 0.7550 0.8080 0.8090 0.8010
CPMT 0.8960 0.9190 0.9200 0.9340 0.8340 0.8760 0.8790 0.8860
AWLC 0.7936 0.5934 0.4317 0.3102 0.6773 0.5020 0.3631 0.2612
AWMT 0.9565 0.7193 0.5244 0.3778 0.8137 0.6092 0.4431 0.3186

Table 6: Coverage of 100(1− 2α)% prediction interval for the variance of m future obser-
vations from Gamma(6,3), when m = n/2.

regions with a nominal coverage probability of 0.05 can be obtained by

PRL(i) =
(
q(αi+1

2
), q(αi

2
)

)
(8)

PRR(i) =
(
q(1−αi

2
), q(1−αi+1

2
)

)
(9)

where i = 1, 2, . . . , 10, αi+1 = αi − 0.10, α1 = 1 and q(z) is the zth quantile
of statistical values, so PRL(i) and PRR(i) are the prediction regions repre-
senting the left tail and right tail of the global measure of coverage accuracy,
respectively. A total of 10 prediction regions are created, each with a nomi-
nal coverage probability of 0.10 can be obtained using Equations (8) and (9)
as follows:

PR(i) = PRL(i) ∪ PRR(i) (10)

Both divisions of prediction regions are used to show the best bootstrap
method that have the closest true coverage probability to the nominal cov-
erage probability for a specific parameter of interest. Banks [6] used a chi-
squared test of goodness of fit to assess the discrepancy in coverage propor-
tion with different parameters, distributions and sample sizes, to compare his
bootstrap method to other bootstrap techniques, e.g. Efron’s method [20],
Rubin’s Bayesian bootstrap [38] and smoothed Rubin’s bootstrap [6]. He
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PR(i) PP-B NPI-B PB EB

1 0.096 0.108 0.073 0.068
2 0.106 0.097 0.071 0.070
3 0.090 0.119 0.072 0.077
4 0.094 0.091 0.076 0.077
5 0.104 0.087 0.078 0.072
6 0.102 0.112 0.072 0.065
7 0.110 0.113 0.090 0.098
8 0.103 0.092 0.100 0.106
9 0.090 0.103 0.144 0.130
10 0.105 0.078 0.224 0.237

Table 7: The coverage proportions for the mean in the 10 prediction regions, where m =
n = 50.

considered the best bootstrap method to be the one having the lowest chi-
squared (χ2) values. We here intend to use the prediction regions technique
for comparison of PP-B with other methods of bootstrap, described in Sec-
tion 2. The following processes are used to study the coverage proportions
in the 10 and 20 prediction regions for the future sample statistic based on
the bootstrap method:

1. Draw a sampleX = (x1, . . . , xn) of n observations from a specific distri-
bution to be the past sample and then draw a sample Y = (y1, . . . , ym)
of m observations from the same distribution to be the future sample.
The samples are assumed to be independent samples.

2. Compute the statistic of the Y sample, Tm.

3. Draw B bootstrap samples of size m from the X sample and compute
the statistic T ∗

m for each bootstrap sample to obtain a list of T ∗
m(j) for

j = 1, . . . , B.

4. Create the 10 and 20 prediction regions for Tm by Equations (8), (9)
and (10).

5. Determine if these prediction regions include the statistic Tm.

6. Steps 1-5 are performed in total N times in order to find the coverage
proportions.

A simulation study is conducted as previously described, employing vari-
ous bootstrap methods to estimate the coverage proportions for the 10 and 20
prediction regions. Simulations are performed N = 1000 times for the mean
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method PP-B NPI-B PB EB

i PRL(i) PRR(i) PRL(i) PRR(i) PRL(i) PRR(i) PRL(i) PRR(i)

1 0.051 0.045 0.057 0.051 0.042 0.031 0.039 0.029
2 0.056 0.050 0.047 0.050 0.040 0.031 0.038 0.032
3 0.043 0.047 0.058 0.061 0.034 0.038 0.038 0.039
4 0.049 0.045 0.042 0.049 0.039 0.037 0.038 0.039
5 0.055 0.049 0.045 0.042 0.042 0.036 0.041 0.031
6 0.051 0.051 0.053 0.059 0.034 0.038 0.030 0.035
7 0.054 0.056 0.055 0.058 0.046 0.044 0.050 0.048
8 0.057 0.046 0.033 0.059 0.050 0.05 0.051 0.055
9 0.044 0.046 0.044 0.059 0.066 0.078 0.060 0.070
10 0.052 0.053 0.028 0.050 0.113 0.111 0.119 0.118

Table 8: The coverage proportions for the mean in the 20 prediction regions, where m =
n = 50.

of m = n future observations with a sample size of 50 from Beta(3,1). The
bootstrap methods are applied to each past sample B = 1000. The coverage
proportions for the mean in the 10 and 20 prediction regions are outlined in
Tables 7 and 8, respectively. The PP-B and NPI-B methods illustrate their
superiority in achieving coverage proportions in each of the 10 and 20 predic-
tion regions close to 0.10 and 0.05, respectively. In contrast, the PB and EB
methods lead to coverage proportions far from the nominal level of 0.10 in
most of the 10 prediction regions, and far from 0.05 in most of the 20 predic-
tion regions. We use the chi-square test to assess the discrepancy between the
nominal coverage probabilities and coverage proportions in order to show the
best bootstrap method. The resulting χ2 values are presented in the first row
of Table 9. The PP-B and NPI-B methods achieve good coverage accuracy,
which is reflected by the low chi-squared value in both divisions of the pre-
diction regions. They make the discrepancies between coverage proportions
and nominal coverage probabilities lower than the other bootstrap methods.
Simulations were repeated several times and consistent results were obtained,
as illustrated in Table 9. It is obvious that the PP-B method shows its supe-
riority to the other bootstrap methods in achieving the smallest chi-squared
values. It distributes the coverage proportions more accurately in most of
the prediction region divisions than the other bootstrap methods and this is
apparent from having the lowest chi-squared values.

A variety of sample sizes are considered to determine whether the size of
the sample affects the performance of different bootstrap methods. Table 10
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Repetition
10 PR 20 PR

PP-B NPI-B PB EB PP-B NPI-B PB EB

1 4.42 15.54 216.10 247.00 7.12 30.96 220.36 250.84
2 3.90 9.14 225.62 252.12 13.44 25.16 233.08 259.00
3 5.46 9.34 236.24 253.40 10.88 27.96 241.12 261.44
4 5.48 10.72 234.06 246.24 11.52 27.64 236.24 251.92
5 4.70 11.70 246.48 262.76 11.28 32.64 258.04 265.60
6 4.72 10.42 233.60 241.06 9.80 32.16 238.00 246.12
7 5.34 15.40 227.66 254.52 12.36 32.64 230.64 261.84
8 6.96 10.24 227.04 248.82 18.24 25.56 233.08 253.96
9 6.88 15.76 239.58 238.62 12.48 36.40 243.04 240.52
10 3.18 10.76 227.48 261.34 9.04 33.52 229.96 265.16

Table 9: The chi-squared values obtained from coverage proportions for the mean, where
m = n = 50.

n measures
10 PR 20 PR

PP-B NPI-B PB EB PP-B NPI-B PB EB

30
χ2 7.36 16.30 235.78 266.18 25.32 45.60 261.28 287.96

p-value 0.600 0.061 0.000 0.000 0.150 0.001 0.000 0.000

100
χ2 7.50 7.56 303.52 314.24 15.32 18.76 306.64 321.48

p-value 0.585 0.579 0.000 0.000 0.702 0.472 0.000 0.000

200
χ2 9.66 22.28 281.50 289.32 16.56 31.80 287.28 296.24

p-value 0.379 0.008 0.000 0.000 0.620 0.033 0.000 0.000

300
χ2 5.44 6.32 244.30 250.02 13.60 14.48 250.20 252.92

p-value 0.794 0.708 0.000 0.000 0.806 0.755 0.000 0.000

Table 10: The chi-squared values for the mean and their p-values with different sample
sizes m = n.
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presents the chi-squared values obtained from the coverage proportions for
the mean using different bootstrap methods at different sample sizes m = n.
The chi-squared values for all bootstrap methods show no clear pattern as
the sample size increases. In both prediction regions, chi-squared values are
consistent across all bootstrap methods regardless of sample size. The PP-
B method performs better in both prediction region divisions at different
sample sizes than any other bootstrap method, followed by NPI-B. For both
the PB and the EB methods, the chi-squared values are large because of the
great discrepancies between the nominal coverage probabilities and coverage
proportions.

We also evaluate different bootstrap methods based on the global accu-
racy of prediction intervals for the variance. The chi-squared goodness of
fit test is used as the basis for comparing the performance of the bootstrap
method. We consider several sample sizes to investigate whether or not sam-
ple size affects the performance of different bootstrap techniques. In Table
11, we present the chi-squared values obtained from the coverage proportions
for the variance based on different bootstrap methods with different sample
sizes m = n. The results of this table are computed in the same manner as
before, to demonstrate the performance of these bootstrap techniques. The
results of χ2 values in both prediction region divisions indicate that PP-B
and NPI-B are both performing better than any other bootstrap methods.
The reason for this is that both methods are able to distribute coverage pro-
portions more accurately across 10 and 20 prediction regions. In contrast, the
χ2 values of PB and EB are high due to the great discrepancies between the
nominal coverage probabilities and coverage proportions. The PP-B method
has the lowest chi-squared value among these bootstrap methods, which indi-
cates its superiority in achieving coverage proportions close to nominal levels
in most of the prediction region divisions.

A simulation study is conducted as previously described, employing var-
ious bootstrap methods to estimate the coverage proportions for the 10 and
20 prediction regions. In this simulation, data are generated from N(0,1),
using various combinations of sample sizes where m = n/2. Simulations are
performed N = 1000 times for the variance of future observations. The boot-
strap methods are applied to each past sample with B = 1000 times. The
coverage proportions for the variance in the 10 and 20 prediction regions are
outlined in Table 12. We observe that the PP-B method consistently out-
performs other bootstrap methods across various sample sizes in both the
10 and 20 prediction regions. This superior performance is evidenced by
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n measures
10 PR 20 PR

PP-B NPI-B PB EB PP-B NPI-B PB EB

50
χ2 16.20 28.82 220.08 327.56 53.20 88.24 232.84 367.44

p-value 0.063 0.001 0.000 0.000 0.000 0.000 0.000 0.000

100
χ2 11.56 19.44 257.24 325.08 45.80 53.20 288.64 383.48

p-value 0.239 0.022 0.000 0.000 0.001 0.000 0.000 0.000

200
χ2 13.64 15.14 177.42 193.54 23.84 46.04 182.96 205.48

p-value 0.136 0.087 0.000 0.000 0.005 0.000 0.000 0.000

300
χ2 7.12 13.02 242.42 268.70 22.32 31.80 267.08 292.52

p-value 0.625 0.162 0.000 0.000 0.269 0.033 0.000 0.000

Table 11: The chi-squared values for the variance and their p-values with different sample
sizes m = n.

n measures
10 PR 20 PR

PP-B NPI-B PB EB PP-B NPI-B PB EB

100
χ2 7.58 14.98 102.96 148.56 37.52 52.52 113.68 172.24

p-value 0.577 0.091 0.000 0.000 0.007 0.000 0.000 0.000

200
χ2 5.76 9.60 88.72 129.38 22.96 31.60 101.36 154.52

p-value 0.764 0.384 0.000 0.000 0.239 0.035 0.000 0.000

300
χ2 8.14 10.7 111.88 118.08 19.24 42.04 116.40 128.44

p-value 0.520 0.297 0.000 0.000 0.442 0.002 0.000 0.000

400
χ2 5.60 9.60 73.82 83.06 18.52 44.76 81.84 95.16

p-value 0.779 0.384 0.000 0.000 0.488 0.001 0.000 0.000

Table 12: The chi-squared values for the variance and their p-values with different sample
sizes m = n/2.

lower chi-squared values, indicating smaller discrepancies between the nomi-
nal coverage probabilities and the observed coverage proportions. The NPI-B
method also shows better performance compared to PB and EB methods. In
contrast, the PB and EB methods have higher chi-squared values, reflecting
greater discrepancies between the nominal coverage probabilities and cover-
age proportions.

7. Conclusions and future works

This paper has introduced a new version of bootstrap, which we call the
parametric predictive bootstrap (PP-B). The proposed bootstrap method is
explicitly aimed at predictive inference. The confidence intervals and predic-
tion intervals are being used to assess the strength of estimation and predic-
tion inference of PP-B. We evaluate its performance via simulations, which
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show that it works well as a method for predictive inference. These results
motivate us to investigate further properties and performance of PP-B for
other inferences.

In future works, it would be of interest to evaluate this new bootstrap
method in a range of scenarios that have been used with other bootstrap
methods. Another work which is currently being done is evaluating the per-
formance of PP-B with reproducibility of tests [2, 3]. A hypothesis test is one
of the most important tools in the practical application of statistics. Statis-
tical hypothesis tests can have different results each time they are repeated.
The reproducibility probability of tests (RP) has gained increasing attention
due to its importance in evaluating the variability and the stability of test
results. Test reproducibility is more naturally viewed as a prediction prob-
lem than as an estimation problem. The explicitly predictive nature of PP-B
provides an appropriate formulation for inferring RP, as the nature of RP is
explicitly predictive as well.
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