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1. Introduction

The term reproducible refers to the ability of results gained from an exper-
iment or statistical analysis of a data set to be reproduced when the study is
replicated. Reproducibility is a key concept in scientific methods, providing
confidence in knowing exactly what has been achieved. Over recent years,
reproducibility has received increasing attention, with several scientific jour-
nals launching campaigns to raise awareness of reproducibility issues, such
as ”Journals Unite for Reproducibility” [35]. Many institutional drug agen-
cies, such as the United States Food and Drug Administration (FDA) and
the European Medicines Agency (EMA), require at least two well-controlled
clinical trials to evaluate the efficacy and safety of a new drug product before
marketing approval [34]. The primary purpose of conducting a second clini-
cal trial is to support the effectiveness of a treatment and to assess whether
the clinical results of the first trial can be replicated in the second trial.

Statistical tests serve as tools for experimental evidence to support the
effectiveness of a treatment. However, the results of statistical hypothesis
tests can vary when the tests are repeated. The concept of reproducibility
probability (RP) in the context of hypothesis testing was first addressed by
Goodman, who pointed out that there was some misunderstanding about
the meaning of the statistical p-value [27]. According to Goodman, the repli-
cation probability can illustrate that p-values may exaggerate the evidence
against the null hypothesis. In a later discussion, Senn [38] disagreed with
Goodman’s statement, emphasising the difference between the p-value and
RP. However, Senn agreed with Goodman on the importance of reproducibil-
ity of test results.

The RP of a test is the probability that the same test outcome, either
rejection of the null hypothesis or not, would be reached if the test were
repeated based on an experiment performed in the same way as the original
experiment. RP indicates the reliability of the result of a statistical hypoth-
esis test. It is particularly relevant when the test leads to the rejection of
the null hypothesis, as significant effects in clinical trials may lead to new
treatments. For example, Begley and Ellis [5] conducted a study attempting
to replicate results from 53 preclinical cancer research studies, confirming the
original findings in only 6 cases. Similarly, Bayer HealthCare in Germany
found that they could reproduce only about 25% of the results from similar
studies. Begley and Ellis emphasised the importance of improving the re-
producibility of preclinical studies and building a stronger system, but they
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did not delve deeply into the statistical techniques used in these studies.
They recommended avoiding publication bias toward only positive results
and stressed the importance of RP for the reliability of medical tests. These
concerns highlight the ongoing challenges in achieving reproducibility, which
has led to debates in the literature. The definition and interpretation of RP
appear to not be uniquely determined in classical frequentist statistics. For
instance, the paper by Simkus et al. [41] addresses variations in the defini-
tions of reproducibility by exploring different experimental contexts, such as
changes in datasets, labs, and conditions. It also emphasises the challenges
of low reproducibility due to factors like publication bias and poor statisti-
cal methods. This work advocates for framing statistical reproducibility as
a predictive problem, offering a structured approach to better quantify and
address reproducibility challenges.

Recent years have seen growing interest in RP, especially due to its rel-
evance for the practical outcomes of test results. Shao and Chow [39] pre-
sented three approaches for evaluating RP in clinical trials: the estimated
power approach, the lower confidence bound of power estimates, and the
Bayesian approach. These methods estimate the power of a future test us-
ing data from previous trials, considering the lower confidence bound as a
conservative estimate for RP, especially when the first trial result is highly
significant. They argued that a single clinical trial is sufficient if its statis-
tical result is strongly reproducible. De Martini [20] used test power as an
estimate for RP in parametric tests and proposed defining statistical tests
based on estimated RP. This power-based approach was also followed by De
Capitani and De Martini [17, 19, 18] to study RP for nonparametric tests, in-
cluding the Wilcoxon signed-rank test, sign test, Kendall test, and binomial
test. However, the power-based approach is somewhat limited because it
only focuses on cases where the null hypothesis is rejected, which is not con-
sistent with the natural interpretation of reproducibility. Additionally, this
approach doesn’t account for the variability of repeated tests with different
data, which is a key factor in understanding RP.

Miller [36] emphasised the importance of distinguishing between two sce-
narios in test repetition: (1) repetition by independent researchers working
under different conditions, and (2) repetition by the same researcher under
identical conditions. Miller was sceptical about making precise inferences
from an initial test, especially when the true effect size and test power were
unknown. In this paper, we focus on the second scenario—repetition by the
same researcher under identical conditions—because meaningful frequentist
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inferences can be derived in this scenario. We define statistical reproducibil-
ity for a test as the probability that the same test outcome would be reached
if the test were repeated in the same way as the original experiment. We
regard assessing test reproducibility as a problem to be solved by predictive
inference. It is important to emphasise that we primarily focus on the con-
clusion of the future test with respect to the null hypothesis based on the
actual data of the first test. We do not consider an exact repetition in terms
of the same value of the test statistic or the actual observations, nor do we
rely solely on the result of the first test as to whether the null hypothesis was
rejected or not. Inferring the reproducibility of the test result using actual
data seems logical because the strength of the first test’s conclusion depends
on those data. A prediction of the test result in a future test is more naturally
reflected in the final conclusion regarding the rejection or non-rejection of the
null hypothesis. We should note that we do not require the sample sizes to
be the same for actual and future tests, but this assumption is natural for
reproducibility.

This paper employs the recently developed parametric predictive boot-
strap (PP-B) method to assess the reproducibility of parametric tests and
compares it with the nonparametric predictive bootstrap (NPI-B). Both
methods are inherently predictive, considering future observations to form a
natural basis for assessing reproducibility (RP), which is framed as a problem
of prediction rather than estimation. The terms PP-B-RP and NPI-B-RP
refer to the reproducibility values derived from the PP-B and NPI-B meth-
ods, respectively, and are discussed in Section 3. Before introducing these
methods, Section 2 provides an overview of a predictive approach to statis-
tical reproducibility, first introduced by Coolen and Binhimd [12] within the
framework of nonparametric predictive inference (NPI). This section high-
lights the advantages of viewing reproducibility as a predictive problem rather
than an estimation problem and discusses key challenges associated with tra-
ditional approaches to reproducibility assessment. The paper then explores
the use of PP-B for parametric tests, comparing it with NPI-B, which also
employs predictive bootstrap techniques, in Sections 4, 5, and 6. Section
7 compares these two methods to the traditional NPI-RP method in the
context of the likelihood ratio test. The paper concludes in Section 8.
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2. Statistical Reproducibility: A New Perspective and Challenges

A new perspective on test reproducibility was introduced by Coolen and
Binhimd [12] within the framework of nonparametric predictive inference
(NPI), a frequentist statistical method. They applied the NPI approach to
assess reproducibility probability (NPI-RP) for a variety of nonparametric
tests, including the sign test, Wilcoxon’s signed-rank test, and the two-sample
rank-sum test. This method uses the test result for a predicted future sam-
ple that is the same size as the original sample, which reflects the essence
of reproducibility. The NPI approach is explicitly predictive, focusing on
future observations, and makes minimal assumptions about the data, which
leads to imprecision that can be quantified by the use of lower and upper
probabilities. The NPI-RP framework views reproducibility from the per-
spective of prediction rather than estimation, which sets it apart from the
more traditional power-based approach to reproducibility. This framework
offers reproducibility probabilities for both the rejection and non-rejection of
the null hypothesis, which is significant since much of the focus is typically
on tests that lead to rejection, especially in fields like clinical trials where
significant effects often lead to new treatments. However, we believe that
reproducibility should also be considered for tests that do not reject the null
hypothesis in order to provide a more complete picture of test reliability. The
NPI approach has been extended to other nonparametric tests, including the
quantile test and the precedence test [11].

The core idea of the NPI-RP approach is to consider all possible orderings
of future observations among the data observations. It takes into account the
different ways that future data could be arranged among the original data,
with each arrangement having an equal chance of occurring. These future
observations are grouped into intervals, and while we don’t know the exact
values of the future data for each possible ordering, we can predict how many
observations will fall within each interval. Importantly, there are no further
assumptions placed on the future data—each data point can take any value
within its designated interval. By examining all possible arrangements of
future data, the NPI-RP approach allows us to compare the conclusions of
tests applied to these future datasets with the conclusion of the original test.
The proportion of future tests that lead to the same conclusion as the original
test is then used to determine the reproducibility probability.

However, the NPI-RP approach becomes computationally expensive for
large datasets. For example, with just a sample size of 15, the number
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of possible future arrangements of the data can become prohibitively large,
requiring the calculation of an enormous number of potential orderings to de-
rive reproducibility probabilities. To address this issue, Coolen and Marques
[14] proposed a sampling methodology. Instead of calculating every possible
ordering, they suggest randomly sampling future data arrangements. This
method satisfies the conditions of simple random sampling (SRS), where each
future arrangement has an equal probability of being selected, and each se-
lection is independent of the others. By using a sufficiently large number
of samples, the differences between sampling with and without replacement
become negligible, making this approach computationally feasible. The sam-
pling process involves selecting a vector of integers that corresponds to the
ranks of the ordered data observations. The future data is then simulated
based on these sampled ranks, which allows the reproducibility probability
to be estimated without the need to examine all possible arrangements.

Another approach to improving computational efficiency was proposed by
Coolen and Binhimd [13], who introduced an NPI-based bootstrap method.
This method estimates reproducibility probability by generating future data
samples through resampling, thereby simplifying the calculation of repro-
ducibility values for various nonparametric tests. Further details on this
bootstrap method will be discussed in Section 3.3.

3. Bootstrap methods

3.1. Classical bootstrap methods

The bootstrap method, introduced by Bradley Efron in 1977 and detailed
in a 1979 Annals of Statistics paper [8, 23], uses resampling techniques to
quantify uncertainty in sample estimates. Known for its straightforward im-
plementation and effectiveness, it provides researchers with a valuable alter-
native to complex derivations when no analytical solution is available [25]. By
leveraging computational power, the bootstrap method assesses the statisti-
cal accuracy of complex procedures and is widely used for hypothesis testing
due to its simplicity. Chernick [7] discusses applications of the method in
areas such as hypothesis testing, confidence intervals, regression, and time
series analysis. Various adaptations, including double, smooth, and Bayesian
versions, have also emerged [4, 16, 40]. These methods apply to diverse data
types, such as real [29], right-censored [1], and ordinal data [6].

The standard bootstrap method, introduced by Efron [25], is a nonpara-
metric approach that resamples from the original data set to quantify un-
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certainty in sample estimates. Efron’s Bootstrap (EB) involves repeatedly
resampling with replacement from the original observations, giving each ob-
servation an equal chance of being selected during the resampling process
[32]. With minimal mathematical assumptions, the EB method is easy to
implement using statistical software, making it highly popular in applied
statistics. Importantly, EB does not assume any specific data distribution
[28, 37]. In contrast, parametric bootstrap (PB) assumes that the data fol-
low a known distribution with unknown parameters. This method involves
drawing samples from the assumed distribution using estimated parameters
rather than resampling from the original data. The main idea of the PB
method is to estimate the parameters of the presumed distribution based on
the observed data, then generate multiple PB samples from this distribution
using the estimated parameters [28, 33]. While this approach can include
observations not present in the original sample, it requires knowledge of the
data distribution; if the assumed model is incorrect, results may be mislead-
ing. Unlike PB, the EB method makes no distributional assumptions and
includes all observations from the original sample, with ties in the data being
preserved. Thus, PB is more suitable when there is prior knowledge of the
population’s distribution.

The rest of the section describes two bootstrap methods: parametric pre-
dictive bootstrap (PP-B) [2] and nonparametric predictive inference boot-
strap (NPI-B) [13]. Both focus on predictive inference, but NPI-B does not
assume a specific distribution for the data, whereas PP-B requires distribu-
tional assumptions.

3.2. Parametric predictive bootstrap (PP-B)

This section provides a brief overview of the basic concept of the PP-B
method for real-valued data. For details about the method and its imple-
mentation, we refer the reader to Aldawsari [2]. The PP-B method involves
sampling a single observation from an assumed distribution with estimated
parameters based on an original data set of size n. This observation is then
added to the data, and the process is repeated with n + 1 observations. In
order to sample the second observation, we re-estimate the distribution pa-
rameters with the new observation added to the data. Continuing this process
to sample m further values in the same way, each observation adding to the
data and re-estimating the parameters before sampling the next one. The
PP-B includes only the m sampled observations, so it excludes the n original
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data observations. The PP-B algorithm for one-dimensional real-valued data
is as follows:

1. We have a random sample consisting of n observations x1, x2, . . . , xn

from a known distribution F (x; θ), with parameter θ.

2. The parameter θ of the assumed distribution is estimated by θ̂ from
the available data, using maximum likelihood estimation (MLE) or any
other estimation method.

3. Sample one future observation x∗
1 randomly from the fitted distribution

F (x; θ̂).

4. Add x∗
1 to the data giving data set (x1, x2, . . . , xn, x

∗
1); increase n to

n+ 1.

5. Repeat Steps 2-4, now with n + 1 data, to obtain a further future
value. This process continues until m observations have been sam-
pled in total, with each one added to the data and the parameters
re-estimated before sampling the next observation. These sampled ob-
servations x∗

1, x
∗
2, . . . , x

∗
m form a PP-B sample of size m.

6. Repeat Steps 2-5 to obtain B of PP-B samples of size m.

3.3. Nonparametric predictive inference bootstrap (NPI-B)

Coolen and Binhimd [13] presented a nonparametric predictive bootstrap
technique rooted in a frequentist approach known as NPI. The NPI (nonpara-
metric predictive inference) method has evolved over the last two decades
to address various applications and statistical challenges involving different
types of data. NPI is a statistical technique based on Hill’s assumption A(n)

that makes inferences on a future observation based on past data observations
[9, 10]. Hill [30] introduced the assumption A(n) for prediction of one future
observation Xn+1 with no prior knowledge about the underlying distribution.
Suppose that x1, . . . , xn are the observed data corresponding to real-valued
and exchangeable random quantities X1, . . . , Xn. Let x(1) < x(2) < . . . < x(n)

be the ordered observations and define x(0) = −∞ and x(n+1) = +∞ for ease
of notation. The assumption A(n) states that the future observation Xn+1 is
equally likely to fall in any open interval (x(i−1), x(i)), i = 1, . . . , n+1. These
intervals were created by the previous n observations between consecutive
order statistics of the given sample.

The assumption A(n) itself is not sufficient to derive precise probabilities
for any event of interest, but it can be used to derive bounds (lower and
upper) of probabilities, which are called imprecise probabilities. The NPI
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approach is introduced by Coolen and Augustin [3, 15] which uses lower
and upper probabilities for events of interest considering future observations
based on Hill’s assumption. The lower probability is the maximum lower
bound for the precise probability for the event and denoted by P (·). The
upper probability is the minimum upper bound for the event and denoted
by P (·).

Sequential application of the assumptions A(n), . . . , A(n+m−1) can be used
to generalise NPI for m ≥ 1 future real-valued observations based on n real
data observations. These assumptions imply that all

(
n+m
n

)
possible different

orderings of the m future observations among the n data observations are
equally likely to appear, with no further assumptions made on where future
observations will be within any of these intervals (x(i−1), x(i)) [14].

Coolen and Binhimd [13] introduced a predictive bootstrap method based
on NPI, called nonparametric predictive inference bootstrap (NPI-B). The
NPI-B method involves creating n+1 intervals between the n ordered obser-
vations of the original data and then selecting one of these intervals randomly.
The first observation is drawn uniformly from the selected interval, which is
then added to the original data, resulting in n+1 observations. This creates
a partition consisting of n + 2 intervals, from which the second observation
is sampled. The process continues until m observations are drawn, where m
is predefined. These m observations constitute one NPI-B sample (which,
of course, does not include the n original data observations). In NPI-B, all
possible orderings of the new observations among the past observations are
equally likely to occur. NPI-B’s sampling method, which involves drawing
each observation from the intervals in the partition created by combining
the n original observations together with all previously drawn observations
belonging to the same bootstrap sample, leads to more variation in bootstrap
samples than Efron and parametric bootstrap samples.

It is worth mentioning that one observation is sampled uniformly from
each chosen interval when applying NPI-B. However, it cannot be sam-
pled uniformly from an open-ended interval, e.g., data defined on the whole
real line lead to the first and last intervals in the form of (−∞, x(1)) and
(x(n),+∞). Coolen and Binhimd [13] suggest using the tail of a Normal dis-
tribution for real-valued data and the tail of an Exponential distribution for
non-negative real-valued data. It is important to note that the conditional
tail distribution is only used to sample an observation from open-ended in-
tervals; otherwise, the observation is sampled uniformly from finite intervals.
The NPI-B algorithm for real-valued data on finite and infinite intervals is
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as follows:

1. Create n + 1 intervals between the n ordered observations (x(0), x(1)),
(x(1), x(2)), . . . , (x(n−1), x(n)), (x(n), x(n+1)), where x(0) and x(n+1) are the
end points of the possible data range.

2. Select one of the n+1 intervals randomly, each with equal probability,
and sample one future observation uniformly from this selected interval.

(a) We sample the future value uniformly for any finite interval.
(b) For the case with data on the whole real line (−∞,+∞): If the

chosen interval is (−∞, x(1)) or (x(n),+∞), we sample the future

value from the tail of Normal distribution with mean µ =
x(1)+x(n)

2

and standard deviation σ =
x(n)−µ

Φ−1( n
n+1

)
, where Φ−1 indicates the in-

verse function of a standard normal cumulative distribution func-
tion.

(c) For the case with data on the (0,+∞): If the chosen interval is
(x(n),+∞), we sample the future value from the tail of Exponen-

tial distribution with rate λ = ln(n+1)
x(n)

.

3. Add this sampled observation x∗
1 to the data; increase n to n+ 1.

4. Repeat Steps 1-3, now with n+1 data, to obtain a further future value.
This is continued to sample m future observations from the intervals
in the partition created by combining the n original observations with
all previously drawn observations that belong to the bootstrap sample.
These m drawn observations (x∗

1, x
∗
2, . . . , x

∗
m) form one NPI-B sample

of size m.

5. Repeat Steps 2-4 to obtain B of NPI-B samples of size m.

3.4. Classical vs predictive bootstrap methods

The method for sampling observations in NPI-B, where each observation
is drawn from the intervals created by combining the n original observa-
tions with all previously drawn observations belonging to the same bootstrap
sample, results in more variation in bootstrap samples than in EB and PB.
PP-B’s sampling method, which adds the sampled observations to the data
set and estimates the parameter before sampling the next observation, also
causes more variation in the bootstrap samples than the EB and PB sam-
ples. All observations are sampled based on the original data only in the
EB and PB methods. The EB method relies on a resampling process with
replacements from the original data set, where each value of the original data
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set has the same probability of being selected by random during the resam-
pling process [24]. In the PB method, the data are assumed to come from
a known distribution with unknown parameters. The parameters of the as-
sumed distribution are estimated using the available data, then observations
are sampled from the assumed distribution with the estimated parameters
to obtain PB sample [28]. Bootstrap samples in PP-B, NPI-B, and PB do
not restrict themselves to already observed values, whereas in EB samples,
all observations are included in the original sample.

4. Bootstrap-RP for the one-sample t-test

The one-sample t-test is a statistical test used to determine if the mean
of a population differs from a specified value. Given a random sample
X1, X2, . . . , Xn ∼ N(µ, σ2) from a normal population with unknown vari-
ance σ2, the hypotheses of interest are H0 : µ = µ0 against Ha : µ ̸= µ0,
µ > µ0, or µ < µ0, depending on the test direction [26]. If the sample is
normally distributed, the test statistic under the null hypothesis is:

T =
x̄− µ0

s/
√
n

∼ tn−1

where tn−1 is the t-distribution with n − 1 degrees of freedom, and x̄ are
s2 are the sample mean and variance. The null hypothesis H0 is rejected
at significance level α in favour of the two-sided alternative Ha : µ ̸= µ0 if
|T | > t

(1−α/2)
n−1 , where t

(1−α/2)
n−1 is the (1− α/2) percentile of the t-distribution

with n−1 degrees of freedom. For a one-sided upper-tailed test Ha : µ > µ0,
we reject H0 if T > t

(1−α)
n−1 ; for a one-sided lower-tailed test Ha : µ < µ0, we

reject H0 if T < t
(α)
n−1.

This section studies the reproducibility probability (RP) of the one-sample
t-test using the bootstrap method. We apply both the PP-B and NPI-B
methods to assess RP and compare their performance. Since test repro-
ducibility is a predictive inference problem, the explicitly predictive nature
of these methods provides an appropriate framework for inferring RP. Sim-
ulation studies are conducted to compare the two bootstrap methods for
evaluating the RP of the one-sample t-test, as follows:

1. Apply the one-sample t-test to the original sample X of size n to obtain
the value of the test statistic, then decide whether or not the null
hypothesis is rejected based on this test value.
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2. Draw a bootstrap sample of size n from the sample X and apply the
same test to obtain the decision of this test.

3. Perform Step 2 in total B times and record the test result each time
whether the null hypothesis is rejected or not.

4. The estimate of the RP is the ratio of B times in which the original
sample and the bootstrap samples have the same conclusion.

5. Perform all these steps N times to obtain RP values for both rejection
and non-rejection cases of the null hypothesis.

The one sided one-sample t-test is considered, H0 : µ = µ0 versus Ha :
µ > µ0, with level of significance α = 0.10. We simulate N = 50 samples of
size n = 5 under both H0 and Ha. The data are generated from the Normal
distribution with a mean of 0 under H0 and a mean of 0.5 under Ha, both
with a standard deviation of 1. All values of RP were determined based on
the PP-B and NPI-B methods as described above using B = 1000 bootstrap
samples. For each N = 50 sample, the observed test statistic and Bootstrap-
RP were calculated. The same data sets for each sample are used to compute
the RP value of the one-sample t-test based on the two bootstrap methods.
It is important to emphasise that the bootstrap samples for each method
have the same size as the original sample. Figure 1 presents the results of
RP values using the two bootstrap methods under H0 and Ha for samples of
size n = 5.

We first examine the relationship between Bootstrap-RP and the test
statistic for the one-sample t-test in the simulations. The values of RP for
the two methods tend to increase when the test statistic moves away from
the test thresholds, as expected, regardless of the decision on H0. The worst-
case scenario gives an RP of about 0.5 when the original test statistic is
close to the test threshold. Without further information, one would expect
a repeat experiment to produce a second test statistic whose value is equally
likely to be larger or smaller than the original test statistic, and therefore,
the same conclusion would be reached with a probability of 0.5. A repetition
of an experiment that had an original test statistic far away from the test
threshold is likely to produce a second test statistic that is also far away from
the test threshold. Therefore, the RP values tend to increase when the test
statistic moves away from the test thresholds. Simulation studies show that
RP values based on PP-B have less variability than NPI-B because of the
parametric model assumed for PP-B. There is a clear fluctuation observed
in the values of RP based on NPI-B because this bootstrap method does
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Figure 1: Simulations underH0 andHa: values of PP-B-RP and NPI-B-RP for one-sample
t-test, where n = 5.
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not assume a parametric model, and the sample size is quite small. The
fluctuation of RP values based on NPI-B is more visible when simulations
are conducted under Ha due to more cases of test statistics close to the test
threshold.

We also compare PP-B-RP and NPI-B-RP in both cases when the null
hypothesis is rejected and not rejected. It is obvious that the PP-B-RP tends
to be higher in cases of rejection (red cases in the figures) than in cases of
non-rejection (blue cases) when the test statistic is close to the test threshold.
Conversely, NPI-B-RP tends to be lower in the case of rejection than in non-
rejection when the test statistic is close to the test threshold. The RP is
computed by generating B bootstrap samples from the original sample and
then applying the one-sample t-test for each bootstrap sample. Thereafter,
the ratio of the B times that have the same decision as the original sample is
the RP value. In general, PP-B has a smaller variance compared to NPI-B
due to the assumption of a parametric model in PP-B. In the case of non-
rejection, the PP-B-RP tends to be lower due to the computed test statistic
from PP-B samples tending to lie in the rejection region. This occurs because
PP-B samples lead to larger test statistic values than NPI-B samples due to a
smaller variance value in the denominator. Hence, we obtain more cases that
reject H0 due to a test statistic value being larger than the test threshold.
As a result, the PP-B-RP value tends to be lower in the case of non-rejection
compared to NPI-B-RP. In contrast, PP-B-RP tends to be higher in the case
of rejection than NPI-B-RP. It is the same reason in the case of non-rejection,
where we obtain more cases of the same decision of an original sample that
does reject H0.

Additionally, we analyse the impact of increasing sample size on the pat-
terns of Bootstrap-RP values. The results of RP values based on the two
bootstrap methods for samples of size n = 15 under H0 and Ha are pre-
sented in Figure 2. As the sample size increases, the Bootstrap-RP value
becomes closer to 0.5 when the observed test statistics are close to the test
threshold in both cases of rejection and non-rejection. Also, the fluctuation
in NPI-B-RP values is decreased when the sample size increases. The power
of the test is positively correlated with sample size, which means a larger
sample size gives greater power. It is because a larger sample size narrows
the distribution of the test statistic, so the false null hypothesis can be dis-
tinguished more clearly from the true null hypothesis. For simulations under
Ha, increasing sample size leads to more cases rejecting H0, which simply
results from the test becoming more powerful with a larger sample size. The
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Figure 2: Simulations underH0 andHa: values of PP-B-RP and NPI-B-RP for one-sample
t-test, where n = 15.
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(a) Under H0

Sample Test statistic n Test threshold H0 PP-B-RP NPI-B-RP

1 1.588

5
1.533

R 0.613 0.528
2 1.551 R 0.589 0.441
3 1.221 NR 0.497 0.648
4 1.153 NR 0.525 0.645

1 1.382

15 1.345

R 0.536 0.508
2 1.377 R 0.533 0.483
3 1.333 NR 0.481 0.494
4 1.226 NR 0.478 0.546

(b) Under Ha

Sample Test statistic n Test threshold H0 PP-B-RP NPI-B-RP

1 1.705

5 1.533

R 0.656 0.543
2 1.689 R 0.675 0.528
3 1.516 NR 0.442 0.563
4 1.449 NR 0.453 0.553

1 1.435

15 1.345

R 0.555 0.490
2 1.378 R 0.541 0.402
3 1.176 NR 0.529 0.567
4 1.126 NR 0.521 0.553

Table 1: Simulation under H0 and Ha: values of RP of one-sample t-test using PP-B and
NPI-B methods with four observed samples of sizes n = 5 and n = 15.

pattern of RP values based on the two bootstrap methods changes when
simulations are performed under the alternative hypothesis, resulting from
changes in the observed test statistics with respect to the test threshold. Ta-
ble 1 presents four samples close to the test threshold that reject and do not
reject H0 with sample sizes n = 5 and n = 15 for simulations under both the
null and alternative hypotheses. This table includes the observed test statis-
tics, test thresholds, PP-B-RP and NPI-B-RP. In the case of rejection, the
PP-B-RP values tend to be higher than the NPI-B-RP values. Conversely,
the values of PP-B-RP seem to be lower compared to the NPI-B-RP values
in non-rejection cases. However, increasing n tends to reduce the differences
between PP-B-RP and NPI-B-RP.
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5. Bootstrap-RP for the two-sample t-test and Welch’s t-test

The two-sample t-test is commonly used to compare the means of two
populations and is one of the most widely used statistical hypothesis tests.
Known as the pooled variance t-test, it is applied when both samples meet the
assumptions of normality, equal variances, and independence, as it is a para-
metric test [44]. Given two independent random samples, X1, X2, . . . , Xn ∼
N(µ1, σ

2) and Y1, Y2, . . . , Ym ∼ N(µ2, σ
2), with unknown common variance

σ2, the hypotheses of interest are: H0 : µ1 = µ2 against Ha : µ1 ̸= µ2,
µ1 > µ2, or µ1 < µ2, depending on the test direction.

Under the assumption of equal variances and normality, the test statistic
is:

T =
x̄− ȳ√

s2p
(
1
n
+ 1

m

) ∼ tn+m−2

where tn+m−2 is the Student’s t-distribution with n+m−2 degrees of freedom,
and x̄, ȳ, s21, s

2
2 are the means and variances of the two samples. The pooled

variance is defined as:

s2p =
(n− 1)s21 + (m− 1)s22

n+m− 2

For a one-sided upper tail test H0 : µ1 = µ2 versus Ha : µ1 > µ2, we reject H0

if T > t
(1−α)
n+m−2, where t

(1−α)
n+m−2 is the (1−α)-th percentile of the t-distribution

with n+m−2 degrees of freedom. For a one-sided lower tail testHa : µ1 < µ2,
we reject H0 if T < t

(α)
n+m−2. For the two-sided test Ha : µ1 ̸= µ2, we reject

H0 if |T | > t
(1−α/2)
n+m−2 .

Welch introduced a version of the t-test for situations where the variances
of two samples are significantly different [42]. Welch’s t-test (also known
as the unequal variance t-test) is suitable for comparing the means of two
populations with unequal variances, assuming the samples are normally dis-
tributed. Let X1, X2, . . . , Xn ∼ N(µ1, σ

2
1) and Y1, Y2, . . . , Ym ∼ N(µ2, σ

2
2) be

two independent samples from normal populations with unequal variances.
The test statistic is:

T =
x̄− ȳ√
s21
n
+

s22
m

∼ tv

where the degrees of freedom v are approximated by:

v =
(s21/n+ s22/m)2(

s21
n

)2

/(n− 1) +
(

s22
m

)2

/(m− 1)
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Unlike the Student’s t-test, which assumes equal variances and estimates a
pooled variance, Welch’s t-test accounts for unequal variances. The degrees
of freedom for Welch’s test are typically smaller than those for the Student’s
t-test, making it more conservative [22].

The null hypothesis H0 is rejected in favour of the one-sided upper tail
test Ha : µ1 > µ2 at significance level α if T > t

(1−α)
v , where t

(1−α)
v is the

(1−α)-th percentile of the Student’s t-distribution with v degrees of freedom.

For the one-sided lower tail test Ha : µ1 < µ2, reject H0 if T < t
(α)
v . For the

two-sided test Ha : µ1 ̸= µ2, reject H0 if |T | > t
(1−α/2)
v .

In this section, we examine the reproducibility (RP) of the two-sample t-
test under the assumption of equal variances for both samples and compare
it to Welch’s t-test when the variances differ. While Student’s t-test and
Welch’s t-test yield the same t-value, degrees of freedom, and p-value when
sample sizes and variances are equal [21], differences in variances and/or
sample sizes lead to variations in these metrics. The key distinction that
led to the development of Welch’s t-test is its accommodation of unequal
variances and sample sizes. In such cases, the t-value remains the same,
but the degrees of freedom and p-value differ. While Welch’s t-test can be
extended to more than two samples [43], we focus on the two-sample case
with equal sample sizes. To evaluate the performance of the two bootstrap
methods for RP in the two-sample t-test, we conduct simulation studies as
follows:

1. Apply the t-test on the two original samples with equal sample sizes n,
X and Y to obtain the value of the test statistic, then draw a conclusion
about the null hypothesis for this test, whether it is rejected or not.

2. Draw a bootstrap sample of size n from sample X and a bootstrap
sample of size n from sample Y . Apply the two-sample t-test to these
two bootstrapped samples to obtain the test conclusion.

3. Perform Step 2 in total B times and record the test outcome each time
whether or not the null hypothesis is rejected.

4. The ratio of B times that the two original samples and these two boot-
strap samples have the same conclusion is the estimate of the RP.

5. Perform all these steps N times to obtain RP values for both rejection
and non-rejection cases of the null hypothesis.

We first investigate the RP for the two-sample t-test when the variances
of the two normally distributed populations are assumed to be equal. The

18



0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2
test statistic

P
P

−
B

−
R

P

Hypothesis Not rejected rejected

(a) PP-B-RP, n = 5

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2 3
test statistic

P
P

−
B

−
R

P

Hypothesis Not rejected rejected

(b) PP-B-RP, n = 20

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2
test statistic

N
P

I−
B

−
R

P

Hypothesis Not rejected rejected

(c) NPI-B-RP, n = 5

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2 3
test statistic

N
P

I−
B

−
R

P

Hypothesis Not rejected rejected

(d) NPI-B-RP, n = 20

Figure 3: Simulations under H0: values of PP-B-RP and NPI-B-RP for two-sample t-test,
where n = 5, 20.
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two-sided two-sample t-test is considered, H0 : µ1 = µ2 versus Ha : µ1 ̸= µ2,
and level of significance α = 0.10. We simulate two samples of size n = 5
under H0 in total N = 50 times. The data are generated for the two original
samples from the same Normal distribution with mean 2 and standard devi-
ation 1. The RP value for the two-sample t-test is computed based on the
two bootstrap methods as demonstrated above using B = 1000 bootstrap
samples. The observed test statistic and Bootstrap-RP were determined for
each of N = 50 samples. Also, we study the impact of increasing sample size
to n = 20 on Bootstrap-RP values for the two-sample t-test. It is important
to emphasise that the same data sets are used to compute the RP values for
the two-sample t-test based on PP-B and NPI-B. The results of RP values
based on the PP-B and NPI-B methods with samples of size n = 5, 20 under
H0 are presented in Figure 3.

The values of RP for both methods tend to increase as the test statistic
moves away from the test thresholds, regardless of the decision on H0. It
is expected and rational, as discussed in Section 4. Increasing the size of
samples leads to PP-B-RP and NPI-B-RP becoming close to 0.5 in both
cases of rejection and non-rejection when the observed test statistics are
close to the test thresholds. Also, the values of NPI-B-RP fluctuate narrowly
as the sample size increases. These results happen with increasing the size of
samples due to the decrease in the variability of the bootstrap samples and
the increase in the power of the test. Simulation studies show that values
of PP-B-RP have less variability than NPI-B-RP values, mainly when the
sample size is small, due to the parametric model assumed for PP-B.

There is a tendency for PP-B-RP to be higher in cases of rejection than in
non-rejection, whereas NPI-B-RP seems to be lower in cases of rejection than
non-rejection. The reason for this is that the sample variance is included in
the denominator of the test statistic for the two-sample t-test. The variance
of PP-B is generally less than NPI-B due to the assumption of a parametric
model in PP-B. For the upper tail test, PP-B samples lead to larger test
statistic values than NPI-B samples due to a smaller variance value in the
denominator. Therefore, the PP-B-RP tends to be lower in non-rejection
cases due to the computed test statistic from PP-B samples tending to lie
in the rejection region. Conversely, PP-B-RP tends to be higher in the case
of rejection than NPI-B-RP because we obtain more cases that reject H0. It
is similar to what was discussed in Section 4 for the upper tail one-sample
t-test. We can observe a similar impact on patterns of RP values based on
PP-B and NPI-B for the lower tail test. It is important to note that the lower
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Figure 4: Simulations under H0: values of PP-B-RP and NPI-B-RP for Welch’s t-test,
where n = 5, 20.

tail two-sample t-test has negative values, which implies that PP-B samples
lead to smaller test statistic values compared to NPI-B samples. Hence, we
obtain a similar result to the upper tail test for PP-B-RP and NPI-B-RP.

Now, we consider the RP of the two-sample t-test when both samples are
normally distributed with unequal variances. The procedure for determining
the RP of Welch’s t-test follows the same steps as for the two-sample t-test,
except that we draw two original samples from Normal distributions with
different standard deviations. Two samples of size n are simulated from
two Normal distributions with different standard deviations, σ1 = 1 and
σ2 = 2, but both with mean 2. A critical value of the test statistic for
Welch’s t-test is computed using the degrees of freedom which are random
variables dependent on the size and variance of the sample. Therefore, we
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use the p-value for better visualization of figures rather than the critical value
because each simulated sample has a different critical value even though all
samples have the same size. The p-values and critical values are two different
approaches that lead to the same result regarding whether the null hypothesis
is rejected or not. Figure 4 shows the results of RP values for Welch’s t-test
using the two bootstrap methods with samples of size n = 5, 20 under H0.

The values of RP for both methods tend to increase with increasing dis-
tance between the observed p-value and the test threshold, whatever the H0

decision. We observe similar results as for the two samples with the Student’s
t-test presented before in this section. The parametric model assumed for
PP-B results in lower variability of PP-B-RP values than NPI-B-RP values,
especially when the sample size is small. The PP-B-RP seems to be greater
in rejection cases than in non-rejection. In contrast, NPI-B-RP tends to
be lower in the case of rejection compared to non-rejection. As the sample
size increases, PP-B-RP and NPI-B-RP become closer to 0.5 in both cases
of rejection and non-rejection when the observed p-value is close to the test
threshold. The fluctuation in NPI-B-RP values is reduced with the increasing
size of samples.

6. Bootstrap-RP for the F-test

The F-test for equality of variances tests the null hypothesis that the vari-
ances of two normal samples are equal. It is based on the ratio of the two sam-
ple variances, hence known as the F-ratio test. The F-test assumes normal-
ity for both samples and when this assumption is in doubt, alternative tests
for variance comparison should be used [31]. Like the two-sample t-test and
Welch’s t-test, the F-test requires normality. Let X1, X2, . . . , Xn ∼ N(µ1, σ

2
1)

and Y1, Y2, . . . , Ym ∼ N(µ2, σ
2
2) be two independent random samples from

normal populations. The hypotheses are:

H0 : σ
2
1 = σ2

2 versus Ha : σ
2
1 ̸= σ2

2, Ha : σ
2
1 > σ2

2, Ha : σ
2
1 < σ2

2

The test statistic is F = s21/s
2
2 ∼ Fn−1,m−1, where Fn−1,m−1 is the F-

distribution with n− 1 and m− 1 degrees of freedom. For a two-sided test,
reject H0 at significance level α if F < F

(α/2)
n−1,m−1 or F > F

(1−α/2)
n−1,m−1. For one-

sided tests, reject H0 if F > F
(1−α)
n−1,m−1 for Ha : σ

2
1 > σ2

2, and if F < F
(α)
n−1,m−1

for Ha : σ
2
1 < σ2

2.
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This section studies the RP of the F-test using two bootstrap methods.
The two-sample t-test requires random sampling from two normal popula-
tions with equal variances, while Welch’s t-test applies to unequal variances.
The F-test assesses the assumption of equal variances between two normal
populations, guiding the choice between a two-sample t-test and Welch’s t-
test. A normal data distribution is necessary for these parametric tests. The
two-sided F-test is considered, H0 : σ2

1 = σ2
2 versus Ha : σ2

1 ̸= σ2
2, and the

level of significance is α = 0.10. Simulation studies are conducted to evaluate
the performance of the two bootstrap methods for RP of the F-test by fol-
lowing the same steps as for the two-sample t-test in Section 5. We simulate
two samples of size n = 5 under both H0 and Ha a total of N = 50 times.
Under H0, we generate data for the two original samples from the same nor-
mal distribution with a mean of 0 and a standard deviation of 1. Under Ha,
we generate data from the two normal distributions with different standard
deviations, σ1 = 1 and σ2 = 1.5, but both with the same mean of 0. For
each of the N = 50 samples, the observed test statistic and Bootstrap-RP
were determined. It is important to note that the same data sets are used to
compute the RP values for the F-test based on the two bootstrap methods,
each with B = 1000 bootstrap samples. Additionally, the bootstrap samples
for each method are the same size as the original sample. Figure 5 shows the
results of RP values using PP-B and NPI-B methods under H0 and Ha for
samples of size n = 5.

The Bootstrap-RP values tend to be higher at the lower test threshold
for both rejection and non-rejection cases, as the impact of the F-test fol-
lows an F-distribution with small degrees of freedom. The simulations were
performed by sampling under the alternative hypothesis due to more cases
of test statistics being close to the lower test threshold. This helps us ob-
serve how the bootstrap methods perform for the RP of the F-test as test
statistics become closer to the lower test threshold. The PP-B-RP becomes
close to 0.5 in both cases of rejection and non-rejection when the observed
test statistics are very close to the lower test threshold. The NPI-B-RP is
substantially below 0.5 in some cases of non-rejection when test statistics are
very close to the lower test threshold. The parametric model assumed for
PP-B reduces the variability of RP values, as shown in simulation studies.
The RP value based on NPI-B fluctuates clearly because a parametric model
is not assumed in this bootstrap method.

A larger sample size is considered to study the effect of increased sample
size on Bootstrap-RP values for the F-ratio test. Figure 6 presents the results
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Figure 5: Simulations under H0 and Ha: values of PP-B-RP and NPI-B-RP for F-test,
where n = 5.
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Figure 6: Simulations under H0 and Ha: values of PP-B-RP and NPI-B-RP for F-test,
where n = 30.
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of RP values using the PP-B and NPI-B methods for samples of size n = 30
under H0 and Ha. As the size of the samples increases, the pattern of RP
values changes under both the null and alternative hypotheses. We observe
a change in the pattern of the RP values obtained through simulations under
H0 as the impact of the F-test follows F-distribution with larger degrees
of freedom. Increasing the size of the samples leads to an increase in the
power of the test, so we obtain more cases rejecting H0 when simulations
are performed by sampling under the alternative hypothesis. Simulations
under Ha show changes in the pattern of the RP values due to changes in the
observed test statistics in relation to the test threshold, as well as the effects
of the F-test following the F-distribution with larger degrees of freedom.
It is noteworthy that the variability of NPI-B-RP values is not reduced by
increasing the size of the samples. Figure 7 presents additional results for the
NPI-B-RP of the F-test, indicating substantial fluctuations even as sample
sizes increase (n = 40, 60, 80, 120, 140). The NPI-B method exhibits greater
variability than the PP-B method, as it does not rely on a parametric model.
As a result, NPI-B-RP fluctuations for the F-test do not decrease with larger
sample sizes, as the test statistic is merely the ratio of two sample variances.

7. NPI-RP and Bootstrap-RP for the likelihood ratio test

In this section, we study the RP of the likelihood ratio tests using the
bootstrap method to compare it with the NPI-RP. The reproducibility prob-
ability of a test based on the NPI approach (NPI-RP) considers the test
result for a predicted future sample of the same size as the original sample.
This method is described in detail in Section 2. The exact NPI lower and
upper reproducibility can only be computed for small data sets. Coolen and
Marques [14] propose an alternative computational method to approximate
NPI-RP for larger sample sizes via sampling of future orderings instead of
considering all different possible orderings. They introduced sampling of or-
derings for the likelihood ratio test to overcome computational difficulties.
In our work, we do not compute lower and upper reproducibility probabil-
ities for the tests because it is hard to derive the minimum and maximum
values of some test statistics, such as the test statistic of the t-test, which
depend on both the sample mean and variance. However, we can construct
the confidence interval for the single value of Bootstrap-RP using formula
p̂±z(1−α/2)

√
p̂(1− p̂)/n, where the proportion p̂ is the predictied Bootstrap-

RP value. Here, we investigate whether or not the Bootstrap-RP tends to
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Figure 7: Simulations under H0: values of NPI-B-RP for F-test.
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provide a value within the lower and upper NPI-RP.
Coolen and Marques [14] introduced sampling of future orderings for like-

lihood ratio tests with the test criterion in terms of the sample mean. The
likelihood ratio test in the following test criterion involves the mean of the
observed values. The null hypothesis H0 is considered with a one-sided alter-
native hypothesis, H0 : µ ≤ µ0 vs Ha : µ > µ0, leading to the test criterion,
H0 being rejected if and only if

1

n

n∑
i=1

xi > c (1)

where c is dependent on the significance level of the test and the assumed
statistical model.

We cannot derive a precise value for the mean of a specific ordering Oj

of the n future observations in the NPI approach because we do not assume
precise values within the intervals (x(i−1), x(i)). Therefore, the maximum
lower bound and minimum upper bound for the mean corresponding to Oj

can only be derived, which are denoted by mj and mj, respectively. These
are derived as follows

mj =
1

n

n+1∑
i=1

sjix(i−1) (2)

mj =
1

n

n+1∑
i=1

sjix(i) (3)

Suppose that the original data sample of size n led to the rejection of H0,
so its mean exceeds c. In this case, the test result is reproduced if the future
sample also rejects H0. This occurs certainly for ordering Oj if mj > c, while
it certainly does not occur if mj ≤ c. However, we are unable to decide
whether or not the original test result is reproduced if mj ≤ c < mj. The
NPI lower and upper probabilities for test reproducibility are derived for the
case that the original data reject H0 as

RP =

(
n+m

n

)−1∑
j

1{mj > c} (4)

RP =

(
n+m

n

)−1∑
j

1{mj > c} (5)
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where j = 1, . . . ,
(
n+m
n

)
and 1{A} is the indicator function which is equal to

1 if A is true and 0 else.
The same arguments apply when the original data do not lead to the re-

jection of the H0, allowing us to derive the NPI lower and upper probabilities
for test reproducibility as

RP =

(
n+m

n

)−1∑
j

1{mj ≤ c} (6)

RP =

(
n+m

n

)−1∑
j

1{mj ≤ c} (7)

The decision rule may be expressed with the test criterion in terms of
the sample mean X for the likelihood ratio test as test criterion (1), which
rejects the null hypothesis for a significance level α if

X > q(1−α) (8)

where q(1−α) is the (1−α) quantile ofX. It is well known that for independent
and identically distributed Xi ∼ N(µ, σ2), i = 1, . . . , n, the distribution of
the mean is X ∼ N(µ, σ2/

√
n).

We consider likelihood ratio tests for the mean value underlying the Nor-
mal population. For distributions with infinite range, we have to define
bounds of possible values for the future observations, which we denote by
x(0) = L and x(n+1) = R. It is obvious that we must assume values L < x(1)

and x(n) < R such that the observations are within this range [L,R], where
L and R can depend on the actual data observations. For n data observa-
tions x1 < x2 < . . . < xn, the lower and upper limits may be defined as
L = x(1) −

x(n)−x(1)

n−1
and R = x(n) +

x(n)−x(1)

n−1
.

We simulatedN = 50 samples of size n = 25 from the Normal distribution
with mean 2 and standard deviation 3 under H0. We approximate NPI-
RP for larger sample sizes via sampling of orderings instead of considering
all different possible orderings. To achieve reasonable results, Coolen and
Marques [14] suggest that the number of orderings sampled should be at
least 2000. Considering the number of orderings sampled equal to 2000, the
upper and lower RP for each of N = 50 samples were calculated based on
the decision rule given in (8) with the level of significance α = 0.10. The
NPI lower and upper reproducibility probabilities are calculated for rejection
cases using Equations (4) and (5). In the case of non-rejection, we compute
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Figure 8: Simulations underH0: values of PP-B-RP, NPI-B-RP and NPI-RP for likelihood
ratio test, where n = 25.

the NPI lower and upper reproducibility probabilities using Equations (6)
and (7). We investigate whether or not the Bootstrap-RP methods tend to
provide values that fall within the lower and upper NPI-RP for the likelihood
ratio test. The RP for each of N = 50 samples was computed based on the
PP-B and NPI-B methods using B = 1000 bootstrap samples. For each
simulated sample, we compute RP values based on the bootstrap method
and repeat the procedure 100 times, so we obtain RP1, . . . , RP100. Then, we
examine whether these values are between the corresponding lower and upper
NPI-RP results. The same simulated samples are used to compute the RP
values of the likelihood ratio test based on different bootstrap methods and
NPI-RP. The observed likelihood ratio statistic, Bootstrap-RP, and NPI-RP
were determined for each of the N = 50 samples.
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Figure 8 presents RP values using different bootstrap methods and NPI-
RP under H0 for samples of size n = 25. The minimum, mean and maximum
values of 100 Bootstrap-RP for each simulated sample are computed. The
boxplots of RP are displayed for both rejections and non-rejections based on
the mean of PP-B-RP and NPI-B-RP, as well as the lower and upper NPI-RP.
We found 90% of PP-B-RP values and 88% of NPI-B-RP values are included
in the bounds of NPI-RP. We conclude that both PP-B-RP and NPI-B-RP
results are consistent with NPI-RP because most of these values are located
in the corresponding NPI-RP boundaries. The PP-B-RP and NPI-B-RP
are in line with NPI-RP in terms of investigating test reproducibility as a
prediction problem rather than an estimation problem. Further simulations
were performed under Ha, which led to similar results as the case presented
under H0.

The two-sided for the likelihood ratio test, H0 : µ = µ0 vs Ha : µ ̸= µ0,
may be implemented in a similar procedure. The test criterion based on
sample mean is to reject the null hypothesis at a significant level if

X < q(α/2) ∨ X > q(1−α/2) (9)

where q(α/2) and q(1−α/2) are the (α/2) and (1− α/2) quantile of X.
The minimum upper bound and maximum lower bound for the mean

corresponding to Oj remain unchanged as in Equations (2) and (3), respec-
tively. In the case of a two-sided test, the NPI lower and upper probabilities
are different because they need to account for the two rejection regions. If
the original data reject H0, then the lower and upper RPs are derived as
follows.

RP =

(
n+m

n

)−1∑
j

1{mj > q(1−α/2) ∨ mj < q(α/2)} (10)

RP =

(
n+m

n

)−1∑
j

1{mj > q(1−α/2) ∨ mj < q(α/2)} (11)
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Figure 9: Simulations underH0: values of PP-B-RP, NPI-B-RP, and NPI-RP for likelihood
ratio test, where n = 25.

If the original data does not lead to rejecting the null hypothesis, we have

RP =

(
n+m

n

)−1∑
j

1{mj > q(α/2) ∧ mj < q(1−α/2)} (12)

RP =

(
n+m

n

)−1∑
j

1{mj > q(α/2) ∧ mj < q(1−α/2)} (13)

We have simulated N = 50 samples of size n = 25 from the Normal
distribution with mean 2 and standard deviation 3 under H0. For each
case, we compute the lower and upper RPs for the two-sided test based
on the decision rule given in (9) with the significance level α = 0.10 by
considering the number of orderings sampled equal to 2000. The lower and
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upper reproducibility probabilities of the NPI are computed for rejection
cases using Equations (10) and (11). In the case of non-rejection, we calculate
the NPI lower and upper reproducibility probabilities based on Equations
(12) and (13). The same simulated samples are used to compute the RP
values based on the bootstrap and NPI methods. We compute RP values for
the two-sided test based on the bootstrap method and repeat the procedure
100 times for each simulated sample as we did with the one-sided test. Figure
9 shows RP values for the likelihood ratio test with the two-sided alternative
using different bootstrap methods and NPI-RP under H0 for samples of size
n = 25. For each simulated sample, the minimum, mean, and maximum
Bootstrap-RP values are computed. The boxplots of RP are shown in both
cases of rejection and non-rejection based on the mean of PP-B-RP and
NPI-B-RP, along with the lower and upper NPI-RP. All values of PP-B-
RP and NPI-B-RP are included in the bounds of NPI-RP, indicating that
these bootstrap methods align with the reproducibility probability based on
the NPI approach. Further simulations were performed under Ha, yielding
results similar to those of the case presented under H0.

8. Conclusions and future works

In this paper, we present the PP-B method for the reproducibility of some
parametric tests. We also provide a comparison through simulation studies
with a similar predictive bootstrap method for test reproducibility, NPI-B.
Test reproducibility is more naturally considered a prediction problem than
an estimation problem. The explicit predictive nature of PP-B and NPI-
B, which consider future observations, aligns well with the nature of test
reproducibility. The reproducibility of tests has been studied using the PP-
B and NPI-B methods via simulation studies. The RP values obtained with
PP-B have less variability than those obtained with NPI-B, as a result of
using an assumed parametric model for PP-B. Increasing sample size reduces
the fluctuation of NPI-B-RP values because bootstrap samples become less
variable and the power of the test increases. However, the variability of
NPI-B-RP values for the F-test is not reduced with increasing sample sizes
because the test statistic for the F-test is calculated using only the ratio of
two sample variances. We consider PP-B and NPI-B for the reproducibility of
some parametric tests, but they can be applied to a wide range of parametric
statistical tests.

The use of the bootstrap to predict RP avoids the hard calculations of the
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lower and upper boundaries in NPI-RP, and it offers a flexible approach when
considering large sample sizes. The Bootstrap-RP uses the point estimate to
present the RP instead of the lower and upper values of NPI-RP, but we can
construct the confidence interval for the single value of Bootstrap-RP. We ex-
plore whether the RP values using PP-B and NPI-B tend to be between the
lower and upper NPI-RP for the likelihood ratio test. The predicted values
of PP-B-RP and NPI-B-RP for the likelihood ratio test are mostly included
within the bounds of NPI-RP, indicating that these bootstrap methods are
consistent with the NPI-RP approach. The PP-B-RP, NPI-B-RP, and NPI-
RP consider test reproducibility from a predictive standpoint, which provides
an appropriate formulation for inferring the RP of a test. It seems logical and
natural to study the RP of a test with the same sample sizes and significance
level as in the actual test. Senn [38] discussed how circumstances in the real
world may vary among different tests, including sample sizes. The bootstrap
method for the reproducibility of tests can be extended to consider future
sample sizes that differ from the data sample size or to use varying levels of
statistical significance. However, employing the same sample sizes and signif-
icance levels as in the actual test is logical from the perspective of theoretical
reproducibility, particularly within a frequentist statistical framework.
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