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Abstract

Reproducibility of research is crucial and has received much attention in recent
years. One aspect of reproducibility is statistical reproducibility, which exam-
ines whether statistical inferences remain similar when experiments are repeated.
This paper investigates the reproducibility probability (RP) of normality tests
and tests for equality of variances from a nonparametric predictive inference
(NPI) perspective, offering a novel predictive framework for quantifying test
reproducibility without strong parametric assumptions. Three well-known nor-
mality tests—the Shapiro-Wilk (SW), Anderson-Darling (AD), and Lilliefors
(LF) tests—are studied, along with two tests for equality of variances: the F-
test and Levene’s test. The results show that RP tends to be low, particularly
when p-values are close to the significance threshold. RP is also influenced by
sample size and significance level, with larger samples decreasing RP in the non-
rejection area and increasing it in the rejection area. Among the normality tests,
the Shapiro-Wilk test has the highest RP in the non-rejection area, while the
Anderson-Darling test has the highest RP in the rejection area. For the equal-
ity of variances tests, the F-test exhibits greater variability, particularly under
non-normality. These findings highlight the limited statistical reproducibility of
widely used tests and demonstrate how the proposed NPI-based approach can
provide practical insight into the stability of test outcomes under uncertainty.

Keywords: Reproducibility probability (RP), Nonparametric predictive inference
(NPI), Normality tests, Equality of variances tests



1 Introduction

The reproducibility of statistical hypothesis tests has received increasing attention in
recent years. A fundamental principle of scientific credibility is the ability to obtain
similar results when a hypothesis test is repeated under the same sample size and con-
ditions. Reproducible results confirm that inferences made from statistical tests are
reliable and not merely the outcome of chance or specific analytical choices. Despite
its crucial role in science, reproducibility lacks a universally accepted definition, and
its distinction from related concepts such as replicability remains ambiguous. The lit-
erature presents multiple, sometimes conflicting, definitions, leading to inconsistencies
in discussions on statistical reliability. According to the National Academies of Sci-
ences, Engineering, and Medicine [30], reproducibility refers to the ability to obtain
consistent results using the same data and analytical methods, whereas replicability
refers to the ability to achieve consistent findings in a new, independent study using
different data but similar methods.

Goodman [23] was among the first to highlight concerns about the reproducibil-
ity of statistical findings, emphasising that p-values are often misinterpreted, giving a
misleading impression of confidence in research conclusions. He argued that p-values
do not measure effect size or reproducibility probability and called for a more trans-
parent approach to statistical inference that incorporates additional metrics. Senn
[32] expanded on these ideas, distinguishing between reproducibility probability and
the p-value. While Senn questioned Goodman’s claim that p-values overstate evidence
against the null hypothesis, he acknowledged a relationship between p-values and
reproducibility.

Beyond statistical inference, the broader concept of reproducibility has been the
focus of significant discussion in the scientific community, particularly regarding its
challenges and best practices. Atmanspacher and Maasen [4] provided an overview
of key issues such as publication bias, the importance of following best practices,
and the challenges researchers face in improving reproducibility. However, surprisingly
little attention has been paid to the reproducibility of statistical inference methods
themselves, despite their critical role in empirical research [15].

The work of Simkus et al. [36] provides a detailed examination of the ambigu-
ity surrounding reproducibility, classifying existing definitions into five distinct types
and analysing the impact of variations in datasets, laboratories, and experimental
conditions that influence reproducibility. The paper also examines statistical repro-
ducibility, noting that, like reproducibility itself, it lacks a clear definition. Goodman
[23] described it as the probability of obtaining another statistically significant result
in the same direction under identical conditions, but this perspective is just one among
many. Simkus et al. [36] review statistical approaches to quantifying reproducibility,
the role of p-values, and the challenges posed by variability across studies. A key
contribution is the argument that reproducibility should be treated as a predictive
problem, and Nonparametric Predictive Inference (NPI) is proposed as a framework
for addressing this issue. Finally, the paper highlights ethical concerns in preclinical
research and calls for further work on decision-making strategies when reproducibility
is low.



Building on these discussions, this paper investigates the reproducibility of sta-
tistical hypothesis tests through a predictive lens. Prior research on statistical
reproducibility has explored methods such as power-based estimation of reproducibil-
ity probability , and distinctions between different types of test repetition [19-22].
Miller [29] emphasised the importance of distinguishing between two types of repe-
tition: (1) repetition by independent researchers under different conditions and (2)
repetition by the same researcher under identical conditions. While his skepticism
about drawing conclusions from independent replications when the true effect size and
test power were unknown is noteworthy, this paper focuses on the second scenario.
Here, statistical reproducibility refers to the probability that the same test outcome
would be reached if the test were repeated under the same conditions.

This study employs NPI, a frequentist approach with minimal assumptions, to
assess test reproducibility. NPI has been successfully applied to various statistical
problems, including diagnostic accuracy analysis [18], finance [6], and operations
research [14]. Tts predictive nature makes it well-suited for reproducibility studies,
where the goal is to assess the likelihood of obtaining the same test outcome in future
experiments. Coolen and BinHimd [12, 13] pioneered the application of NPT in repro-
ducibility studies, investigating its use for nonparametric tests such as the Wilcoxon
Mann—Whitney test, Signed-Rank test, and the Kolmogorov—Smirnov test. Subse-
quent work extended NPI reproducibility assessment to population quantiles [10, 11]
and t-tests in pharmaceutical applied settings [35].

In this paper, we examine the reproducibility of two fundamental classes of statisti-
cal tests: normality tests, which assess whether a dataset follows a normal distribution,
and equality of variances tests, which evaluate whether two groups have equal vari-
ances. These tests are crucial for the validity of many parametric analyses, and
understanding their reproducibility under different conditions—such as varying sample
sizes and distributions—is essential.

While it is well-known that many commonly used tests for normality and equality
of variances exhibit sensitivity to deviations from assumptions, the key contribution of
this study is to systematically evaluate their reproducibility using the nonparametric
predictive inference (NPI) framework. To our knowledge, this is the first application
of NPI-based reproducibility probability (NPI-RP) to these pre-tests. Although these
tests are widely employed in practice, their reproducibility—an important dimension
of scientific reliability—has not been thoroughly examined in this context. Our analysis
provides a novel perspective on the stability of statistical decisions under repeated
sampling, offering valuable insights for applied researchers.

The remainder of this paper is structured as follows. Section 2 provides an overview
of the predictive approach to statistical reproducibility, first introduced by Coolen and
BinHimd [12], within the NPI framework. It discusses the benefits of viewing repro-
ducibility as a predictive problem and highlights challenges associated with traditional
reproducibility assessments. Section 3 investigates the reproducibility of normality
tests, while Section 4 explores the reproducibility probability of equality of variances
tests. Finally, Section 5 summarises the study and discusses potential directions for
future research.



2 Statistical Reproducibility

2.1 A Predictive Framework for Statistical Reproducibility

A novel perspective on reproducibility probability (RP) was introduced by Coolen and
BinHimd [12] through the application of Nonparametric Predictive Inference (NPI), a
framework rooted in frequentist statistical methods. The predictive nature of NPI nat-
urally lends itself to assessing RP, as it enables the prediction of future test outcomes
based on an initial test, assuming identical conditions and sample size [8]. Coolen and
BinHimd [12, 13] pioneered the use of NPI for reproducibility assessment, applying
it to basic nonparametric tests such as the Wilcoxon-Mann—-Whitney test (WMT),
the Signed-Rank test, and the Kolmogorov—Smirnov test. Algifari and Coolen [1, 11]
extended this approach to tests involving population quantiles and precedence tests.
Additionally, Simkus et al. [35] explored NPI reproducibility in the context of multiple
t-tests, emphasising the challenges posed by multiple testing.

In the Bayesian framework, Billheimer [7] advocated for predictive inference by
focusing on the prediction of future observable data rather than inferring unobserv-
able parameters to enhance reproducibility. While this approach aligns with the goal
of statistical reproducibility, this paper employs the NPI framework as a preferable
alternative, as it avoids distributional assumptions about the data.

The NPI-based method for assessing reproducibility involves conducting a test on
the original data and evaluating its results across all possible future data sets of the
same size, assuming post-data exchangeability [15]. Reproducibility is then assessed by
deriving lower and upper bounds for the reproducibility probabilities, utilising Hill’s
assumption, which will be discussed in more detail below.

Senn [32] argued that, in the worst-case scenario, the probability of reproducibil-
ity of a hypothesis test could be as low as 0.5, particularly when the test statistic is
near the threshold between rejecting and failing to reject the null hypothesis. Coolen
and BinHimd [12] confirmed this result for basic tests involving a single group of data,
where the minimum NPI lower reproducibility probability was found to be 0.5 [15].
However, when testing with two groups of data, the minimum lower reproducibility
probability was found to be lower than 0.5, and reproducibility tended to decrease
further if the null hypothesis was rejected with a test statistic close to the rejection
threshold. This issue is further exacerbated by the nature of hypothesis testing, which
is often designed to maximise the likelihood of rejecting the null hypothesis—an objec-
tive commonly found in experimental studies [15]. Additionally, concerns have been
raised that both lower and upper NPI reproducibility probabilities may remain low
even for test statistics that are far from their respective thresholds [15].

Although this approach provides valuable insights, it can become computationally
intensive for complex tests or large datasets [15]. When it is possible to determine
whether a given ordering of future observations among the original data will lead
to rejection or non-rejection of the null hypothesis—without assuming specific values
between two original observations—sampling future orderings provides a computa-
tionally feasible solution. This method enables the estimation of both lower and upper



reproducibility probabilities within the NPI framework [15, 16]. In cases where pre-
cise knowledge of future observations is required to determine the outcome, the NPI
bootstrap method [8, 13, 15] is recommended.

This paper employs the nonparametric predictive inference bootstrap (NPI-B) to
estimate reproducibility probability (NPI-B-RP). While NPI-B provides a point esti-
mate of reproducibility probability, it does not offer an explicit means of expressing
results in terms of imprecise reproducibility probabilities. NPI-B-RP leverages the
NPI-B framework for prediction, estimating RP by repeatedly conducting a statisti-
cal test and examining the consistency of test outcomes [8]. BinHimd [8] performed a
preliminary study on NPI-B-RP for the Wilcoxon Mann—Whitney test, demonstrat-
ing that NPI-B-RP yields results consistent with theoretical values for both lower and
upper reproducibility probabilities, even with small sample sizes. Similarly, Simkus
[34] applied the NPI-B-RP algorithm to the t-test, modifying certain aspects, such
as the number of bootstrap iterations and the reporting of NPI-B-RP using different
summary statistics.

In this paper, we use the NPI Bootstrap (NPI-B) technique to assess reproducibility
for normality tests and equality of variance tests. NPI-B applies bootstrap resampling
to estimate reproducibility probability, making it particularly useful when exact ana-
lytical solutions are impractical. By simulating repeated samples from the observed
data, NPI-B provides a practical approach to evaluating reproducibility across different
statistical tests.

In the next section, we will explore the mathematical foundations of NPI and NPI-
B in more detail, demonstrating their application to the problem of reproducibility in
statistical experiments.

2.2 Nonparametric Predictive Inference Bootstrap (NPI-B)

Nonparametric predictive inference (NPI) [5, 14] is a frequentist statistical method
based on Hill’'s assumption A, [24]. This assumption allows for direct probabilistic
predictions of future observations, conditional on the observed data. Suppose we have

n ordered real-valued observations, z(1) < x(z) < -+ < Z(p), corresponding to con-
tinuous and exchangeable random variables X, Xs,..., X,,, X,,+1. For convenience,
let z(gy = —oo and x(,41) = 0o, with x() = 0 for non-negative random variables.

These n observations divide the real line into n + 1 intervals: I; = (x(;_1),z(;)) for
J=1,2,...,n+ 1. The Hill assumption A, regarding a future observation X, 1,
based on these n observations, is given by:

1
P(XnJrleIJ):m for j:1,2,,n+1 (].)

NPI can be extended to predict multiple future observations by utilising a sequen-
tial version of Hill's assumption, denoted A() [17]. Let O; represent the possible
orderings of m future observations, where i = 1,2,..., ("J:lm), with each ordering
equally likely. For each ordering O, let S} represent the number of future observa-
tions that fall within interval I;, where j = 1,2,...,n+1. The probability of a specific

ordering is:



i : 1 n+m
(Q > ("3") < n >

n

i are non-negative integers such that 3."*! s = m. This represents the

Here, s
number of jfuture observations in each interval I}, WithOlit specifying the exact posi-
tions within each interval. The main idea of the NPI approach is to consider all
possible orderings of future observations among the existing data, with each arrange-
ment equally likely. Future observations are grouped into intervals, and we know how
many will fall into each interval, though their exact values are not specified. Impor-
tantly, no further assumptions are made about the future data—each observation can
take any value within its designated interval.

NPI is a powerful tool in imprecise probability theory, providing bounds for
probabilities based on Hill’s assumption A(,). Although NPT does not yield exact
probabilities, it offers useful bounds, especially in cases of limited or imprecise data
[5, 14]. The method calculates lower probabilities by counting all orderings where an
event must occur, while upper probabilities are based on all orderings where the event
is possible [5]. NPI has been successfully used in objective (Bayesian) inference [9],
addressing problems that require probabilistic predictions rather than precise values.
Additionally, NPI is ezactly calibrated [26], a property ensuring that the inferences
made are consistent with empirical probabilities.

In the context of reproducibility, statistical reproducibility refers to the probability
of obtaining the same test outcome when a hypothesis test is repeated under identical
conditions. In NPI, the process begins by performing a hypothesis test on an original
sample of size n. Based on the test statistic, we determine whether to reject the null
hypothesis Hy or not. Next, we predict a future sample of size n under the assumption
that all possible orderings of the n future observations among the n existing data points
are equally likely. For each such ordering, we assess whether Hj is certainly rejected,
possibly rejected, or possibly not rejected. By examining these different orderings, we
calculate the lower reproducibility probability by counting the number of orderings
where the conclusion is certainly the same as the one derived from the original test. For
the upper reproducibility probability, we extend this count to include the ‘possibly’
cases, where the conclusion is potentially consistent with the original test.

We should note that the sample sizes for the original and future tests do not
necessarily have to be the same. However, in the reproducibility setting, assuming
n = m is a natural choice. This ensures that the hypothesis test is conducted under
identical conditions, allowing for a fair comparison between the original test outcome
and the outcomes of repeated tests on future data.

However, as sample sizes grow, the NPI-RP approach becomes computationally
expensive. The number of possible future arrangements increases exponentially, so
even with a relatively small sample size of 16, the number of potential orderings can
quickly become prohibitively large. To address this challenge, Coolen and Marques [16]
introduced a sampling methodology, where instead of calculating all possible order-
ings, they suggest randomly sampling future data arrangements. This method ensures
that each future arrangement is equally likely and that each selection is independent
of the others. By using a sufficiently large number of samples, the difference between



sampling with and without replacement becomes negligible, making the approach com-
putationally feasible. This allows lower and upper reproducibility probabilities to be
estimated without the need to evaluate all possible orderings.

Another approach to improve computational efficiency is the NPI bootstrap (NPI-
B) method, introduced by Coolen and Binhimd [16]. This resampling-based technique
simplifies the calculation of reproducibility probabilities for various nonparametric
tests. While the exact computation of reproducibility probabilities can be intensive,
NPI-B provides a practical alternative by estimating values within the lower and upper
bounds [12, 13]. Unlike traditional bootstrap methods, NPI-B is specifically designed
for predicting future observations, offering a unique perspective within frequentist
statistics.

The steps to generate an NPI-B sample for one-dimensional real-valued data in
the NPI-B method are as follows [12, 13]:

1. Select an interval I; = (x(;_1),z(;)) where j =1,2,...,n+ 1.
2. If I; is finite, sample a future observation uniformly from this interval.
3. If I; is an open-ended interval ((—00, 2 (1)) or (2(y), +00)), sample using the tails of

T tT(n)
2

a normal distribution. The mean p is set to , and the standard deviation

o is set to %, where ®~! is the inverse of the standard normal distribu-
n+1

tion function. In the case of non-negative data (0,400), if the chosen interval is
(%(n), +00), sample the future value from the tail of an exponential distribution

with rate A = %

4. Add the newly sampled observation to the original data, creating a new dataset of
size n + 1.

5. Repeat steps 1-4 to generate a total of m future observations, forming one NPI-B
sample.

6. Repeat steps 1-5 IV times to create multiple NPI-B samples.

In Step 3, sampling from the tails of a fitted normal (or exponential) distribution is
used to handle open-ended intervals, as proposed by Coolen and Bin Himd [13]. Within
the NPI-B framework, standard normal and exponential distributions are employed
to address the challenge of sampling from such unbounded intervals, where uniform
sampling is not feasible. Specifically, the tail of a standard normal distribution is used
for data defined on the entire real line, and the tail of an exponential distribution
is used for data restricted to non-negative values. These distributional choices align
with the probabilistic structure of NPI-B, particularly the assignment of a 1/(n + 1)
probability mass to the open-ended intervals.

The NPI-B framework can be applied to estimate reproducibility probability (NPI-
B-RP) by iterating the statistical test multiple times and assessing the consistency of
outcomes [8]. Algorithm 1 outlines the process for calculating NPI-B-RP for any test
based on the methods derived from the NPI-B framework for the Wilcoxon-Mann-
Whitney test (WMT) [8] and t-test [35].

The simulations were conducted using the statistical software R (version 4.2.2)
on a standard laptop equipped with a 2.6 GHz Intel Core i7 processor. The average
runtime for 100 repetitions of an NPI-B simulation with a sample size of 1000, used



Algorithm 1 NPI-B-RP for a statistical test

Require: Original samples, N (number of NPI-B samples), h (number of iterations).
1: Apply the test to the original data and make a decision about Hy. Record T' = 1 if Hy
is rejected at significance level «, otherwise record T' = 0.
2: Draw N NPI-B samples based on the original data, applying the same test each time.
Record T; = 1 if Hy is rejected, or T = 0 if Hy is not rejected.
3: Compute the Reproducibility Probability (RP):

1 N
RP = 5> Tir=r))
j=1

4: Repeat steps 2-3 for h iterations, obtaining RPy, RPa, ..., RP}.

to estimate the NPI-B-RP for a single test (sample size = 10), was approximately 1.3
minutes. Simulations with larger sample sizes required proportionally longer runtimes.

3 Reproducibility of Normality Tests

Statistical procedures, particularly parametric tests, often assume that the underly-
ing data follow a normal distribution. This assumption is crucial for drawing reliable
conclusions from these tests. To assess the validity of this assumption, several statis-
tical tests have been developed, including the Shapiro-Wilk, Anderson-Darling, and
Lilliefors tests. These tests are commonly employed in research to verify whether data
meet the assumption of normality before conducting further analyses. The null hypoth-
esis for normality tests is Hy: data follow a normal distribution, against the alternative
hypothesis H;: data do not follow a normal distribution. This study focuses on three
widely used normality tests: the Shapiro-Wilk test, the Anderson-Darling test, and
the Lilliefors test.

3.1 Normality tests and their statistics

The Shapiro-Wilk test is widely used to assess the normality of a dataset. Its test
statistic, denoted as W, is given by [33]:

(Z?:l aiX(i))2 (3)
i (X = X)?

where X(;) represents the ordered data points, n is the sample size, and X is the
sample mean. The constants a; are derived from the expected values of order statistics
assuming a Normal distribution.

Another common test for normality is the Anderson-Darling test. The test statistic
for this method, denoted as A?, is defined as [2, 3]:

W =

A= —n— %Z{(Qi — 1)log Pgy + (2n + 1 — 2i) log(1 — Ps))} (4)
i=1



Here, Py = @ (w is the cumulative distribution function (CDF) of the
standard Normal distribution evaluated at X(;, and o is the sample standard
deviation.

Lastly, the Lilliefors test, another widely used method for testing normality, uses
the test statistic D, [27]:

D, = max |Fo(X5) — Pyl (5)

i=1,..
where F,(X;) is the empirical distribution function based on the sample, and P;
is the corresponding quantile from the standard Normal distribution.

3.2 NPI-B-RP of normality tests

Despite extensive research on the performance and power of normality tests, there
has been limited attention to the reproducibility of these tests. In this context,
reproducibility refers to a test’s ability to produce consistent results under repeated
sampling from the same population. The reproducibility of normality tests can be influ-
enced by several factors, including sample size, the underlying data distribution, and
the chosen significance level. Additionally, the interplay between these variables may
affect the outcomes of normality tests. To investigate these effects, we conducted sim-
ulation studies to assess the reproducibility of normality tests under different sample
sizes (n = 10,20, 50, 100).

Under the null hypothesis of normality (Hy), data were simulated from a Nor-
mal distribution with mean and variance both equal to 1, denoted as N(1,1). For the
alternative hypothesis (H;), we considered four non-Normal distributions: the Stu-
dent’s t-distribution with 3 degrees of freedom (#(3)), the exponential distribution
with rate 1 (Exp(1)), and the Cauchy distribution with location parameter 0 and scale
parameter 1 (Ca(0,1)). We also evaluated the tests across different significance levels
(a =0.01,0.05,0.1). Moreover, these simulations were conducted using data generated
from a normal distribution fitted to the Sepal.Length variable of the Iris dataset.

Reproducibility was estimated using the NPI-B-RP Algorithm 1. The inputs
included the original sample with sample size n, N = 1000 (number of NPI-B sam-
ples), and h = 100 (number of iterations). The number of runs per simulation was set
to K = 200. The tests were performed with a two-sided alternative hypothesis.

The simulation results for the reproducibility of normality tests when the data were
drawn from N (1, 1) are shown in Figure 1. A consistent pattern was observed between
the p-values and RP values. Specifically, both in the rejection and non-rejection areas,
the RP values increased steadily as the p-value deviated further from the threshold.
When the p-value was close to the threshold, the evidence for or against Hy was
weak, leading to low RP values. As the p-value moved further from the threshold, the
evidence strengthened, resulting in higher RP values.

The RP values were influenced by sample size. For small sample sizes, RP values
were higher in the non-rejection area and lower in the rejection area. As the sample size
increased, the reverse trend was observed, with RP values being higher in the rejection
area and lower in the non-rejection area. This behavior can be attributed to the power
of normality tests, which improves with larger sample sizes. The NPI-B method, which
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Fig. 1 Relationship between NPI-B-RP and p-value for the Shapiro-Wilk, Anderson-Darling, and
Lilliefors tests when data are sampled from N(1,1) at a significance level of a = 0.05.

makes no assumptions about the distribution, results in more diverse samples, making
it easier for small samples to pass normality tests. With larger sample sizes, the ability
of the tests to detect deviations from normality improves, which results in lower RP
values in the rejection area and higher RP values in the non-rejection area.

Interestingly, when p-values approached 1, the RP values did not approach 1. This
suggests that, even when the p-value was high, there was still some uncertainty about
the underlying distribution, indicating weak evidence against Hy. Consequently, the
RP values did not reach close to one.

The results for the non-normal distributions also followed similar trends. When
data were sampled from a ¢(3) distribution, Figure 2 showed that the patterns observed
for RP values and p-values were similar to those observed with the Normal distribution.
However, a more noticeable increase in the number of samples in the rejection area
was seen as the sample size increased. When data were sampled from the exponential
distribution Exp(1) (Figure 3), the RP values followed similar patterns to the ¢(3)
distribution, but the number of original samples in the rejection area was higher.
This can be attributed to the long right tail of the exponential distribution, which
increases the likelihood of extreme values and outliers. As the sample size increased,
RP values in the rejection area tended to approach 1, while those in the non-rejection
area decreased.

When original samples were taken from the Cauchy distribution Ca(0,1), Figure
4 showed similar trends to those observed with the exponential distribution. However,
the number of original samples in the rejection area and the RP values in this area
were higher compared to the exponential case. This can be attributed to the Cauchy

10
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Fig. 2 Relationship between NPI-B-RP and p-value for the Shapiro-Wilk, Anderson-Darling, and
Lilliefors tests when data are sampled from t(3) at a significance level of a = 0.05.

distribution’s heavy tails, which make it more likely for extreme values to occur in
both the original and NPI-B samples.

The effect of different significance levels (a = 0.1, 0.05, and 0.01) on the RP values
for normality tests is shown in Figure 6. As expected, RP values were generally higher
at lower significance levels and decreased as the significance level increased in the
non-rejection area. In the rejection area, RP values increased with higher significance
levels, as higher « values made it easier to reject Hp. This occurs because a lower
significance level («) imposes a stricter threshold for rejecting Hp, making rejections
less frequent. As a result, RP values tend to be lower in the rejection area and higher
in the non-rejection area. Conversely, at higher significance levels, the threshold for
rejecting Hy is more lenient, leading to increased rejections, which results in higher
RP values in the rejection area and lower RP values in the non-rejection area. This
trend was consistently observed across all examined distributions.

Figure 5 presents the results for the reproducibility probabilities of the normality
tests based on this realistic data. The patterns observed closely resemble those found
in the main simulation study, reinforcing the consistency of our findings.

In summary, the simulation results demonstrate the significant impact of sample
size, distribution type, and significance level on the reproducibility of normality tests.
Higher sample sizes generally lead to improved power for normality tests, with RP
values in the rejection area increasing and those in the non-rejection area decreasing as
sample size grows. The variability of RP values also rises with increasing sample size,
due to the greater complexity and diversity of NPI-B samples, which produce a wider
range of possible test outcomes. Among the tests considered, the Anderson-Darling
test exhibited less variability in RP values compared to the Shapiro-Wilk and Lilliefors

11
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Fig. 3 Relationship between NPI-B-RP and p-value for the Shapiro-Wilk, Anderson-Darling, and
Lilliefors tests when data are sampled from Exp(1) at a significance level of o = 0.05.

tests, likely due to its greater sensitivity to deviations in the tails of the distribution.
Different distributions, such as the exponential and Cauchy distributions, influence
the performance of normality tests, particularly in terms of the number of samples in
the rejection area. The significance level also affects RP values, with lower o making
the test more conservative, resulting in higher RP values in the non-rejection area and
lower values in the rejection area. Conversely, higher significance levels lead to more
frequent rejections of the null hypothesis, increasing RP values in the rejection area
while decreasing them in the non-rejection area. This trend was consistently observed
across all considered distributions. The Shapiro-Wilk test typically showed the highest
RP values in the non-rejection area, while the Anderson-Darling test performed better
in the rejection area.

4 Reproducibility of Equality of Variances Tests

In many statistical analyses, particularly parametric tests like ANOVA and ¢-tests,
the assumption of equal variances across groups is essential. Ensuring homogeneity
of variances enhances the accuracy of statistical inferences and interpretations. The
two most commonly used tests for assessing equality of variances are the F-test and
Levene’s test. These tests evaluate the null hypothesis:

Hy:0? =02 (6)
against the alternative hypothesis:

Hy : ol # 03 (7)

12



10 20 50 100
1.00 : { Py

g .;
0.75 = 8 :
o ¢ .Q. . .
E MRS || ¢+ :
DI: ‘%’;“‘ ’. e, o o
m 0.50. I“%w“’ : o ,4% :
| g P 3, Yoo :
_ ' Te iy :
o o ‘&J 0.0 :
Z 0.25 30" :
4 :
rd .
: %
0.00 : :

O A O o O M O 2 O @ O 2O OO M O Ho O
SFPLLSELPLLSEPLLLSEF LS

p-value

Test e Shapiro-Wilk test Anderson-Darling test ¢  Lilliefors test

Fig. 4 Relationship between NPI-B-RP and p-value for the Shapiro-Wilk, Anderson-Darling, and
Lilliefors tests when data are sampled from Ca(0,1) at a significance level of a = 0.05.

where 07 and o2 represent the variances of the first and the second populations,
respectively.

4.1 Equality of variances test statistics

The F-test evaluates the ratio of two sample variances:

Sy Y —Y)/(ny - 1)
where X and Y are the sample means. The F-test is highly sensitive to deviations
from Normality and outliers [31], which can inflate Type I error rates.
The test statistic for Levene’s test is based on a one-way analysis of variance
(ANOVA) using the values Z;; = |X;; — X;|, where X; is the mean (or median) of the
i-th population [25, 28]. The Levene’s test statistic is given by:

=M YN nilZi - Z.)?
L= (]\7;[—1) 2%1271:1 Z”*Zz)Z 9)

where {X;; : j = 1,...,n;,4 = 1,..., M} are the samples from M populations,
each with mean p; and variance o2 for the i-th population. nr is the total number

. > S Zsg
of observations across all groups. Z; = =4~

_ Mo
for the i-th population. Z = %TFIZ” is the overall mean of the transformed
data across all populations. This formulation provides the basis for evaluating the

is the mean of the transformed data
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null hypothesis of equal variances across populations and is less sensitive to deviations
from Normality compared to the F-test.

4.2 NPI-B-RP of equality of variances tests

We explore the reproducibility probability (RP) of the F-test and Levene’s test by
conducting simulation studies. The setup for the simulations involves generating two
original samples, with N = 1000 and A = 100 for the number of replications. Each
simulation run consists of K = 200 runs where the data is generated for sample sizes
n1 = ng = 10,25. The tests are conducted at a 5% significance level for the two-
sided equality of variances tests. We use diﬁerent distributions for generating the data:
Under the null hypothesis Hy : 0 = 03, both orlglnal samples are generated from
Normal distributions with equal variances (07 = 03 = 1) as N(1,1), and Exponential
distributions Exp(1) with 0? = 0% = 1. Under the alternative hypothesis H; : 0% # o3,
the original samples are generated from Normal distributions N(1,22) and N(1,12),
where 07 = 4 and 02 = 1. Additionally, samples are generated from non-Normal
distributions such as ¢(3) and Exp(1), with variances 07 = 3 and 03 = 1. Furthermore,
we also conduct simulations for the upper-tailed F-test, comparing the RP values
between the two-tailed and upper-tailed F-tests.

Below are the simulation results for estimating the reproducibility probability (RP)
of the F-test and Levene’s test. Figure 7 displays the RP values for both tests when
the original samples are drawn from a Normal distribution with equal variances (0% =
03 = 1). RP values are low when the p-values from the equality of variances tests are
close to the significance level (a = 0.05). As the p-value deviates from this threshold,
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RP values increase in both the rejection and non-rejection areas. However, even as
the p-value approaches one, RP values do not fully converge to one. This is because
a p-value near one suggests weak evidence against or for Hp, and does not provide
certainty about the actual equality of variances. This uncertainty is reflected in the
RP, which does not reach one as the p-value approaches one. RP values for Levene’s
test are higher than those for the F-test in the non-rejection area, but lower in the
rejection area, often falling below 50%, indicating less reproducibility in this region.

Furthermore, RP values for the F-test show greater variability than those for
Levene’s test. This increased variability is due to the F-test’s sensitivity to deviations
from Normality and the inherent distributional variation in the NPI-B samples. As
a result, the Type I error rate for the F-test tends to be higher than the nominal
significance level («) when Normality is violated, leading to increased variability in
RP values.

Figure 8 shows RP values for the F-test and Levene’s test when both original
samples are drawn from a non-normal distribution with equal variances (0? = 05 = 1).
The RP values follow a similar pattern to those observed when both samples are from
N(1,12), although RP values for the F-test exhibit more variability. This confirms that
the F-test is highly sensitive to deviations from Normality, affecting the reproducibility
probability.

Figure 9 presents RP values for the F-test and Levene’s test when the original
samples come from Normal distributions with different variances (02 = 4 and o5 = 1).
As the p-value approaches the threshold, RP values for both tests decrease. In the
rejection area, most samples exhibit high RP values, and this trend increases as sample

15



10 25
1.004 :
: : o
45 \f,.’ g 2 o ®
v ;.'w'.v .'.“f Ty @).® .F".a.
o 0754 §: '.'.'-{'u- o ::}" < o’ :-M(‘.‘;' Y.t - 3
o E (#‘l- « LM .
I "é. 4 % :? ¢
o 0.50] ?
il : »
D_ Y
Z 0.25
0.00 /|
) 5 o &) O 5 i\ &) )
O N P Qf\ RPN N P Q’F N
p-value
Test o F-test Levene's test
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Hy, with both samples drawn from N(1, 12),

size grows. The number of samples that apply Levene’s test is smaller than that of the
F-test in the non-rejection area.

Figure 10 demonstrates the RP values for the F-test and Levene’s test when the
original samples are drawn from a non-Normal distribution with different variances
(62 = 3 and 07 = 1). As expected, RP values increase as the p-value moves further
from the threshold. Most original samples are located in the rejection area, with the
number of such samples increasing as sample size grows. While there is variability
in the F-test’s RP values in the non-rejection area, this variability diminishes in the
rejection area. This may be due to a wider range of data distributions with varying
degrees of variance inequality still leading to non-rejection of Hy in the non-rejection
area, resulting in greater variability in RP values. However, once Hj is rejected, the
range of potential results becomes more constrained, reducing the variability in RP
values.

Figures 11, 12, 13, and 14 compare RP values for the two-sided and upper-sided
F-tests. RP values for the upper-sided F-test are closer to one when the p-value
approaches one, in comparison to the two-sided tests. Additionally, RP values for the
upper-sided F-test exhibit less variability, particularly when dealing with non-Normal
distributions. This can be attributed to the nature of the alternative hypothesis in the
upper-sided F-test, which tests whether the variance of one population is significantly
higher than that of another, without considering the possibility of the reverse. This
more focused hypothesis leads to a narrower range of potential results, resulting in
reduced variability in test outcomes. In contrast, the two-sided test considers both
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possibilities of unequal variances, leading to a wider range of potential results and,
consequently, more variability in RP values.

In conclusion, the simulation results reveal that the F-test is highly sensitive
to deviations from Normality, resulting in substantial RP variability, particularly
under non-Normal distributions. Levene’s test shows greater RP stability in the non-
rejection area but lower RP in the rejection area compared to the F-test. Increasing
sample size improves RP in the rejection area but increases RP variability in the non-
rejection area. Lastly, the upper-tailed F-test exhibits higher RP and lower variability,
particularly in non-Normal settings, making it more reliable under such conditions.

5 Conclusions

This study examined the reproducibility probability (RP) for two types of hypothesis
tests: normality tests (Shapiro-Wilk, Anderson-Darling, and Lilliefors) and tests for
equality of variances (F-test and Levene’s test), using the nonparametric predictive
inference (NPI) bootstrap method to estimate RP.

The simulation results revealed several key insights. For normality tests, RP values
decreased as p-values approached the significance threshold. Sample size played a
crucial role: as the sample size increased, RP in the non-rejection area tended to
decrease, while RP in the rejection area increased. Larger sample sizes also led to
greater variability in RP within the non-rejection area. The significance level influenced
RP as well, with higher levels corresponding to lower RP in the non-rejection area
and higher RP in the rejection area. Among the normality tests, the Shapiro-Wilk
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test typically exhibited the highest RP in the non-rejection area, while the Anderson-
Darling test showed the highest RP in the rejection area.

For the equality of variances tests, RP patterns resembled those observed in the
normality tests. However, the F-test exhibited greater variability, especially when sam-
ples were drawn from non-normal distributions. Notably, RP values for the upper-sided
F-test tended to converge towards 1 more rapidly than those for the two-sided F-test.

Future research will focus on examining the impact of pre-testing (e.g., normal-
ity and equality of variances tests) on the reproducibility of subsequent two-sample
location tests, with a manuscript currently in progress. Another important area for
exploration will be addressing situations with low statistical reproducibility—whether
by increasing sample sizes, exploring alternative tests with better reproducibility, or
refining experimental designs. Additionally, investigating the reproducibility of other
pre-tests, such as additional normality tests, tests for equality of variances, indepen-
dence tests, and symmetry tests, could provide valuable insights for improving the
overall reliability of statistical analyses. These topics, along with others, remain open
for further investigation.

Beyond its methodological contributions, the proposed NPI-B-RP approach offers
practical value for applied research. By quantifying the reproducibility of hypothesis
test outcomes without strong parametric assumptions, our method enables researchers
to assess the stability of statistical decisions under uncertainty. This is particularly
beneficial in contexts where sample sizes are small or p-values are near conventional
significance thresholds. In such settings—common in disciplines like psychology, biol-
ogy, and medicine—our approach can enhance the transparency and robustness of
inference, ultimately supporting more reliable and reproducible scientific findings.
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